Graphene Bridge Heterostructure Devices for Negative Differential Transconductance Circuit Applications
Corresponding Author: Young Tack Lee
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 22
Abstract
Two-dimensional van der Waals (2D vdW) material-based heterostructure devices have been widely studied for high-end electronic applications owing to their heterojunction properties. In this study, we demonstrate graphene (Gr)-bridge heterostructure devices consisting of laterally series-connected ambipolar semiconductor/Gr-bridge/n-type molybdenum disulfide as a channel material for field-effect transistors (FET). Unlike conventional FET operation, our Gr-bridge devices exhibit non-classical transfer characteristics (humped transfer curve), thus possessing a negative differential transconductance. These phenomena are interpreted as the operating behavior in two series-connected FETs, and they result from the gate-tunable contact capacity of the Gr-bridge layer. Multi-value logic inverters and frequency tripler circuits are successfully demonstrated using ambipolar semiconductors with narrow- and wide-bandgap materials as more advanced circuit applications based on non-classical transfer characteristics. Thus, we believe that our innovative and straightforward device structure engineering will be a promising technique for future multi-functional circuit applications of 2D nanoelectronics.
Highlights:
1 Graphene (Gr)-bridge heterostructure, consisting of a laterally series-connected (cascade) ambipolar/Gr/n-type 2D van der Waals channel materials for ambipolar semiconductor-based high-end application devices was developed.
2 Non-classical transfer characteristics (humped curve) in FET operation and negative differential transconductances were observed.
3 Gr-bridge heterostructure device with PdSe2 (narrow bandgap) allows multi-value logic operation while WSe2 (wide bandgap) enables frequency tripler circuit operation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha et al., Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008). https://doi.org/10.1038/nnano.2008.67
- F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
- J. Tang, Q. Wang, Z. Wei, C. Shen, X. Lu et al., Vertical integration of 2D building blocks for all-2D electronics. Adv. Electron. Mater. 6(12), 2000550 (2020). https://doi.org/10.1002/aelm.202000550
- K. Choi, Y.T. Lee, J.S. Kim, S.-W. Min, Y. Cho et al., Non-lithographic fabrication of all-2D α-MoTe2 dual gate transistors. Adv. Funct. Mater. 26(18), 3146–3153 (2016). https://doi.org/10.1002/adfm.201505346
- G.H. Lee, X. Cui, Y.D. Kim, G. Arefe, X. Zhang et al., Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 9(7), 7019–7026 (2015). https://doi.org/10.1021/acsnano.5b01341
- M. Lee, C.Y. Park, D.K. Hwang, M. Kim, Y.T. Kee, Longitudinal and latitudinal split-gate field-effect transistors for NAND and NOR logic circuit applications. npj 2D Mater. Appl. 6, 45 (2022). https://doi.org/10.1038/s41699-022-00320-w
- S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2013). https://doi.org/10.1021/nl303583v
- Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu et al., Contacts between two- and three-dimensional materials ohmic, schottky and p-n heterojunctions. ACS Nano 10(5), 4895–4919 (2016). https://doi.org/10.1021/acsnano.6b01842
- A. Allain, J. Kang, K. Banerjee, A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015). https://doi.org/10.1038/nmat4452
- K. Sotthewes, R. van Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski et al., Universal Fermi-level pinning in transition-metal dichalcogenides. J. Phys. Chem. C 123(9), 5411–5420 (2019). https://doi.org/10.1021/acs.jpcc.8b10971
- Y.T. Lee, K. Choi, H.S. Lee, S.W. Min, P.-J. Jeon et al., Graphene versus ohmic metal as source-drain electrode for MoS2 nanosheet transistor channel. Small 10(12), 2356–2361 (2014). https://doi.org/10.1002/smll.201303908
- S. Nakaharai, M. Yamamoto, K. Ueno, K. Tsukagoshi, Carrier polarity control in α-MoTe2 schottky junctions based on weak Fermi-level pinning. ACS Appl. Mater. Interfaces 8(23), 14732–14739 (2016). https://doi.org/10.1021/acsami.6b02036
- S. Das, J. Appenzeller, WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 103, 103501 (2013). https://doi.org/10.1063/1.4820408
- S. Sharma, C. Ambrosch-Draxl, M.A. Khan, P. Blaha, S. Auluck, Optical properties and band structure of 2H-WSe2. Phys. Rev. B 60(12), 8610–8615 (1999). https://doi.org/10.1103/PhysRevB.60.8610
- G.H. Yousefi, Optical properties of mixed transition metal dichalcogenide crystals. Mater. Lett. 9(1), 0167–577x (1989). https://doi.org/10.1016/0167-577X(89)90128-6
- I.G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini et al., Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett. 15(4), 2336–2342 (2015). https://doi.org/10.1021/nl5045007
- C. Ruppert, O.B. Aslan, T.F. Heinz, Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14(11), 6231–6236 (2014). https://doi.org/10.1021/nl502557g
- L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
- Y. Du, H. Liu, Y. Deng, P.D. Ye, Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8(10), 10035–10042 (2014). https://doi.org/10.1021/nn502553m
- H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
- L.-S. Lu, G.-H. Chen, H.-Y. Cheng, C.-P. Chuu, K.-C. Lu et al., Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 14(4), 4963–4972 (2020). https://doi.org/10.1021/acsnano.0c01139
- C. Xie, S. Jiang, Y. Gao, M. Hong, S. Pan et al., Giant thickness-tunable bandgap and robust air stability of 2D palladium diselenide. Small 16(19), 2000754 (2020). https://doi.org/10.1002/smll.202000754
- A.D. Oyedele, S. Yang, L. Liang, A.A. Puretzky, K. Wang et al., PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 139(40), 14090–14097 (2017). https://doi.org/10.1021/jacs.7b04865
- M. Lee, C.Y. Park, S. Sim, K. Lee, Y.T. Lee, Homogeneous palladium diselenide pn-junction diodes for reconfigurable circuit applications. Adv. Electron. Mater. 8(10), 2101282 (2022). https://doi.org/10.1002/aelm.202101282
- Y. Wang, J. Pang, Q. Cheng, L. Han, Y. Li et al., Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13, 143 (2021). https://doi.org/10.1007/s40820-021-00660-0
- T.W. Kim, H.S. Ra, J. Ahn, J. Jang, T. Taniguchi et al., Frequency doubler and universal logic gate based on two-dimensional transition metal dichalcogenide transistors with low power consumption. ACS Appl. Mater. Interfaces 13(6), 7470–7475 (2021). https://doi.org/10.1021/acsami.0c21222
- W. Fu, L. Feng, D. Mayer, G. Panaitov, D. Kireev et al., Electrolyte-gated graphene ambipolar frequency multipliers for biochemical sensing. Nano Lett. 16(4), 2295–2300 (2016). https://doi.org/10.1021/acs.nanolett.5b04729
- P. Golani, H. Yun, S. Ghosh, J. Wen, K.A. Mkhoyan et al., Ambipolar transport in van der Waals black arsenic field effect transistors. Nanotechnology 31, 405203 (2020). https://doi.org/10.1088/1361-6528/ab9d40
- C. Pan, Y. Fu, J. Wang, J. Zeng, G. Su et al., Analog circuit applications based on abmbipolar graphene/MoTe2 vertical transistors. Adv. Electron. Mater. 4(3), 1700662 (2018). https://doi.org/10.1002/aelm.201700662
- S. Yu, Y. Cho, J.Y. Lim, H. Kwon, Y. Jeong et al., Advanced multifunctional field effect devices using common gate for both 2D transition-metal dichalcogenide and InGaZnO channels. Adv. Electron. Mater. 5(12), 1900730 (2019). https://doi.org/10.1002/aelm.201900730
- G. Wu, X. Wang, Y. Chen, S. Wu, B. Wu et al., MoTe2 p–n homojunctions defined by ferroelectric polarization. Adv. Mater. 32(16), 1907937 (2020). https://doi.org/10.1002/adma.201907937
- M. Buscema, D.J. Groenendijk, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus pn junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014). https://doi.org/10.1038/ncomms5651
- A. Pospischil, M.M. Furchi, T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014). https://doi.org/10.1038/nnano.2014.14
- Y.-Q. Bie, G. Grosso, M. Heuck, M.M. Furchi, Y. Cao et al., A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017). https://doi.org/10.1038/nnano.2017.209
- P. Wu, D. Reis, X.S. Hu, J. Appenzeller, Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 4, 45–53 (2021). https://doi.org/10.1038/s41928-020-00511-7
- A.K. Geim, I.V. Grigorieva, van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
- J.D. Yao, G.W. Yang, All-2D architectures toward advanced electronic and optoelectronic devices. Nano Today 36, 101026 (2021). https://doi.org/10.1016/j.nantod.2020.101026
- S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020). https://doi.org/10.1038/s41565-019-0623-7
- S. Park, H.J. Lee, W. Choi, H.-J. Jin, H. Cho et al., Quaternary NAND logic and complementary ternary inverter with p-MoTe2/n-MoS2 heterostack channel transistors. Adv. Funct. Mater. 32(13), 2108737 (2022). https://doi.org/10.1002/adfm.202108737
- D. Wu, J. Guo, J. Du, C. Xia, L. Zeng et al., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13(9), 9907–9917 (2019). https://doi.org/10.1021/acsnano.9b03994
- A.M. Afzal, G. Dastgeer, M.Z. Iqbal, P. Gautam, M.M. Faisal, High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces 12(17), 19625–19634 (2020). https://doi.org/10.1021/acsami.9b22898
- M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia et al., Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13(2), 2511–2519 (2019). https://doi.org/10.1021/acsnano.8b09476
- J. Pang, Y. Wang, X. Yang, L. Zhang, Y. Li et al., A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics. Mater. Adv. 3, 1497–1505 (2022). https://doi.org/10.1039/D1MA00757B
- M. Paur, A.J.M. Mendoza, R. Bratschitsch, K. Watanabe, T. Taniguchi et al., Electroluminescence from multi-p exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun. 10, 1709 (2019). https://doi.org/10.1038/s41467-019-09781-y
- P. Li, K. Yuan, D.Y. Lin, X. Xu, Y. Wang et al., A mixed-dimensional light-emitting diode based on a p-MoS2 nanosheet and an n-CdSe nanowire. Nanoscale 9, 18175 (2017). https://doi.org/10.1039/C7NR05706G
- T. Roy, M. Tosun, X. Cao, H. Fang, D.H. Lien et al., Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9(2), 2071–2079 (2015). https://doi.org/10.1021/nn507278b
- J. Shim, S. Oh, D.H. Kang, S.H. Jo, M.H. Ali et al., Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 7, 13413 (2016). https://doi.org/10.1038/ncomms13413
- N. Oliva, J. Backman, L. Capua, M. Cavalieri, M. Luisier et al., WSe2/SnSe2 vdW heterojunction tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe2 flake. npj 2D Mater. Appl. 4, 5 (2020). https://doi.org/10.1038/s41699-020-0142-2
- W. Wang, Z. Li, M. Li, L. Fang, F. Chen et al., High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces. Nano-Micro Lett. 14, 184 (2022). https://doi.org/10.1007/s40820-022-00930-5
- L. Zhou, K. Wang, H. Sun, S. Zhao, X. Chen et al., Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nano-Micro Lett. 11, 20 (2019). https://doi.org/10.1007/s40820-019-0250-8
- W. Hu, Z. Sheng, X. Hou, H. Chen, Z. Zhang et al., Ambipolar 2D semiconductors and emerging device applications. Small Methods 5(1), 2000837 (2021). https://doi.org/10.1002/smtd.202000837
- H. Tian, B. Deng, M.L. Chin, X. Yan, H. Jiang et al., A dynamically reconfigurable ambipolar black phosphorus memory device. ACS Nano 10(11), 10428–10435 (2016). https://doi.org/10.1021/acsnano.6b06293
- H. Xu, S. Fathipour, E.W. Kinder, A.C. Seabaugh, S.K. Fullerton-Shirey, Reconfigurable 1ion gating of 2H-MoTe2 field-effect transistors using poly(ethylene oxide)-CsClO4 solid polymer electrolyte. ACS Nano 9(5), 4900–4910 (2015). https://doi.org/10.1021/nn506521p
- C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). https://doi.org/10.1038/nnano.2010.172
- E. Wu, Y. Xie, J. Zhang, H. Zhang, X. Hu et al., Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci. Adv. 5(5), eaav3430 (2019). https://doi.org/10.1126/sciadv.aav3430
- G.H. Lee, Y.J. Yu, X. Cui, N. Petrone, C.H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013). https://doi.org/10.1021/nn402954e
- M.Y. Chan, K. Komatsu, S.L. Li, Y. Xu, P. Darmawan et al., Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale 5, 9572–9576 (2013). https://doi.org/10.1039/c3nr03220e
- M. Huang, S. Li, Z. Zhang, X. Xiong, X. Li et al., Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 12, 1148–1154 (2017). https://doi.org/10.1038/nnano.2017.208
References
A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha et al., Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008). https://doi.org/10.1038/nnano.2008.67
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
J. Tang, Q. Wang, Z. Wei, C. Shen, X. Lu et al., Vertical integration of 2D building blocks for all-2D electronics. Adv. Electron. Mater. 6(12), 2000550 (2020). https://doi.org/10.1002/aelm.202000550
K. Choi, Y.T. Lee, J.S. Kim, S.-W. Min, Y. Cho et al., Non-lithographic fabrication of all-2D α-MoTe2 dual gate transistors. Adv. Funct. Mater. 26(18), 3146–3153 (2016). https://doi.org/10.1002/adfm.201505346
G.H. Lee, X. Cui, Y.D. Kim, G. Arefe, X. Zhang et al., Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 9(7), 7019–7026 (2015). https://doi.org/10.1021/acsnano.5b01341
M. Lee, C.Y. Park, D.K. Hwang, M. Kim, Y.T. Kee, Longitudinal and latitudinal split-gate field-effect transistors for NAND and NOR logic circuit applications. npj 2D Mater. Appl. 6, 45 (2022). https://doi.org/10.1038/s41699-022-00320-w
S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13(1), 100–105 (2013). https://doi.org/10.1021/nl303583v
Y. Xu, C. Cheng, S. Du, J. Yang, B. Yu et al., Contacts between two- and three-dimensional materials ohmic, schottky and p-n heterojunctions. ACS Nano 10(5), 4895–4919 (2016). https://doi.org/10.1021/acsnano.6b01842
A. Allain, J. Kang, K. Banerjee, A. Kis, Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015). https://doi.org/10.1038/nmat4452
K. Sotthewes, R. van Bremen, E. Dollekamp, T. Boulogne, K. Nowakowski et al., Universal Fermi-level pinning in transition-metal dichalcogenides. J. Phys. Chem. C 123(9), 5411–5420 (2019). https://doi.org/10.1021/acs.jpcc.8b10971
Y.T. Lee, K. Choi, H.S. Lee, S.W. Min, P.-J. Jeon et al., Graphene versus ohmic metal as source-drain electrode for MoS2 nanosheet transistor channel. Small 10(12), 2356–2361 (2014). https://doi.org/10.1002/smll.201303908
S. Nakaharai, M. Yamamoto, K. Ueno, K. Tsukagoshi, Carrier polarity control in α-MoTe2 schottky junctions based on weak Fermi-level pinning. ACS Appl. Mater. Interfaces 8(23), 14732–14739 (2016). https://doi.org/10.1021/acsami.6b02036
S. Das, J. Appenzeller, WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 103, 103501 (2013). https://doi.org/10.1063/1.4820408
S. Sharma, C. Ambrosch-Draxl, M.A. Khan, P. Blaha, S. Auluck, Optical properties and band structure of 2H-WSe2. Phys. Rev. B 60(12), 8610–8615 (1999). https://doi.org/10.1103/PhysRevB.60.8610
G.H. Yousefi, Optical properties of mixed transition metal dichalcogenide crystals. Mater. Lett. 9(1), 0167–577x (1989). https://doi.org/10.1016/0167-577X(89)90128-6
I.G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini et al., Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett. 15(4), 2336–2342 (2015). https://doi.org/10.1021/nl5045007
C. Ruppert, O.B. Aslan, T.F. Heinz, Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14(11), 6231–6236 (2014). https://doi.org/10.1021/nl502557g
L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou et al., Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014). https://doi.org/10.1038/nnano.2014.35
Y. Du, H. Liu, Y. Deng, P.D. Ye, Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. ACS Nano 8(10), 10035–10042 (2014). https://doi.org/10.1021/nn502553m
H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu et al., An unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z
L.-S. Lu, G.-H. Chen, H.-Y. Cheng, C.-P. Chuu, K.-C. Lu et al., Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 14(4), 4963–4972 (2020). https://doi.org/10.1021/acsnano.0c01139
C. Xie, S. Jiang, Y. Gao, M. Hong, S. Pan et al., Giant thickness-tunable bandgap and robust air stability of 2D palladium diselenide. Small 16(19), 2000754 (2020). https://doi.org/10.1002/smll.202000754
A.D. Oyedele, S. Yang, L. Liang, A.A. Puretzky, K. Wang et al., PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 139(40), 14090–14097 (2017). https://doi.org/10.1021/jacs.7b04865
M. Lee, C.Y. Park, S. Sim, K. Lee, Y.T. Lee, Homogeneous palladium diselenide pn-junction diodes for reconfigurable circuit applications. Adv. Electron. Mater. 8(10), 2101282 (2022). https://doi.org/10.1002/aelm.202101282
Y. Wang, J. Pang, Q. Cheng, L. Han, Y. Li et al., Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics. Nano-Micro Lett. 13, 143 (2021). https://doi.org/10.1007/s40820-021-00660-0
T.W. Kim, H.S. Ra, J. Ahn, J. Jang, T. Taniguchi et al., Frequency doubler and universal logic gate based on two-dimensional transition metal dichalcogenide transistors with low power consumption. ACS Appl. Mater. Interfaces 13(6), 7470–7475 (2021). https://doi.org/10.1021/acsami.0c21222
W. Fu, L. Feng, D. Mayer, G. Panaitov, D. Kireev et al., Electrolyte-gated graphene ambipolar frequency multipliers for biochemical sensing. Nano Lett. 16(4), 2295–2300 (2016). https://doi.org/10.1021/acs.nanolett.5b04729
P. Golani, H. Yun, S. Ghosh, J. Wen, K.A. Mkhoyan et al., Ambipolar transport in van der Waals black arsenic field effect transistors. Nanotechnology 31, 405203 (2020). https://doi.org/10.1088/1361-6528/ab9d40
C. Pan, Y. Fu, J. Wang, J. Zeng, G. Su et al., Analog circuit applications based on abmbipolar graphene/MoTe2 vertical transistors. Adv. Electron. Mater. 4(3), 1700662 (2018). https://doi.org/10.1002/aelm.201700662
S. Yu, Y. Cho, J.Y. Lim, H. Kwon, Y. Jeong et al., Advanced multifunctional field effect devices using common gate for both 2D transition-metal dichalcogenide and InGaZnO channels. Adv. Electron. Mater. 5(12), 1900730 (2019). https://doi.org/10.1002/aelm.201900730
G. Wu, X. Wang, Y. Chen, S. Wu, B. Wu et al., MoTe2 p–n homojunctions defined by ferroelectric polarization. Adv. Mater. 32(16), 1907937 (2020). https://doi.org/10.1002/adma.201907937
M. Buscema, D.J. Groenendijk, G.A. Steele, H.S.J. van der Zant, A. Castellanos-Gomez, Photovoltaic effect in few-layer black phosphorus pn junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014). https://doi.org/10.1038/ncomms5651
A. Pospischil, M.M. Furchi, T. Mueller, Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014). https://doi.org/10.1038/nnano.2014.14
Y.-Q. Bie, G. Grosso, M. Heuck, M.M. Furchi, Y. Cao et al., A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat. Nanotechnol. 12, 1124–1129 (2017). https://doi.org/10.1038/nnano.2017.209
P. Wu, D. Reis, X.S. Hu, J. Appenzeller, Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 4, 45–53 (2021). https://doi.org/10.1038/s41928-020-00511-7
A.K. Geim, I.V. Grigorieva, van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
J.D. Yao, G.W. Yang, All-2D architectures toward advanced electronic and optoelectronic devices. Nano Today 36, 101026 (2021). https://doi.org/10.1016/j.nantod.2020.101026
S. Kim, G. Myeong, W. Shin, H. Lim, B. Kim et al., Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020). https://doi.org/10.1038/s41565-019-0623-7
S. Park, H.J. Lee, W. Choi, H.-J. Jin, H. Cho et al., Quaternary NAND logic and complementary ternary inverter with p-MoTe2/n-MoS2 heterostack channel transistors. Adv. Funct. Mater. 32(13), 2108737 (2022). https://doi.org/10.1002/adfm.202108737
D. Wu, J. Guo, J. Du, C. Xia, L. Zeng et al., Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 13(9), 9907–9917 (2019). https://doi.org/10.1021/acsnano.9b03994
A.M. Afzal, G. Dastgeer, M.Z. Iqbal, P. Gautam, M.M. Faisal, High-performance p-BP/n-PdSe2 near-infrared photodiodes with a fast and gate-tunable photoresponse. ACS Appl. Mater. Interfaces 12(17), 19625–19634 (2020). https://doi.org/10.1021/acsami.9b22898
M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia et al., Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13(2), 2511–2519 (2019). https://doi.org/10.1021/acsnano.8b09476
J. Pang, Y. Wang, X. Yang, L. Zhang, Y. Li et al., A wafer-scale two-dimensional platinum monosulfide ultrathin film via metal sulfurization for high performance photoelectronics. Mater. Adv. 3, 1497–1505 (2022). https://doi.org/10.1039/D1MA00757B
M. Paur, A.J.M. Mendoza, R. Bratschitsch, K. Watanabe, T. Taniguchi et al., Electroluminescence from multi-p exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun. 10, 1709 (2019). https://doi.org/10.1038/s41467-019-09781-y
P. Li, K. Yuan, D.Y. Lin, X. Xu, Y. Wang et al., A mixed-dimensional light-emitting diode based on a p-MoS2 nanosheet and an n-CdSe nanowire. Nanoscale 9, 18175 (2017). https://doi.org/10.1039/C7NR05706G
T. Roy, M. Tosun, X. Cao, H. Fang, D.H. Lien et al., Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9(2), 2071–2079 (2015). https://doi.org/10.1021/nn507278b
J. Shim, S. Oh, D.H. Kang, S.H. Jo, M.H. Ali et al., Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic. Nat. Commun. 7, 13413 (2016). https://doi.org/10.1038/ncomms13413
N. Oliva, J. Backman, L. Capua, M. Cavalieri, M. Luisier et al., WSe2/SnSe2 vdW heterojunction tunnel FET with subthermionic characteristic and MOSFET co-integrated on same WSe2 flake. npj 2D Mater. Appl. 4, 5 (2020). https://doi.org/10.1038/s41699-020-0142-2
W. Wang, Z. Li, M. Li, L. Fang, F. Chen et al., High-transconductance, highly elastic, durable and recyclable all-polymer electrochemical transistors with 3D micro-engineered interfaces. Nano-Micro Lett. 14, 184 (2022). https://doi.org/10.1007/s40820-022-00930-5
L. Zhou, K. Wang, H. Sun, S. Zhao, X. Chen et al., Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nano-Micro Lett. 11, 20 (2019). https://doi.org/10.1007/s40820-019-0250-8
W. Hu, Z. Sheng, X. Hou, H. Chen, Z. Zhang et al., Ambipolar 2D semiconductors and emerging device applications. Small Methods 5(1), 2000837 (2021). https://doi.org/10.1002/smtd.202000837
H. Tian, B. Deng, M.L. Chin, X. Yan, H. Jiang et al., A dynamically reconfigurable ambipolar black phosphorus memory device. ACS Nano 10(11), 10428–10435 (2016). https://doi.org/10.1021/acsnano.6b06293
H. Xu, S. Fathipour, E.W. Kinder, A.C. Seabaugh, S.K. Fullerton-Shirey, Reconfigurable 1ion gating of 2H-MoTe2 field-effect transistors using poly(ethylene oxide)-CsClO4 solid polymer electrolyte. ACS Nano 9(5), 4900–4910 (2015). https://doi.org/10.1021/nn506521p
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang et al., Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010). https://doi.org/10.1038/nnano.2010.172
E. Wu, Y. Xie, J. Zhang, H. Zhang, X. Hu et al., Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci. Adv. 5(5), eaav3430 (2019). https://doi.org/10.1126/sciadv.aav3430
G.H. Lee, Y.J. Yu, X. Cui, N. Petrone, C.H. Lee et al., Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7(9), 7931–7936 (2013). https://doi.org/10.1021/nn402954e
M.Y. Chan, K. Komatsu, S.L. Li, Y. Xu, P. Darmawan et al., Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. Nanoscale 5, 9572–9576 (2013). https://doi.org/10.1039/c3nr03220e
M. Huang, S. Li, Z. Zhang, X. Xiong, X. Li et al., Multifunctional high-performance van der Waals heterostructures. Nat. Nanotechnol. 12, 1148–1154 (2017). https://doi.org/10.1038/nnano.2017.208