Additive-Driven Interfacial Engineering of Aluminum Metal Anode for Ultralong Cycling Life
Corresponding Author: Zhi Wei Seh
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 21
Abstract
Rechargeable Al batteries (RAB) are promising candidates for safe and environmentally sustainable battery systems with low-cost investments. However, the currently used aluminum chloride-based electrolytes present a significant challenge to commercialization due to their corrosive nature. Here, we report for the first time, a novel electrolyte combination for RAB based on aluminum trifluoromethanesulfonate (Al(OTf)3) with tetrabutylammonium chloride (TBAC) additive in diglyme. The presence of a mere 0.1 M of TBAC in the Al(OTf)3 electrolyte generates the charge carrying electrochemical species, which forms the basis of reaction at the electrodes. TBAC reduces the charge transfer resistance and the surface activation energy at the anode surface and also augments the dissociation of Al(OTf)3 to generate the solid electrolyte interphase components. Our electrolyte's superiority directly translates into reduced anodic overpotential for cells that ran for 1300 cycles in Al plating/stripping tests, the longest cycling life reported to date. This unique combination of salt and additive is non-corrosive, exhibits a high flash point and is cheaper than traditionally reported RAB electrolyte combinations, which makes it commercially promising. Through this report, we address a major roadblock in the commercialization of RAB and inspire equivalent electrolyte fabrication approaches for other metal anode batteries.
Highlights:
1 A unique electrolyte combination for rechargeable aluminum battery was fabricated using aluminum trifluoromethanesulfonate as the main salt and tetrabutylammonium chloride as an additive.
2 The presence of additive activates the Al-anode surface toward plating/stripping and aids in the formation of a protective solid electrolyte interphase layer on the anode, resulting in a substantially suppressed anodic overpotential for 1300 cycles.
3 The cheap, high flash point and non-corrosive nature of the electrolyte makes it commercially promising.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.Y.S. Eng, C.B. Soni, Y. Lum, E. Khoo, Z. Yao et al., Theory-guided experimental design in battery materials research. Sci. Adv. 8, eabm2422 (2022). https://doi.org/10.1126/sciadv.abm2422
- D.B. Agusdinata, W. Liu, H. Eakin, H. Romero, Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environ. Res. Lett. 13, 123001 (2018). https://doi.org/10.1088/1748-9326/aae9b1
- C. Helbig, A.M. Bradshaw, L. Wietschel, A. Thorenz, A. Tuma, Supply risks associated with lithium-ion battery materials. J. Clean. Prod. 172, 274 (2018). https://doi.org/10.1016/j.jclepro.2017.10.122
- P. Canepa, G. Sai Gautam, D.C. Hannah, R. Malik, M. Liu et al., Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287 (2017). https://doi.org/10.1021/acs.chemrev.6b00614
- S. Kumar, V. Verma, H. Arora, W. Manalastas, M. Srinivasan, Rechargeable Al-metal aqueous battery using namnhcf as a cathode: investigating the role of coated-al anode treatments for superior battery cycling performance. ACS Appl. Energy Mater. 3, 8627 (2020). https://doi.org/10.1021/acsaem.0c01240
- S. Kumar, T. Salim, V. Verma, W. Manalastas, M. Srinivasan, Enabling al-metal anodes for aqueous electrochemical cells by using low-cost eutectic mixtures as artificial protective interphase. Chem. Eng. J. 435, 134742 (2022). https://doi.org/10.1016/j.cej.2022.134742
- D.J. Kim, D.-J. Yoo, M.T. Otley, A. Prokofjevs, C. Pezzato et al., Rechargeable aluminium organic batteries. Nat. Energy 4, 51 (2019). https://doi.org/10.1038/s41560-018-0291-0
- Q. Pang, J. Meng, S. Gupta, X. Hong, C.Y. Kwok et al., Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting. Nature 608, 704 (2022). https://doi.org/10.1038/s41586-022-04983-9
- Y. Hu, H. Huang, D. Yu, X. Wang, L. Li et al., All-climate aluminum-ion batteries based on binder-free mof-derived FeS2@C/CNT cathode. Nano-Micro Lett. 13, 159 (2021). https://doi.org/10.1007/s40820-021-00682-8
- F. Wang, M. Jiang, T. Zhao, P. Meng, J. Ren et al., Atomically dispersed iron active sites promoting reversible redox kinetics and suppressing shuttle effect in aluminum–sulfur batteries. Nano-Micro Lett. 14, 169 (2022). https://doi.org/10.1007/s40820-022-00915-4
- S.K. Das, S. Mahapatra, H. Lahan, Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5, 6347 (2017). https://doi.org/10.1039/C7TA00228A
- M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 324 (2015). https://doi.org/10.1038/nature14340
- S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, Flammability of li-ion battery electrolytes: flash point and self-extinguishing time measurements. J. Electrochem. Soc. 162, A3084 (2015). https://doi.org/10.1149/2.0121502jes
- F. Wu, H. Yang, Y. Bai, C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31, 1806510 (2019). https://doi.org/10.1002/adma.201806510
- Z. Hu, H. Zhang, H. Wang, F. Zhang, Q. Li et al., Nonaqueous aluminum ion batteries: recent progress and prospects. ACS Mater. Lett. 2, 887 (2020). https://doi.org/10.1021/acsmaterialslett.0c00208
- K.L. Ng, B. Amrithraj, G. Azimi, Nonaqueous rechargeable aluminum batteries. Joule 6, 134 (2022). https://doi.org/10.1016/j.joule.2021.12.003
- T. Mandai, P. Johansson, Al conductive haloaluminate-free non-aqueous room-temperature electrolytes. J. Mater. Chem. A 3, 12230 (2015). https://doi.org/10.1039/C5TA01760B
- L.D. Reed, A. Arteaga, E.J. Menke, A combined experimental and computational study of an aluminum triflate/diglyme electrolyte. J. Phys. Chem. B 119, 12677 (2015). https://doi.org/10.1021/acs.jpcb.5b08501
- L.D. Reed, S.N. Ortiz, M. Xiong, E.J. Menke, A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem. Commun. 51, 14397 (2015). https://doi.org/10.1039/C5CC06053B
- T. Mandai, P. Johansson, Haloaluminate-free cationic aluminum complexes: structural characterization and physicochemical properties. J. Phys. Chem. C 120, 21285 (2016). https://doi.org/10.1021/acs.jpcc.6b07235
- M. Chiku, S. Matsumura, H. Takeda, E. Higuchi, H. Inoue, Aluminum bis(trifluoromethanesulfonyl)imide as a chloride-free electrolyte for rechargeable aluminum batteries. J. Electrochem. Soc. 164, A1841 (2017). https://doi.org/10.1149/2.0701709jes
- X. Wen, J. Zhang, H. Luo, J. Shi, C. Tsay et al., Synthesis and electrochemical properties of aluminum hexafluorophosphate. J. Phys. Chem. 12, 5903 (2021). https://doi.org/10.1021/acs.jpclett.1c01236
- Z. Slim, E.J. Menke, Aluminum electrodeposition from chloride-rich and chloride-free organic electrolytes. J. Phys. Chem. C 126, 2365 (2022). https://doi.org/10.1021/acs.jpcc.1c09126
- Z. Slim, E.J. Menke, Comparing computational predictions and experimental results for aluminum triflate in tetrahydrofuran. J. Phys. Chem. B 124, 5002 (2020). https://doi.org/10.1021/acs.jpcb.0c02570
- C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao et al., Reversible al metal anodes enabled by amorphization for aqueous aluminum batteries. J. Am. Chem. Soc. 144, 11444 (2022). https://doi.org/10.1021/jacs.2c04820
- Q. Ran, H. Shi, H. Meng, S.-P. Zeng, W.-B. Wan et al., Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nat. Commun. 13, 576 (2022). https://doi.org/10.1038/s41467-022-28238-3
- L. Fu, X. Wang, Z. Chen, Y. Li, E. Mao et al., Insights on “nitrate salt” in lithium anode for stabilized solid electrolyte interphase. Carbon Energy 4, 12 (2022). https://doi.org/10.1002/cey2.169
- A. Zhou, L. Jiang, J. Yue, Y. Tong, Q. Zhang et al., Water-in-salt electrolyte promotes high capacity FeFe(CN)6 cathode for aqueous al-ion battery. ACS Appl. Mater. Interfaces 11, 41356 (2019). https://doi.org/10.1021/acsami.9b14149
- R. Horia, D.-T. Nguyen, A.Y.S. Eng, Z.W. Seh, Using a chloride-free magnesium battery electrolyte to form a robust anode–electrolyte nanointerface. Nano Lett. 21, 8220 (2021). https://doi.org/10.1021/acs.nanolett.1c02655
- D.-T. Nguyen, A.Y.S. Eng, R. Horia, Z. Sofer, A.D. Handoko et al., Rechargeable magnesium batteries enabled by conventional electrolytes with multifunctional organic chloride additives. Energy Storage Mater. 45, 1120 (2022). https://doi.org/10.1016/j.ensm.2021.11.011
- Y. Liu, S. Sang, Q. Wu, Z. Lu, K. Liu et al., The electrochemical behavior of Cl− assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries. Electrochim. Acta 143, 340 (2014). https://doi.org/10.1016/j.electacta.2014.08.016
- H.J. Lee, I.J. Park, S.R. Choi, J.G. Kim, Effect of chloride on anodic dissolution of aluminum in 4 m naoh solution for aluminum-air battery. ECS Trans. 75, 117 (2017). https://doi.org/10.1149/07518.0117ecst
- P. Rama, A.R. Bhattacharyya, R. Bandyopadhyaya, A.S. Panwar, Ion valence and concentration effects on the interaction between polystyrene sulfonate-modified carbon nanotubes in water. J. Phys. Chem. C 122, 9619 (2018). https://doi.org/10.1021/acs.jpcc.7b10467
- P. Rama, A.R. Bhattacharyya, R. Bandyopadhyaya, A.S. Panwar, Tunable energy barrier for intercalation of a carbon nanotube into graphene nanosheets: a molecular dynamics study of a hybrid self-assembly. J. Phys. Chem. C 123, 1974 (2019). https://doi.org/10.1021/acs.jpcc.8b10958
- S. Kumar, P. Rama, A.S. Panwar, Scaling relations for the interactions between curved graphene sheets in water. Phys. Chem. Chem. Phys. 19, 30217 (2017). https://doi.org/10.1039/C7CP05005D
- Lindahl, Abraham, Hess, V.D. Spoel, Gromacs 2021.5 source code. Zenodo. (2022). https://doi.org/10.5281/zenodo.5850051
- S. Kim, J. Lee, S. Jo, C.L. Brooks Iii, H.S. Lee et al., Charmm-gui ligand reader and modeler for charmm force field generation of small molecules. J. Comput. Chem. 38, 1879 (2017). https://doi.org/10.1002/jcc.24829
- S. Jo, T. Kim, V.G. Iyer, W. Im, Charmm-gui: a web-based graphical user interface for charmm. J. Comput. Chem. 29, 1859 (2008). https://doi.org/10.1002/jcc.20945
- H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984). https://doi.org/10.1063/1.448118
- A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
- P. Biswal, S. Stalin, A. Kludze, S. Choudhury, L.A. Archer, Nucleation and early stage growth of li electrodeposits. Nano Lett. 19, 8191 (2019). https://doi.org/10.1021/acs.nanolett.9b03548
- Y.-X. Yao, X.-Q. Zhang, B.-Q. Li, C. Yan, P.-Y. Chen et al., A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2, 379 (2020). https://doi.org/10.1002/inf2.12046
- G.G. Eshetu, S. Grugeon, S. Laruelle, S. Boyanov, A. Lecocq et al., In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Phys. Chem. Chem. Phys. 15, 9145 (2013). https://doi.org/10.1039/C3CP51315G
- H. Wang, S. Gu, Y. Bai, S. Chen, N. Zhu et al., Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J. Mater. Chem. A 3, 22677 (2015). https://doi.org/10.1039/C5TA06187C
- A.S. Keefe, S. Buteau, I.G. Hill, J.R. Dahn, Temperature dependent eis studies separating charge transfer impedance from contact impedance in lithium-ion symmetric cells. J. Electrochem. Soc. 166, A3272 (2019). https://doi.org/10.1149/2.0541914jes
- J. Grondin, L. Ducasse, J.-L. Bruneel, L. Servant, J.-C. Lassègues, Vibrational and theoretical study of the complexation of LiPF6 and LiClO4 by di(ethylene glycol) dimethyl ether. Solid State Ionics 166, 441 (2004). https://doi.org/10.1016/j.ssi.2003.11.007
- P. Johansson, J. Grondin, J.-C. Lassègues, Structural and vibrational properties of diglyme and longer glymes. J. Phys. Chem. A 114, 10700 (2010). https://doi.org/10.1021/jp105437d
- M. Angell, G. Zhu, M.-C. Lin, Y. Rong, H. Dai, Ionic liquid analogs of AlCl3 with urea derivatives as electrolytes for aluminum batteries. Adv. Funct. Mater. 30, 1901928 (2020). https://doi.org/10.1002/adfm.201901928
- Y.-C. Kim, H.-H. Park, J.S. Chun, W.-J. Lee, Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Films 237, 57 (1994). https://doi.org/10.1016/0040-6090(94)90238-0
- Y. Okamoto, K. Nagata, T. Adachi, T. Imanaka, K. Inamura et al., ion and characterization of highly dispersed cobalt oxide and sulfide catalysts supported on silica. J. Phys. Chem. 95, 310 (1991). https://doi.org/10.1021/j100154a057
- G. Mattogno, G. Righini, G. Montesperelli, E. Traversa, XPS analysis of the interface of ceramic thin films for humidity sensors. Appl. Surf. Sci. 70, 363 (1993). https://doi.org/10.1016/0169-4332(93)90459-O
- G. Mattogno, G. Righini, G. Montesperelli, E. Traversa, X-ray photoelectron spectroscopy investigation of mgal2o4 thin films for humidity sensors. J. Mater. Res. 9, 1426 (1994). https://doi.org/10.1557/JMR.1994.1426
- S.L. Chang, J.W. Anderegg, P.A. Thiel, Surface oxidation of an AlPdMn quasicrystal, characterized by x-ray photoelectron spectroscopy. J. Non-Cryst. Solids 195, 95 (1996). https://doi.org/10.1016/0022-3093(95)00537-4
- T.J. Carney, P. Tsakiropoulos, J.F. Watts, J.E. Castle, Oxidation and surface segregation in rapidly solidified aluminum alloy powders. Intern. J. Rapid Solidif. 5, 189 (1990)
- R. Hauert, J. Patscheider, M. Tobler, R. Zehringer, XPS investigation of the a-c : H/Al interface. Surf. Sci. 292, 121 (1993). https://doi.org/10.1016/0039-6028(93)90395-Z
- K. Hirakawa, Y. Hashimoto, T. Ikoma, Orientation independence of heterojunction-band offsets at gaas-alas heterointerfaces characterized by X-ray photoemission spectroscopy. Appl. Phys. Lett. 57, 2555 (1990). https://doi.org/10.1063/1.103815
- J.R. Araujo, B.S. Archanjo, K.R. de Souza, W. Kwapinski, N.P.S. Falcão et al., Selective extraction of humic acids from an anthropogenic amazonian dark earth and from a chemically oxidized charcoal. Biol. Fertil. Soils. 50, 1223 (2014). https://doi.org/10.1007/s00374-014-0940-9
- J.C. Lascovich, S. Scaglione, Comparison among xaes, pels and XPS techniques for evaluation of sp2 percentage in a-c:H. Appl. Surf. Sci. 78, 17 (1994). https://doi.org/10.1016/0169-4332(94)90026-4
- H. Hantsche, High resolution XPS of organic polymers, the scienta esca300 database. By G. Beamson and D. Briggs, wiley, chichester 1992, 295 pp., hardcover, £ 65.00, isbn 0–471–93592–1. Adv. Mater. 5, 778 (1993). https://doi.org/10.1002/adma.19930051035
- J. Escard, G. Mavel, J.E. Guerchais, R. Kergoat, X-ray photoelectron spectroscopy study of some metal(ii) halide and pseudohalide complexes. Inorg. Chem. 13, 695 (1974). https://doi.org/10.1021/ic50133a036
- H. Nie, M. Li, Q. Li, S. Liang, Y. Tan et al., Carbon dots with continuously tunable full-color emission and their application in ratiometric ph sensing. Chem. Mater. 26, 3104 (2014). https://doi.org/10.1021/cm5003669
- M. Davies, High resolution XPS of organic polymers: The scienta esca300 database: G. Beamson and D. Briggs john wiley, chichester, uk 1992. Biomaterial 15, 318 (1994). https://doi.org/10.1016/0142-9612(94)90060-4
- E. Kemnitz, A. Kohne, I. Grohmann, A. Lippitz, W.E.S. Unger, X-ray photoelectron and X-ray excited auger electron spectroscopic analysis of surface modifications of chromia during heterogeneous catalyzed chlorine/fluorine exchange. J. Catal. 159, 270 (1996). https://doi.org/10.1006/jcat.1996.0088
- A.K. Friedman, W. Shi, Y. Losovyj, A.R. Siedle, L.A. Baker, Mapping microscale chemical heterogeneity in nafion membranes with x-ray photoelectron spectroscopy. J. Electrochem. Soc. 165, H733 (2018). https://doi.org/10.1149/2.0771811jes
- J. Kim, M.R. Raj, G. Lee, High-defect-density graphite for superior-performance aluminum-ion batteries with ultra-fast charging and stable long life. Nano-Micro Lett. 13, 171 (2021). https://doi.org/10.1007/s40820-021-00698-0
- M. Angell, C.-J. Pan, Y. Rong, C. Yuan, M.-C. Lin et al., High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. 114, 834 (2017). https://doi.org/10.1073/pnas.1619795114
- X. Dong, H. Xu, H. Chen, L. Wang, J. Wang et al., Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon 148, 134 (2019). https://doi.org/10.1016/j.carbon.2019.03.080
- S. Guo, H. Yang, M. Liu, X. Feng, Y. Gao et al., Al-storage behaviors of expanded graphite as high-rate and long-life cathode materials for rechargeable aluminum batteries. ACS Appl. Mater. Interfaces 13, 22549 (2021). https://doi.org/10.1021/acsami.1c04466
- M. Elsharkawi, A.M.K. Esawi, Development of an AlCl3-urea ionic liquid for the electroless deposition of aluminum on carbon nanotubes. ACS Omega 5, 5756 (2020). https://doi.org/10.1021/acsomega.9b03805
- N. Lindahl, J. Bitenc, R. Dominko, P. Johansson, Aluminum metal–organic batteries with integrated 3d thin film anodes. Adv. Funct. Mater. 30, 2004573 (2020). https://doi.org/10.1002/adfm.202004573
- J. Bitenc, N. Lindahl, A. Vizintin, M.E. Abdelhamid, R. Dominko et al., Concept and electrochemical mechanism of an al metal anode—organic cathode battery. Energy Storage Mater. 24, 379 (2020). https://doi.org/10.1016/j.ensm.2019.07.033
- F. Guo, Z. Huang, M. Wang, W.-L. Song, A. Lv et al., Active cyano groups to coordinate AlCl2+ cation for rechargeable aluminum batteries. Energy Storage Mater. 33, 250 (2020). https://doi.org/10.1016/j.ensm.2020.08.016
- M. Mao, Z. Yu, Z. Lin, Y.-S. Hu, H. Li et al., Simplifying and accelerating kinetics enabling fast-charge al batteries. J. Mater. Chem. A 8, 23834 (2020). https://doi.org/10.1039/D0TA08348H
- C. Pan, M. Shin, D. Liu, M. Kottwitz, R. Zhang et al., Energy storage mechanisms in high-capacity graphitic C3N4 cathodes for al-ion batteries. J. Phys. Chem. C 124, 10288 (2020). https://doi.org/10.1021/acs.jpcc.0c00259
- J. Zhou, X. Yu, J. Zhou, B. Lu, Polyimide/metal-organic framework hybrid for high performance Al-organic battery. Energy Storage Mater. 31, 58 (2020). https://doi.org/10.1016/j.ensm.2020.05.029
References
A.Y.S. Eng, C.B. Soni, Y. Lum, E. Khoo, Z. Yao et al., Theory-guided experimental design in battery materials research. Sci. Adv. 8, eabm2422 (2022). https://doi.org/10.1126/sciadv.abm2422
D.B. Agusdinata, W. Liu, H. Eakin, H. Romero, Socio-environmental impacts of lithium mineral extraction: towards a research agenda. Environ. Res. Lett. 13, 123001 (2018). https://doi.org/10.1088/1748-9326/aae9b1
C. Helbig, A.M. Bradshaw, L. Wietschel, A. Thorenz, A. Tuma, Supply risks associated with lithium-ion battery materials. J. Clean. Prod. 172, 274 (2018). https://doi.org/10.1016/j.jclepro.2017.10.122
P. Canepa, G. Sai Gautam, D.C. Hannah, R. Malik, M. Liu et al., Odyssey of multivalent cathode materials: open questions and future challenges. Chem. Rev. 117, 4287 (2017). https://doi.org/10.1021/acs.chemrev.6b00614
S. Kumar, V. Verma, H. Arora, W. Manalastas, M. Srinivasan, Rechargeable Al-metal aqueous battery using namnhcf as a cathode: investigating the role of coated-al anode treatments for superior battery cycling performance. ACS Appl. Energy Mater. 3, 8627 (2020). https://doi.org/10.1021/acsaem.0c01240
S. Kumar, T. Salim, V. Verma, W. Manalastas, M. Srinivasan, Enabling al-metal anodes for aqueous electrochemical cells by using low-cost eutectic mixtures as artificial protective interphase. Chem. Eng. J. 435, 134742 (2022). https://doi.org/10.1016/j.cej.2022.134742
D.J. Kim, D.-J. Yoo, M.T. Otley, A. Prokofjevs, C. Pezzato et al., Rechargeable aluminium organic batteries. Nat. Energy 4, 51 (2019). https://doi.org/10.1038/s41560-018-0291-0
Q. Pang, J. Meng, S. Gupta, X. Hong, C.Y. Kwok et al., Fast-charging aluminium–chalcogen batteries resistant to dendritic shorting. Nature 608, 704 (2022). https://doi.org/10.1038/s41586-022-04983-9
Y. Hu, H. Huang, D. Yu, X. Wang, L. Li et al., All-climate aluminum-ion batteries based on binder-free mof-derived FeS2@C/CNT cathode. Nano-Micro Lett. 13, 159 (2021). https://doi.org/10.1007/s40820-021-00682-8
F. Wang, M. Jiang, T. Zhao, P. Meng, J. Ren et al., Atomically dispersed iron active sites promoting reversible redox kinetics and suppressing shuttle effect in aluminum–sulfur batteries. Nano-Micro Lett. 14, 169 (2022). https://doi.org/10.1007/s40820-022-00915-4
S.K. Das, S. Mahapatra, H. Lahan, Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5, 6347 (2017). https://doi.org/10.1039/C7TA00228A
M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang et al., An ultrafast rechargeable aluminium-ion battery. Nature 520, 324 (2015). https://doi.org/10.1038/nature14340
S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, Flammability of li-ion battery electrolytes: flash point and self-extinguishing time measurements. J. Electrochem. Soc. 162, A3084 (2015). https://doi.org/10.1149/2.0121502jes
F. Wu, H. Yang, Y. Bai, C. Wu, Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 31, 1806510 (2019). https://doi.org/10.1002/adma.201806510
Z. Hu, H. Zhang, H. Wang, F. Zhang, Q. Li et al., Nonaqueous aluminum ion batteries: recent progress and prospects. ACS Mater. Lett. 2, 887 (2020). https://doi.org/10.1021/acsmaterialslett.0c00208
K.L. Ng, B. Amrithraj, G. Azimi, Nonaqueous rechargeable aluminum batteries. Joule 6, 134 (2022). https://doi.org/10.1016/j.joule.2021.12.003
T. Mandai, P. Johansson, Al conductive haloaluminate-free non-aqueous room-temperature electrolytes. J. Mater. Chem. A 3, 12230 (2015). https://doi.org/10.1039/C5TA01760B
L.D. Reed, A. Arteaga, E.J. Menke, A combined experimental and computational study of an aluminum triflate/diglyme electrolyte. J. Phys. Chem. B 119, 12677 (2015). https://doi.org/10.1021/acs.jpcb.5b08501
L.D. Reed, S.N. Ortiz, M. Xiong, E.J. Menke, A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem. Commun. 51, 14397 (2015). https://doi.org/10.1039/C5CC06053B
T. Mandai, P. Johansson, Haloaluminate-free cationic aluminum complexes: structural characterization and physicochemical properties. J. Phys. Chem. C 120, 21285 (2016). https://doi.org/10.1021/acs.jpcc.6b07235
M. Chiku, S. Matsumura, H. Takeda, E. Higuchi, H. Inoue, Aluminum bis(trifluoromethanesulfonyl)imide as a chloride-free electrolyte for rechargeable aluminum batteries. J. Electrochem. Soc. 164, A1841 (2017). https://doi.org/10.1149/2.0701709jes
X. Wen, J. Zhang, H. Luo, J. Shi, C. Tsay et al., Synthesis and electrochemical properties of aluminum hexafluorophosphate. J. Phys. Chem. 12, 5903 (2021). https://doi.org/10.1021/acs.jpclett.1c01236
Z. Slim, E.J. Menke, Aluminum electrodeposition from chloride-rich and chloride-free organic electrolytes. J. Phys. Chem. C 126, 2365 (2022). https://doi.org/10.1021/acs.jpcc.1c09126
Z. Slim, E.J. Menke, Comparing computational predictions and experimental results for aluminum triflate in tetrahydrofuran. J. Phys. Chem. B 124, 5002 (2020). https://doi.org/10.1021/acs.jpcb.0c02570
C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao et al., Reversible al metal anodes enabled by amorphization for aqueous aluminum batteries. J. Am. Chem. Soc. 144, 11444 (2022). https://doi.org/10.1021/jacs.2c04820
Q. Ran, H. Shi, H. Meng, S.-P. Zeng, W.-B. Wan et al., Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries. Nat. Commun. 13, 576 (2022). https://doi.org/10.1038/s41467-022-28238-3
L. Fu, X. Wang, Z. Chen, Y. Li, E. Mao et al., Insights on “nitrate salt” in lithium anode for stabilized solid electrolyte interphase. Carbon Energy 4, 12 (2022). https://doi.org/10.1002/cey2.169
A. Zhou, L. Jiang, J. Yue, Y. Tong, Q. Zhang et al., Water-in-salt electrolyte promotes high capacity FeFe(CN)6 cathode for aqueous al-ion battery. ACS Appl. Mater. Interfaces 11, 41356 (2019). https://doi.org/10.1021/acsami.9b14149
R. Horia, D.-T. Nguyen, A.Y.S. Eng, Z.W. Seh, Using a chloride-free magnesium battery electrolyte to form a robust anode–electrolyte nanointerface. Nano Lett. 21, 8220 (2021). https://doi.org/10.1021/acs.nanolett.1c02655
D.-T. Nguyen, A.Y.S. Eng, R. Horia, Z. Sofer, A.D. Handoko et al., Rechargeable magnesium batteries enabled by conventional electrolytes with multifunctional organic chloride additives. Energy Storage Mater. 45, 1120 (2022). https://doi.org/10.1016/j.ensm.2021.11.011
Y. Liu, S. Sang, Q. Wu, Z. Lu, K. Liu et al., The electrochemical behavior of Cl− assisted Al3+ insertion into titanium dioxide nanotube arrays in aqueous solution for aluminum ion batteries. Electrochim. Acta 143, 340 (2014). https://doi.org/10.1016/j.electacta.2014.08.016
H.J. Lee, I.J. Park, S.R. Choi, J.G. Kim, Effect of chloride on anodic dissolution of aluminum in 4 m naoh solution for aluminum-air battery. ECS Trans. 75, 117 (2017). https://doi.org/10.1149/07518.0117ecst
P. Rama, A.R. Bhattacharyya, R. Bandyopadhyaya, A.S. Panwar, Ion valence and concentration effects on the interaction between polystyrene sulfonate-modified carbon nanotubes in water. J. Phys. Chem. C 122, 9619 (2018). https://doi.org/10.1021/acs.jpcc.7b10467
P. Rama, A.R. Bhattacharyya, R. Bandyopadhyaya, A.S. Panwar, Tunable energy barrier for intercalation of a carbon nanotube into graphene nanosheets: a molecular dynamics study of a hybrid self-assembly. J. Phys. Chem. C 123, 1974 (2019). https://doi.org/10.1021/acs.jpcc.8b10958
S. Kumar, P. Rama, A.S. Panwar, Scaling relations for the interactions between curved graphene sheets in water. Phys. Chem. Chem. Phys. 19, 30217 (2017). https://doi.org/10.1039/C7CP05005D
Lindahl, Abraham, Hess, V.D. Spoel, Gromacs 2021.5 source code. Zenodo. (2022). https://doi.org/10.5281/zenodo.5850051
S. Kim, J. Lee, S. Jo, C.L. Brooks Iii, H.S. Lee et al., Charmm-gui ligand reader and modeler for charmm force field generation of small molecules. J. Comput. Chem. 38, 1879 (2017). https://doi.org/10.1002/jcc.24829
S. Jo, T. Kim, V.G. Iyer, W. Im, Charmm-gui: a web-based graphical user interface for charmm. J. Comput. Chem. 29, 1859 (2008). https://doi.org/10.1002/jcc.20945
H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984). https://doi.org/10.1063/1.448118
A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132 (2017). https://doi.org/10.1021/acs.nanolett.6b04755
P. Biswal, S. Stalin, A. Kludze, S. Choudhury, L.A. Archer, Nucleation and early stage growth of li electrodeposits. Nano Lett. 19, 8191 (2019). https://doi.org/10.1021/acs.nanolett.9b03548
Y.-X. Yao, X.-Q. Zhang, B.-Q. Li, C. Yan, P.-Y. Chen et al., A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2, 379 (2020). https://doi.org/10.1002/inf2.12046
G.G. Eshetu, S. Grugeon, S. Laruelle, S. Boyanov, A. Lecocq et al., In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Phys. Chem. Chem. Phys. 15, 9145 (2013). https://doi.org/10.1039/C3CP51315G
H. Wang, S. Gu, Y. Bai, S. Chen, N. Zhu et al., Anion-effects on electrochemical properties of ionic liquid electrolytes for rechargeable aluminum batteries. J. Mater. Chem. A 3, 22677 (2015). https://doi.org/10.1039/C5TA06187C
A.S. Keefe, S. Buteau, I.G. Hill, J.R. Dahn, Temperature dependent eis studies separating charge transfer impedance from contact impedance in lithium-ion symmetric cells. J. Electrochem. Soc. 166, A3272 (2019). https://doi.org/10.1149/2.0541914jes
J. Grondin, L. Ducasse, J.-L. Bruneel, L. Servant, J.-C. Lassègues, Vibrational and theoretical study of the complexation of LiPF6 and LiClO4 by di(ethylene glycol) dimethyl ether. Solid State Ionics 166, 441 (2004). https://doi.org/10.1016/j.ssi.2003.11.007
P. Johansson, J. Grondin, J.-C. Lassègues, Structural and vibrational properties of diglyme and longer glymes. J. Phys. Chem. A 114, 10700 (2010). https://doi.org/10.1021/jp105437d
M. Angell, G. Zhu, M.-C. Lin, Y. Rong, H. Dai, Ionic liquid analogs of AlCl3 with urea derivatives as electrolytes for aluminum batteries. Adv. Funct. Mater. 30, 1901928 (2020). https://doi.org/10.1002/adfm.201901928
Y.-C. Kim, H.-H. Park, J.S. Chun, W.-J. Lee, Compositional and structural analysis of aluminum oxide films prepared by plasma-enhanced chemical vapor deposition. Thin Solid Films 237, 57 (1994). https://doi.org/10.1016/0040-6090(94)90238-0
Y. Okamoto, K. Nagata, T. Adachi, T. Imanaka, K. Inamura et al., ion and characterization of highly dispersed cobalt oxide and sulfide catalysts supported on silica. J. Phys. Chem. 95, 310 (1991). https://doi.org/10.1021/j100154a057
G. Mattogno, G. Righini, G. Montesperelli, E. Traversa, XPS analysis of the interface of ceramic thin films for humidity sensors. Appl. Surf. Sci. 70, 363 (1993). https://doi.org/10.1016/0169-4332(93)90459-O
G. Mattogno, G. Righini, G. Montesperelli, E. Traversa, X-ray photoelectron spectroscopy investigation of mgal2o4 thin films for humidity sensors. J. Mater. Res. 9, 1426 (1994). https://doi.org/10.1557/JMR.1994.1426
S.L. Chang, J.W. Anderegg, P.A. Thiel, Surface oxidation of an AlPdMn quasicrystal, characterized by x-ray photoelectron spectroscopy. J. Non-Cryst. Solids 195, 95 (1996). https://doi.org/10.1016/0022-3093(95)00537-4
T.J. Carney, P. Tsakiropoulos, J.F. Watts, J.E. Castle, Oxidation and surface segregation in rapidly solidified aluminum alloy powders. Intern. J. Rapid Solidif. 5, 189 (1990)
R. Hauert, J. Patscheider, M. Tobler, R. Zehringer, XPS investigation of the a-c : H/Al interface. Surf. Sci. 292, 121 (1993). https://doi.org/10.1016/0039-6028(93)90395-Z
K. Hirakawa, Y. Hashimoto, T. Ikoma, Orientation independence of heterojunction-band offsets at gaas-alas heterointerfaces characterized by X-ray photoemission spectroscopy. Appl. Phys. Lett. 57, 2555 (1990). https://doi.org/10.1063/1.103815
J.R. Araujo, B.S. Archanjo, K.R. de Souza, W. Kwapinski, N.P.S. Falcão et al., Selective extraction of humic acids from an anthropogenic amazonian dark earth and from a chemically oxidized charcoal. Biol. Fertil. Soils. 50, 1223 (2014). https://doi.org/10.1007/s00374-014-0940-9
J.C. Lascovich, S. Scaglione, Comparison among xaes, pels and XPS techniques for evaluation of sp2 percentage in a-c:H. Appl. Surf. Sci. 78, 17 (1994). https://doi.org/10.1016/0169-4332(94)90026-4
H. Hantsche, High resolution XPS of organic polymers, the scienta esca300 database. By G. Beamson and D. Briggs, wiley, chichester 1992, 295 pp., hardcover, £ 65.00, isbn 0–471–93592–1. Adv. Mater. 5, 778 (1993). https://doi.org/10.1002/adma.19930051035
J. Escard, G. Mavel, J.E. Guerchais, R. Kergoat, X-ray photoelectron spectroscopy study of some metal(ii) halide and pseudohalide complexes. Inorg. Chem. 13, 695 (1974). https://doi.org/10.1021/ic50133a036
H. Nie, M. Li, Q. Li, S. Liang, Y. Tan et al., Carbon dots with continuously tunable full-color emission and their application in ratiometric ph sensing. Chem. Mater. 26, 3104 (2014). https://doi.org/10.1021/cm5003669
M. Davies, High resolution XPS of organic polymers: The scienta esca300 database: G. Beamson and D. Briggs john wiley, chichester, uk 1992. Biomaterial 15, 318 (1994). https://doi.org/10.1016/0142-9612(94)90060-4
E. Kemnitz, A. Kohne, I. Grohmann, A. Lippitz, W.E.S. Unger, X-ray photoelectron and X-ray excited auger electron spectroscopic analysis of surface modifications of chromia during heterogeneous catalyzed chlorine/fluorine exchange. J. Catal. 159, 270 (1996). https://doi.org/10.1006/jcat.1996.0088
A.K. Friedman, W. Shi, Y. Losovyj, A.R. Siedle, L.A. Baker, Mapping microscale chemical heterogeneity in nafion membranes with x-ray photoelectron spectroscopy. J. Electrochem. Soc. 165, H733 (2018). https://doi.org/10.1149/2.0771811jes
J. Kim, M.R. Raj, G. Lee, High-defect-density graphite for superior-performance aluminum-ion batteries with ultra-fast charging and stable long life. Nano-Micro Lett. 13, 171 (2021). https://doi.org/10.1007/s40820-021-00698-0
M. Angell, C.-J. Pan, Y. Rong, C. Yuan, M.-C. Lin et al., High coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. 114, 834 (2017). https://doi.org/10.1073/pnas.1619795114
X. Dong, H. Xu, H. Chen, L. Wang, J. Wang et al., Commercial expanded graphite as high-performance cathode for low-cost aluminum-ion battery. Carbon 148, 134 (2019). https://doi.org/10.1016/j.carbon.2019.03.080
S. Guo, H. Yang, M. Liu, X. Feng, Y. Gao et al., Al-storage behaviors of expanded graphite as high-rate and long-life cathode materials for rechargeable aluminum batteries. ACS Appl. Mater. Interfaces 13, 22549 (2021). https://doi.org/10.1021/acsami.1c04466
M. Elsharkawi, A.M.K. Esawi, Development of an AlCl3-urea ionic liquid for the electroless deposition of aluminum on carbon nanotubes. ACS Omega 5, 5756 (2020). https://doi.org/10.1021/acsomega.9b03805
N. Lindahl, J. Bitenc, R. Dominko, P. Johansson, Aluminum metal–organic batteries with integrated 3d thin film anodes. Adv. Funct. Mater. 30, 2004573 (2020). https://doi.org/10.1002/adfm.202004573
J. Bitenc, N. Lindahl, A. Vizintin, M.E. Abdelhamid, R. Dominko et al., Concept and electrochemical mechanism of an al metal anode—organic cathode battery. Energy Storage Mater. 24, 379 (2020). https://doi.org/10.1016/j.ensm.2019.07.033
F. Guo, Z. Huang, M. Wang, W.-L. Song, A. Lv et al., Active cyano groups to coordinate AlCl2+ cation for rechargeable aluminum batteries. Energy Storage Mater. 33, 250 (2020). https://doi.org/10.1016/j.ensm.2020.08.016
M. Mao, Z. Yu, Z. Lin, Y.-S. Hu, H. Li et al., Simplifying and accelerating kinetics enabling fast-charge al batteries. J. Mater. Chem. A 8, 23834 (2020). https://doi.org/10.1039/D0TA08348H
C. Pan, M. Shin, D. Liu, M. Kottwitz, R. Zhang et al., Energy storage mechanisms in high-capacity graphitic C3N4 cathodes for al-ion batteries. J. Phys. Chem. C 124, 10288 (2020). https://doi.org/10.1021/acs.jpcc.0c00259
J. Zhou, X. Yu, J. Zhou, B. Lu, Polyimide/metal-organic framework hybrid for high performance Al-organic battery. Energy Storage Mater. 31, 58 (2020). https://doi.org/10.1016/j.ensm.2020.05.029