An Electrochromic Nickel Phosphate Film for Large-Area Smart Window with Ultra-Large Optical Modulation
Corresponding Author: Guofa Cai
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 34
Abstract
Exploring materials with high electrochemical activity is of keen interest for electrochemistry-controlled optical and energy storage devices. However, it remains a great challenge for transition metal oxides to meet this feature due to their low electron conductivity and insufficient reaction sites. Here, we propose a type of transition metal phosphate (NiHPO4·3H2O, NHP) by a facile and scalable electrodeposition method, which can achieve the capability of efficient ion accommodation and injection/extraction for electrochromic energy storage applications. Specifically, the NHP film with an ultra-high transmittance (approach to 100%) achieves a large optical modulation (90.8% at 500 nm), high coloration efficiency (75.4 cm2 C−1 at 500 nm), and a high specific capacity of 47.8 mAh g−1 at 0.4 A g−1. Furthermore, the transformation mechanism of NHP upon electrochemical reaction is systematically elucidated using in situ and ex situ techniques. Ultimately, a large-area electrochromic smart window with 100 cm2 is constructed based on the NHP electrode, displaying superior electrochromic energy storage performance in regulating natural light and storing electrical charges. Our findings may open up new strategies for developing advanced electrochromic energy storage materials and smart windows.
Highlights:
1 Transition metal phosphates were first developed for the electrochromic application.
2 The obtained NiHPO4·3H2O film achieves an ultra-large optical modulation of 90.8%, and the electrochromic mechanism is systematically elucidated using in situ and ex situ techniques.
3 A large-area electrochromic smart window with 100 cm2 is constructed, which displays superior performances in regulating natural lighting and storing electrical charges.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.T. Strand, T.S. Hernandez, C.J. Barile, M.D. McGehee, M.G. Danner et al., Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation. Nat. Energy 6(5), 546–554 (2021). https://doi.org/10.1038/s41560-021-00816-7
- Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 5, 45–52 (2022). https://doi.org/10.1038/s41928-021-00697-4
- S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11(10), 2884–2892 (2018). https://doi.org/10.1039/c8ee01718b
- S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 32(43), e2004686 (2020). https://doi.org/10.1002/adma.202004686
- G. Cai, P. Darmawan, X. Cheng, P.S. Lee, Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 7(14), 1602598 (2017). https://doi.org/10.1002/aenm.201602598
- Y. Yao, Q. Zhao, W. Wei, Z. Chen, Y. Zhu et al., WO3 quantum-dots electrochromism. Nano Energy 68, 104350 (2020). https://doi.org/10.1016/j.nanoen.2019.104350
- R. Wen, C.G. Granqvist, G.A. Niklasson, Anodic electrochromism for energy-efficient windows: cation/anion-based surface processes and effects of crystal facets in nickel oxide thin films. Adv. Funct. Mater. 25(22), 3359–3370 (2015). https://doi.org/10.1002/adfm.201500676
- W. Wu, H. Fang, H. Ma, L. Wu, W. Zhang et al., Boosting transport kinetics of ions and electrons simultaneously by Ti3C2Tx (MXene) addition for enhanced electrochromic performance. Nano-Micro Lett. 13, 20 (2020). https://doi.org/10.1007/s40820-020-00544-9
- Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13, 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
- H. Liang, R. Li, C. Li, C. Hou, Y. Li et al., Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Mater. Horiz. 6(3), 571–579 (2019). https://doi.org/10.1039/c8mh01091a
- L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Nickel-based materials for supercapacitors. Mater. Today 25, 35–65 (2019). https://doi.org/10.1016/j.mattod.2018.11.002
- P. Lei, J. Wang, P. Zhang, S. Liu, S. Zhang et al., Growth of a porous NiCoO2 nanowire network for transparent-to-brownish grey electrochromic smart windows with wide-band optical modulation. J. Mater. Chem. C 9(40), 14378–14387 (2021). https://doi.org/10.1039/d1tc03805b
- Z. Zeng, X. Peng, J. Zheng, C. Xu, Heteroatom-doped nickel oxide hybrids derived from metal-organic frameworks based on novel Schiff base ligands toward high-performance electrochromism. ACS Appl. Mater. Interfaces 13(3), 4133–4145 (2021). https://doi.org/10.1021/acsami.0c17031
- G. Cai, P. Cui, W. Shi, S. Morris, S.N. Lou et al., One-dimensional π-d conjugated coordination polymer for electrochromic energy storage device with exceptionally high performance. Adv. Sci. 7(20), 1903109 (2020). https://doi.org/10.1002/advs.201903109
- C. Su, M. Qiu, Y. An, S. Sun, C. Zhao et al., Controllable fabrication of α-Ni(OH)2 thin films with preheating treatment for long-term stable electrochromic and energy storage applications. J. Mater. Chem. C 8(9), 3010–3016 (2020). https://doi.org/10.1039/C9TC06354D
- J. Xue, S. Wang, H. Zhang, Y. Song, Y. Li et al., N-doped two-dimensional ultrathin NiO nanosheets for electrochromic supercapacitor. J. Mater. Sci. Mater. Electron. 31(22), 20611–20619 (2020). https://doi.org/10.1007/s10854-020-04581-3
- G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang et al., Electrochromo-supercapacitor based on direct growth of NiO nanops. Nano Energy 12, 258–267 (2015). https://doi.org/10.1016/j.nanoen.2014.12.031
- J. Wang, F. Li, F. Zhu, O.G. Schmidt, Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 3(8), 1800367 (2018). https://doi.org/10.1002/smtd.201800367
- J. Huang, Y. Xiong, Z. Peng, L. Chen, L. Wang et al., A general electrodeposition strategy for fabricating ultrathin nickel cobalt phosphate nanosheets with ultrahigh capacity and rate performance. ACS Nano 14(10), 14201–14211 (2020). https://doi.org/10.1021/acsnano.0c07326
- X. Zhao, X. Kong, Z. Liu, Z. Li, Z. Xie et al., The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. Nano Today 40, 101245 (2021). https://doi.org/10.1016/j.nantod.2021.101245
- N.L.W. Septiani, Y.V. Kaneti, K.B. Fathoni, J. Wang, Y. Ide et al., Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy 67, 104270 (2020). https://doi.org/10.1016/j.nanoen.2019.104270
- Z. Sun, M. Yuan, L. Lin, H. Yang, H. Li et al., Needle grass-like cobalt hydrogen phosphate on Ni foam as an effective and stable electrocatalyst for the oxygen evolution reaction. Chem. Commun. 55(65), 9729–9732 (2019). https://doi.org/10.1039/c9cc03929e
- C. Jing, X. Song, K. Li, Y. Zhang, X. Liu et al., Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects. J. Mater. Chem. A 8(4), 1697–7808 (2020). https://doi.org/10.1039/C9TA12192G
- Z. Wang, Y. Wu, M. Cui, S. Ji, H. Wang et al., 1D NiHPO4 nanotubes prepared using dissolution equilibrium as bifunctional electrocatalyst for high-efficiency water splitting. J. Power Sources 513, 230543 (2021). https://doi.org/10.1016/j.jpowsour.2021.230543
- Z. Wang, F. Chen, P. Kannan, S. Ji, H. Wang, Nickel phosphate nanowires directly grown on Ni foam as binder-free electrode for pseudocapacitors. Mater. Lett. 257, 126742 (2019). https://doi.org/10.1016/j.matlet.2019.126742
- I.H. Lo, J.Y. Wang, K.Y. Huang, J.H. Huang, W.P. Kang, Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors. J. Power Sources 308, 29–36 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.041
- Y. Tian, Z. Li, S. Dou, X. Zhang, J. Zhang et al., Facile preparation of aligned NiO nanotube arrays for electrochromic application. Surf. Coat. Technol. 337, 63–67 (2018). https://doi.org/10.1016/j.surfcoat.2017.12.054
- Y. Zhang, Q. Cui, X. Zhang, W.C. McKee, Y. Xu et al., Amorphous Li2O2: chemical synthesis and electrochemical properties. Angew. Chem. Int. Ed. 55(36), 10717–10721 (2016). https://doi.org/10.1002/anie.201605228
- X. Han, J. Li, J. Lu, S. Luo, J. Wan et al., High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage. Nano Energy 86, 106079 (2021). https://doi.org/10.1016/j.nanoen.2021.106079
- D. Fa, B. Yu, Y. Miao, Synthesis of ultra-long nanowires of nickel phosphate by a template-free hydrothermal method for electrocatalytic oxidation of glucose. Colloids Surf. A 564, 31–38 (2019). https://doi.org/10.1016/j.colsurfa.2018.12.035
- T. Sun, L. Shen, Y. Jiang, J. Ma, F. Lv et al., Wearable textile supercapacitors for self-powered enzyme-free smartsensors. ACS Appl. Mater. Interfaces 12(19), 21779–21787 (2020). https://doi.org/10.1021/acsami.0c05465
- P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Mater. Today 19(7), 394–402 (2016). https://doi.org/10.1016/j.mattod.2015.11.007
- G. Zhang, J. Hu, Y. Nie, Y. Zhao, L. Wang et al., Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors. Adv. Funct. Mater. 31(25), 2100290 (2021). https://doi.org/10.1002/adfm.202100290
- Q. Zhao, J. Wang, X. Ai, Z. Pan, F. Xu et al., Large-area multifunctional electro-chromic-chemical device made of W17O47 nanowires by Zn2+ ion intercalation. Nano Energy 89, 106356 (2021). https://doi.org/10.1016/j.nanoen.2021.106356
- Y. Wang, S. Wang, X. Wang, W. Zhang, W. Zheng et al., A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat. Mater. 18(12), 1335–1342 (2019). https://doi.org/10.1038/s41563-019-0471-8
- F. Cao, G.X. Pan, X.H. Xia, P.S. Tang, H.F. Chen, Hydrothermal-synthesized mesoporous nickel oxide nanowall arrays with enhanced electrochromic application. Electrochim. Acta 111, 86–91 (2013). https://doi.org/10.1016/j.electacta.2013.07.221
- Y. Yuan, X. Xia, J. Wu, Y. Chen, J. Yang et al., Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition. Electrochim. Acta 56(3), 1208–1212 (2011). https://doi.org/10.1016/j.electacta.2010.10.097
- L. Zhu, W.L. Ong, X. Lu, K. Zeng, H.J. Fan et al., Substrate-friendly growth of large-sized Ni(OH)2 nanosheets for flexible electrochromic films. Small 13(23), 1700084 (2017). https://doi.org/10.1002/smll.201700084
- S. Hou, A.I. Gavrilyuk, J. Zhao, H. Geng, N. Li et al., Controllable crystallinity of nickel oxide film with enhanced electrochromic properties. Appl. Surf. Sci. 451, 104–111 (2018). https://doi.org/10.1016/j.apsusc.2018.04.206
- Y. Zhao, X. Zhang, X. Chen, W. Li, L. Wang et al., Preparation of Sn-NiO films and all-solid-state devices with enhanced electrochromic properties by magnetron sputtering method. Electrochim. Acta 367, 137457 (2021). https://doi.org/10.1016/j.electacta.2020.137457
- Y. Chen, Y. Wang, P. Sun, P. Yang, L. Du et al., Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 3(41), 20614–20618 (2015). https://doi.org/10.1039/c5ta04011f
- Y. Ren, X. Zhou, H. Zhang, L. Lei, G. Zhao, Preparation of a porous NiO array-patterned film and its enhanced electrochromic performance. J. Mater. Chem. C 6(18), 4952–4958 (2018). https://doi.org/10.1039/c8tc00367j
- S. Zhou, S. Wang, S. Zhou, H. Xu, J. Zhao et al., An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film. Nanoscale 12(16), 8934–8941 (2020). https://doi.org/10.1039/d0nr01152e
- Z. Luo, L. Liu, X. Yang, X. Luo, P. Bi et al., Revealing the charge storage mechanism of nickel oxide electrochromic supercapacitors. ACS Appl. Mater. Interfaces 12(35), 39098–39107 (2020). https://doi.org/10.1021/acsami.0c09606
- C. Zhao, F. Du, J. Wang, Flower-like nickel oxide micro/nanostructures: synthesis and enhanced electrochromic properties. RSC Adv. 5(48), 38706–38711 (2015). https://doi.org/10.1039/c5ra05334j
- G. Cai, J. Chen, J. Xiong, A. Lee-Sie, J. Wang et al., Molecular level assembly for high-performance flexible electrochromic energy-storage devices. ACS Energy Lett. 5(4), 1159–1166 (2020). https://doi.org/10.1021/acsenergylett.0c00245
- X. Huo, H. Zhang, W. Shen, X. Miao, M. Zhang et al., Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance. J. Mater. Chem. A 7(28), 16867–16875 (2019). https://doi.org/10.1039/c9ta03725j
- R. Wang, H. Liu, K. Zhang, G. Zhang, H. Lan et al., Ni(II)/Ni(III) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation. Chem. Eng. J. 404, 126795 (2021). https://doi.org/10.1016/j.cej.2020.126795
- C. Hu, Y. Hu, C. Fan, L. Yang, Y. Zhang et al., Surface-enhanced Raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation. Angew. Chem. Int. Ed. 60(36), 19774–19778 (2021). https://doi.org/10.1002/anie.202103888
- J. Zhang, G. Cai, D. Zhou, H. Tang, X. Wang et al., Co-doped NiO nanoflake array films with enhanced electrochromic properties. J. Mater. Chem. C 2(34), 7013–7021 (2014). https://doi.org/10.1039/c4tc01033g
- P. Gao, Y. Zeng, P. Tang, Z. Wang, J. Yang et al., Understanding the synergistic effects and structural evolution of Co(OH)2 and Co3O4 toward boosting electrochemical charge storage. Adv. Funct. Mater. 32(6), 2108644 (2021). https://doi.org/10.1002/adfm.202108644
- C. Sronsri, C. Danvirutai, P. Noisong, Double function method for the confirmation of the reaction mechanism of LiCoPO4 nanop formation, reliable activation energy, and related thermodynamic functions. React. Kinet. Mech. Cat. 121(2), 555–577 (2017). https://doi.org/10.1007/s11144-017-1183-1
- W. Qiu, H. Xiao, M. Yu, Y. Li, X. Lu, Surface modulation of NiCo2O4 nanowire arrays with significantly enhanced reactivity for ultrahigh-energy supercapacitors. Chem. Eng. J. 352, 996–1003 (2018). https://doi.org/10.1016/j.cej.2018.04.118
- Y. Zhang, J. Shi, C. Cheng, S. Zong, J. Geng et al., Hydrothermal growth of Co3(OH)2(HPO4)2 nano-needles on LaTiO2N for enhanced water oxidation under visible-light irradiation. Appl. Catal. B 232, 268–274 (2018). https://doi.org/10.1016/j.apcatb.2018.03.067
- Y. Ren, W.K. Chim, L. Guo, H. Tanoto, J. Pan et al., The coloration and degradation mechanisms of electrochromic nickel oxide. Sol. Energy Mater. Sol. Cells 116, 83–88 (2013). https://doi.org/10.1016/j.solmat.2013.03.042
References
M.T. Strand, T.S. Hernandez, C.J. Barile, M.D. McGehee, M.G. Danner et al., Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation. Nat. Energy 6(5), 546–554 (2021). https://doi.org/10.1038/s41560-021-00816-7
Z. Shao, A. Huang, C. Ming, J. Bell, P. Yu et al., All-solid-state proton-based tandem structures for fast-switching electrochromic devices. Nat. Electron. 5, 45–52 (2022). https://doi.org/10.1038/s41928-021-00697-4
S. Zhang, S. Cao, T. Zhang, A. Fisher, J.Y. Lee, Al3+ intercalation/de-intercalation-enabled dual-band electrochromic smart windows with a high optical modulation, quick response and long cycle life. Energy Environ. Sci. 11(10), 2884–2892 (2018). https://doi.org/10.1039/c8ee01718b
S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic oxygen-deficient TiO2-x nanocrystals for dual-band electrochromic smart windows with efficient energy recycling. Adv. Mater. 32(43), e2004686 (2020). https://doi.org/10.1002/adma.202004686
G. Cai, P. Darmawan, X. Cheng, P.S. Lee, Inkjet printed large area multifunctional smart windows. Adv. Energy Mater. 7(14), 1602598 (2017). https://doi.org/10.1002/aenm.201602598
Y. Yao, Q. Zhao, W. Wei, Z. Chen, Y. Zhu et al., WO3 quantum-dots electrochromism. Nano Energy 68, 104350 (2020). https://doi.org/10.1016/j.nanoen.2019.104350
R. Wen, C.G. Granqvist, G.A. Niklasson, Anodic electrochromism for energy-efficient windows: cation/anion-based surface processes and effects of crystal facets in nickel oxide thin films. Adv. Funct. Mater. 25(22), 3359–3370 (2015). https://doi.org/10.1002/adfm.201500676
W. Wu, H. Fang, H. Ma, L. Wu, W. Zhang et al., Boosting transport kinetics of ions and electrons simultaneously by Ti3C2Tx (MXene) addition for enhanced electrochromic performance. Nano-Micro Lett. 13, 20 (2020). https://doi.org/10.1007/s40820-020-00544-9
Y. Liang, S. Cao, Q. Wei, R. Zeng, J. Zhao et al., Reversible Zn2+ insertion in tungsten ion-activated titanium dioxide nanocrystals for electrochromic windows. Nano-Micro Lett. 13, 196 (2021). https://doi.org/10.1007/s40820-021-00719-y
H. Liang, R. Li, C. Li, C. Hou, Y. Li et al., Regulation of carbon content in MOF-derived hierarchical-porous NiO@C films for high-performance electrochromism. Mater. Horiz. 6(3), 571–579 (2019). https://doi.org/10.1039/c8mh01091a
L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Nickel-based materials for supercapacitors. Mater. Today 25, 35–65 (2019). https://doi.org/10.1016/j.mattod.2018.11.002
P. Lei, J. Wang, P. Zhang, S. Liu, S. Zhang et al., Growth of a porous NiCoO2 nanowire network for transparent-to-brownish grey electrochromic smart windows with wide-band optical modulation. J. Mater. Chem. C 9(40), 14378–14387 (2021). https://doi.org/10.1039/d1tc03805b
Z. Zeng, X. Peng, J. Zheng, C. Xu, Heteroatom-doped nickel oxide hybrids derived from metal-organic frameworks based on novel Schiff base ligands toward high-performance electrochromism. ACS Appl. Mater. Interfaces 13(3), 4133–4145 (2021). https://doi.org/10.1021/acsami.0c17031
G. Cai, P. Cui, W. Shi, S. Morris, S.N. Lou et al., One-dimensional π-d conjugated coordination polymer for electrochromic energy storage device with exceptionally high performance. Adv. Sci. 7(20), 1903109 (2020). https://doi.org/10.1002/advs.201903109
C. Su, M. Qiu, Y. An, S. Sun, C. Zhao et al., Controllable fabrication of α-Ni(OH)2 thin films with preheating treatment for long-term stable electrochromic and energy storage applications. J. Mater. Chem. C 8(9), 3010–3016 (2020). https://doi.org/10.1039/C9TC06354D
J. Xue, S. Wang, H. Zhang, Y. Song, Y. Li et al., N-doped two-dimensional ultrathin NiO nanosheets for electrochromic supercapacitor. J. Mater. Sci. Mater. Electron. 31(22), 20611–20619 (2020). https://doi.org/10.1007/s10854-020-04581-3
G. Cai, X. Wang, M. Cui, P. Darmawan, J. Wang et al., Electrochromo-supercapacitor based on direct growth of NiO nanops. Nano Energy 12, 258–267 (2015). https://doi.org/10.1016/j.nanoen.2014.12.031
J. Wang, F. Li, F. Zhu, O.G. Schmidt, Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 3(8), 1800367 (2018). https://doi.org/10.1002/smtd.201800367
J. Huang, Y. Xiong, Z. Peng, L. Chen, L. Wang et al., A general electrodeposition strategy for fabricating ultrathin nickel cobalt phosphate nanosheets with ultrahigh capacity and rate performance. ACS Nano 14(10), 14201–14211 (2020). https://doi.org/10.1021/acsnano.0c07326
X. Zhao, X. Kong, Z. Liu, Z. Li, Z. Xie et al., The cutting-edge phosphorus-rich metal phosphides for energy storage and conversion. Nano Today 40, 101245 (2021). https://doi.org/10.1016/j.nantod.2021.101245
N.L.W. Septiani, Y.V. Kaneti, K.B. Fathoni, J. Wang, Y. Ide et al., Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors. Nano Energy 67, 104270 (2020). https://doi.org/10.1016/j.nanoen.2019.104270
Z. Sun, M. Yuan, L. Lin, H. Yang, H. Li et al., Needle grass-like cobalt hydrogen phosphate on Ni foam as an effective and stable electrocatalyst for the oxygen evolution reaction. Chem. Commun. 55(65), 9729–9732 (2019). https://doi.org/10.1039/c9cc03929e
C. Jing, X. Song, K. Li, Y. Zhang, X. Liu et al., Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the outer/inter-component synergistic effects. J. Mater. Chem. A 8(4), 1697–7808 (2020). https://doi.org/10.1039/C9TA12192G
Z. Wang, Y. Wu, M. Cui, S. Ji, H. Wang et al., 1D NiHPO4 nanotubes prepared using dissolution equilibrium as bifunctional electrocatalyst for high-efficiency water splitting. J. Power Sources 513, 230543 (2021). https://doi.org/10.1016/j.jpowsour.2021.230543
Z. Wang, F. Chen, P. Kannan, S. Ji, H. Wang, Nickel phosphate nanowires directly grown on Ni foam as binder-free electrode for pseudocapacitors. Mater. Lett. 257, 126742 (2019). https://doi.org/10.1016/j.matlet.2019.126742
I.H. Lo, J.Y. Wang, K.Y. Huang, J.H. Huang, W.P. Kang, Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors. J. Power Sources 308, 29–36 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.041
Y. Tian, Z. Li, S. Dou, X. Zhang, J. Zhang et al., Facile preparation of aligned NiO nanotube arrays for electrochromic application. Surf. Coat. Technol. 337, 63–67 (2018). https://doi.org/10.1016/j.surfcoat.2017.12.054
Y. Zhang, Q. Cui, X. Zhang, W.C. McKee, Y. Xu et al., Amorphous Li2O2: chemical synthesis and electrochemical properties. Angew. Chem. Int. Ed. 55(36), 10717–10721 (2016). https://doi.org/10.1002/anie.201605228
X. Han, J. Li, J. Lu, S. Luo, J. Wan et al., High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage. Nano Energy 86, 106079 (2021). https://doi.org/10.1016/j.nanoen.2021.106079
D. Fa, B. Yu, Y. Miao, Synthesis of ultra-long nanowires of nickel phosphate by a template-free hydrothermal method for electrocatalytic oxidation of glucose. Colloids Surf. A 564, 31–38 (2019). https://doi.org/10.1016/j.colsurfa.2018.12.035
T. Sun, L. Shen, Y. Jiang, J. Ma, F. Lv et al., Wearable textile supercapacitors for self-powered enzyme-free smartsensors. ACS Appl. Mater. Interfaces 12(19), 21779–21787 (2020). https://doi.org/10.1021/acsami.0c05465
P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices. Mater. Today 19(7), 394–402 (2016). https://doi.org/10.1016/j.mattod.2015.11.007
G. Zhang, J. Hu, Y. Nie, Y. Zhao, L. Wang et al., Integrating flexible ultralight 3D Ni micromesh current collector with NiCo bimetallic hydroxide for smart hybrid supercapacitors. Adv. Funct. Mater. 31(25), 2100290 (2021). https://doi.org/10.1002/adfm.202100290
Q. Zhao, J. Wang, X. Ai, Z. Pan, F. Xu et al., Large-area multifunctional electro-chromic-chemical device made of W17O47 nanowires by Zn2+ ion intercalation. Nano Energy 89, 106356 (2021). https://doi.org/10.1016/j.nanoen.2021.106356
Y. Wang, S. Wang, X. Wang, W. Zhang, W. Zheng et al., A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. Nat. Mater. 18(12), 1335–1342 (2019). https://doi.org/10.1038/s41563-019-0471-8
F. Cao, G.X. Pan, X.H. Xia, P.S. Tang, H.F. Chen, Hydrothermal-synthesized mesoporous nickel oxide nanowall arrays with enhanced electrochromic application. Electrochim. Acta 111, 86–91 (2013). https://doi.org/10.1016/j.electacta.2013.07.221
Y. Yuan, X. Xia, J. Wu, Y. Chen, J. Yang et al., Enhanced electrochromic properties of ordered porous nickel oxide thin film prepared by self-assembled colloidal crystal template-assisted electrodeposition. Electrochim. Acta 56(3), 1208–1212 (2011). https://doi.org/10.1016/j.electacta.2010.10.097
L. Zhu, W.L. Ong, X. Lu, K. Zeng, H.J. Fan et al., Substrate-friendly growth of large-sized Ni(OH)2 nanosheets for flexible electrochromic films. Small 13(23), 1700084 (2017). https://doi.org/10.1002/smll.201700084
S. Hou, A.I. Gavrilyuk, J. Zhao, H. Geng, N. Li et al., Controllable crystallinity of nickel oxide film with enhanced electrochromic properties. Appl. Surf. Sci. 451, 104–111 (2018). https://doi.org/10.1016/j.apsusc.2018.04.206
Y. Zhao, X. Zhang, X. Chen, W. Li, L. Wang et al., Preparation of Sn-NiO films and all-solid-state devices with enhanced electrochromic properties by magnetron sputtering method. Electrochim. Acta 367, 137457 (2021). https://doi.org/10.1016/j.electacta.2020.137457
Y. Chen, Y. Wang, P. Sun, P. Yang, L. Du et al., Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A 3(41), 20614–20618 (2015). https://doi.org/10.1039/c5ta04011f
Y. Ren, X. Zhou, H. Zhang, L. Lei, G. Zhao, Preparation of a porous NiO array-patterned film and its enhanced electrochromic performance. J. Mater. Chem. C 6(18), 4952–4958 (2018). https://doi.org/10.1039/c8tc00367j
S. Zhou, S. Wang, S. Zhou, H. Xu, J. Zhao et al., An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film. Nanoscale 12(16), 8934–8941 (2020). https://doi.org/10.1039/d0nr01152e
Z. Luo, L. Liu, X. Yang, X. Luo, P. Bi et al., Revealing the charge storage mechanism of nickel oxide electrochromic supercapacitors. ACS Appl. Mater. Interfaces 12(35), 39098–39107 (2020). https://doi.org/10.1021/acsami.0c09606
C. Zhao, F. Du, J. Wang, Flower-like nickel oxide micro/nanostructures: synthesis and enhanced electrochromic properties. RSC Adv. 5(48), 38706–38711 (2015). https://doi.org/10.1039/c5ra05334j
G. Cai, J. Chen, J. Xiong, A. Lee-Sie, J. Wang et al., Molecular level assembly for high-performance flexible electrochromic energy-storage devices. ACS Energy Lett. 5(4), 1159–1166 (2020). https://doi.org/10.1021/acsenergylett.0c00245
X. Huo, H. Zhang, W. Shen, X. Miao, M. Zhang et al., Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance. J. Mater. Chem. A 7(28), 16867–16875 (2019). https://doi.org/10.1039/c9ta03725j
R. Wang, H. Liu, K. Zhang, G. Zhang, H. Lan et al., Ni(II)/Ni(III) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation. Chem. Eng. J. 404, 126795 (2021). https://doi.org/10.1016/j.cej.2020.126795
C. Hu, Y. Hu, C. Fan, L. Yang, Y. Zhang et al., Surface-enhanced Raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation. Angew. Chem. Int. Ed. 60(36), 19774–19778 (2021). https://doi.org/10.1002/anie.202103888
J. Zhang, G. Cai, D. Zhou, H. Tang, X. Wang et al., Co-doped NiO nanoflake array films with enhanced electrochromic properties. J. Mater. Chem. C 2(34), 7013–7021 (2014). https://doi.org/10.1039/c4tc01033g
P. Gao, Y. Zeng, P. Tang, Z. Wang, J. Yang et al., Understanding the synergistic effects and structural evolution of Co(OH)2 and Co3O4 toward boosting electrochemical charge storage. Adv. Funct. Mater. 32(6), 2108644 (2021). https://doi.org/10.1002/adfm.202108644
C. Sronsri, C. Danvirutai, P. Noisong, Double function method for the confirmation of the reaction mechanism of LiCoPO4 nanop formation, reliable activation energy, and related thermodynamic functions. React. Kinet. Mech. Cat. 121(2), 555–577 (2017). https://doi.org/10.1007/s11144-017-1183-1
W. Qiu, H. Xiao, M. Yu, Y. Li, X. Lu, Surface modulation of NiCo2O4 nanowire arrays with significantly enhanced reactivity for ultrahigh-energy supercapacitors. Chem. Eng. J. 352, 996–1003 (2018). https://doi.org/10.1016/j.cej.2018.04.118
Y. Zhang, J. Shi, C. Cheng, S. Zong, J. Geng et al., Hydrothermal growth of Co3(OH)2(HPO4)2 nano-needles on LaTiO2N for enhanced water oxidation under visible-light irradiation. Appl. Catal. B 232, 268–274 (2018). https://doi.org/10.1016/j.apcatb.2018.03.067
Y. Ren, W.K. Chim, L. Guo, H. Tanoto, J. Pan et al., The coloration and degradation mechanisms of electrochromic nickel oxide. Sol. Energy Mater. Sol. Cells 116, 83–88 (2013). https://doi.org/10.1016/j.solmat.2013.03.042