Oxygen Functionalization-Induced Charging Effect on Boron Active Sites for High-Yield Electrocatalytic NH3 Production
Corresponding Author: Ramendra Sundar Dey
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 214
Abstract
Ammonia has been recognized as the future renewable energy fuel because of its wide-ranging applications in H2 storage and transportation sector. In order to avoid the environmentally hazardous Haber–Bosch process, recently, the third-generation ambient ammonia synthesis has drawn phenomenal attention and thus tremendous efforts are devoted to developing efficient electrocatalysts that would circumvent the bottlenecks of the electrochemical nitrogen reduction reaction (NRR) like competitive hydrogen evolution reaction, poor selectivity of N2 on catalyst surface. Herein, we report the synthesis of an oxygen-functionalized boron carbonitride matrix via a two-step pyrolysis technique. The conductive BNCO(1000) architecture, the compatibility of B-2pz orbital with the N-2pz orbital and the charging effect over B due to the C and O edge-atoms in a pentagon altogether facilitate N2 adsorption on the B edge-active sites. The optimum electrolyte acidity with 0.1 M HCl and the lowered anion crowding effect aid the protonation steps of NRR via an associative alternating pathway, which gives a sufficiently high yield of ammonia (211.5 μg h−1 mgcat−1) on the optimized BNCO(1000) catalyst with a Faradaic efficiency of 34.7% at − 0.1 V vs RHE. This work thus offers a cost-effective electrode material and provides a contemporary idea about reinforcing the charging effect over the secured active sites for NRR by selectively choosing the electrolyte anions and functionalizing the active edges of the BNCO(1000) catalyst.
Highlights:
1 O-functionalization at the edges of boron carbonitride induces charge polarization effect on B.
2 0.1 M HCl serves to preserve the catalyst active site from poisoning effect by electrolyte anions.
3 Experimental and theoretical findings go hand-in-hand towards high yield of ammonia.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Ren, C. Yu, X. Tan, H. Huang, Q. Wei et al., Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy Environ. Sci. 14(3), 1176–1193 (2021). https://doi.org/10.1039/D0EE03596C
- J. Choi, B.H.R. Suryanto, D. Wang, H.L. Du, R.Y. Hodgetts et al., Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020). https://doi.org/10.1038/s41467-020-19130-z
- U. Shahid, Y. Chen, S. Gu, W. Li, M. Shao, Electrochemical nitrogen reduction: an intriguing but challenging quest. Trends Chem. 4, 142 (2022). https://doi.org/10.1016/j.trechm.2021.11.007
- Y. Sun, Z. Deng, X.M. Song, H. Li, Z. Huang et al., Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 12, 133 (2020). https://doi.org/10.1007/s40820-020-00444-y
- W. Zhang, B.W. Zhang, Bi-atom electrocatalyst for electrochemical nitrogen reduction reactions. Nano-Micro Lett. 13, 106 (2021). https://doi.org/10.1007/s40820-021-00638-y
- X. Li, P. Shen, Y. Luo, Y. Li, Y. Guo et al., PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem. Int. Ed. 61(28), e202205923 (2022). https://doi.org/10.1002/anie.202205923
- G.F. Chen, X. Cao, S. Wu, X. Zeng, L.X. Ding et al., Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139(29), 9771–9774 (2017). https://doi.org/10.1021/jacs.7b04393
- B.H.R. Suryanto, D. Wang, L.M. Azofra, M. Harb, L. Cavallo et al., MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. ACS Energy Lett. 4(2), 430–435 (2019). https://doi.org/10.1021/acsenergylett.8b02257
- X. Chia, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Layered SnS versus SnS2: valence and structural implications on electrochemistry and clean energy electrocatalysis. J. Phys. Chem. C 120(42), 24098–24111 (2016). https://doi.org/10.1021/acs.jpcc.6b06977
- S. Biswas, N. Nandi, J. Kamboj, A.B. Pan et al., Alteration of electronic band structure via a metal–semiconductor interfacial effect enables high faradaic efficiency for electrochemical nitrogen fixation. ACS Nano 15(12), 20364–20376 (2021). https://doi.org/10.1021/acsnano.1c08652
- K. Chu, Y. Luo, P. Shen, X. Li, Q. Li et al., Unveiling the synergy of O-vacancy and heterostructure over MoO3-x/MXene for N2 electroreduction to NH3. Adv. Energy Mater. 12(3), 2103022 (2022). https://doi.org/10.1002/aenm.202103022
- L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng et al., Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 9(4), 2902–2908 (2019). https://doi.org/10.1021/acscatal.9b00366
- Y. Fu, P. Richardson, K. Li, H. Yu, B. Yu et al., Transition metal aluminum boride as a new candidate for ambient-condition electrochemical ammonia synthesis. Nano-Micro Lett. 12, 65 (2020). https://doi.org/10.1007/s40820-020-0400-z
- C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin et al., Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141(7), 2884–2888 (2019). https://doi.org/10.1021/jacs.8b13165
- Y. Huang, T. Yang, L. Yang, R. Liu, G. Zhang et al., Graphene–boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A Mater. 7(25), 15173–15180 (2019). https://doi.org/10.1039/C9TA02947H
- Y. Li, D. Gao, S. Zhao, Y. Xiao, Z. Guo et al., Carbon doped hexagonal boron nitride nanoribbon as efficient metal-free electrochemical nitrogen reduction catalyst. Chem. Eng. J. 410, 128419 (2021). https://doi.org/10.1016/j.cej.2021.128419
- C. Chen, D. Yan, Y. Wang, Y. Zhou, Y. Zou et al., B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small 15(7), 1805029 (2019). https://doi.org/10.1002/smll.201805029
- B. Chang, L. Li, D. Shi, H. Jiang, Z. Ai et al., Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl. Catal. B 283, 119622 (2021). https://doi.org/10.1016/j.apcatb.2020.119622
- X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu et al., Boron-doped graphene for electrocatalytic N2 reduction. Joule 2(8), 1610–1622 (2018). https://doi.org/10.1016/j.joule.2018.06.007
- Z. Feng, Y. Tang, W. Chen, D. Wei, Y. Ma et al., O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction. Mol. Catal. 483, 110705 (2020). https://doi.org/10.1016/j.mcat.2019.110705
- Y. Yang, L. Zhang, Z. Hu, Y. Zheng, C. Tang et al., The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 59(11), 4525–4531 (2020). https://doi.org/10.1002/anie.201915001
- P. Shen, X. Li, Y. Luo, Y. Guo, X. Zhao et al., High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2–x in water-in-salt electrolytes. ACS Nano 16(5), 7915–7925 (2022). https://doi.org/10.1021/acsnano.2c00596
- P. Shen, X. Li, Y. Luo, N. Zhang, X. Zhao et al., Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl. Catal. B 316, 121651 (2022). https://doi.org/10.1016/j.apcatb.2022.121651
- Q. Zhang, B. Liu, L. Yu, Y. Bei, B. Tang, Synergistic promotion of the electrochemical reduction of nitrogen to ammonia by phosphorus and potassium. ChemCatChem 12, 334–341 (2020). https://doi.org/10.1002/cctc.201901519
- A. Biswas, S. Kapse, B. Ghosh, R. Thapa, R.S. Dey, Lewis acid–dominated aqueous electrolyte acting as co-catalyst and overcoming N2 activation issues on catalyst surface. PNAS 119(33), e2204638119 (2022). https://doi.org/10.1073/pnas.2204638119
- A. Nag, K. Raidongia, K.P.S.S. Hembram, R. Datta, U. Waghmare et al., Graphene analogues of BN: novel synthesis and properties. ACS Nano 4(3), 1539–1544 (2010). https://doi.org/10.1021/nn9018762
- S. Biswas, M. Sarkar, N. Das, R.S. Kamboj, Dey, A no-sweat strategy for graphene-macrocycle co-assembled electrocatalyst toward oxygen reduction and ambient ammonia synthesis. Inorg. Chem. 59(22), 16385–16397 (2020). https://doi.org/10.1021/acs.inorgchem.0c02176
- D.C. Grahame, The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41(3), 441–501 (1947). https://doi.org/10.1021/cr60130a002
- Y. Zhang, H. Du, Y. Ma, L. Ji, H. Guo et al., Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 12, 919–924 (2019). https://doi.org/10.1007/s12274-019-2323-x
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Kapse, S. Janwari, U.V. Waghmare, R. Thapa, Energy parameter and electronic descriptor for carbon based catalyst predicted using QM/ML. Appl. Catal. B 286, 119866 (2021). https://doi.org/10.1016/j.apcatb.2020.119866
- X. Chen, W.J. Ong, X. Zhao, P. Zhang, N. Li, Insights into electrochemical nitrogen reduction reaction mechanisms: combined effect of single transition-metal and boron atom. J. Energy Chem. 58, 577–585 (2021). https://doi.org/10.1016/j.jechem.2020.10.043
- J. Zheng, Y. Lyu, M. Qiao, J.P. Veder, R.D. Marco et al., Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation. Angew. Chem. Int. Ed. 58(51), 18604–18609 (2019). https://doi.org/10.1002/anie.201909477
- V.S.K. Choutipalli, K. Esackraj, V. Subramanian, Nitrogen fixation at the edges of boron nitride nanomaterials: synergy of doping. Front. Chem. 9, 1216 (2022). https://doi.org/10.3389/fchem.2021.799903
- P. Giusto, H. Arazoe, D. Cruz, P. Lova, T. Heil et al., Boron carbon nitride thin films: from disordered to ordered conjugated ternary materials. J. Am. Chem. Soc. 142(49), 20883–20891 (2020). https://doi.org/10.1021/jacs.0c10945
- S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund et al., Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 140(25), 7851–7859 (2018). https://doi.org/10.1021/jacs.8b02798
- M. Zhou, S. Wang, P. Yang, C. Huang, X. Wang, Boron carbon nitride semiconductors decorated with CdS nanops for photocatalytic reduction of CO2. ACS Catal. 8(6), 4928–4936 (2018). https://doi.org/10.1021/acscatal.8b00104
- X. Wang, C. Zhi, L. Li, H. Zeng, C. Li et al., “Chemical blowing” of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and Cx-BN nanosheets. Adv. Mater. 23(35), 4072–4076 (2011). https://doi.org/10.1002/adma.201101788
- C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye et al., Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015). https://doi.org/10.1038/ncomms8698
- S. Sarkar, A. Biswas, N. Kamboj, R.S. Dey, Unveiling the potential of an Fe bis(terpyridine) complex for precise development of an Fe-N-C electrocatalyst to promote the oxygen reduction reaction. Inorg. Chem. 59(18), 13453–13464 (2020). https://doi.org/10.1021/acs.inorgchem.0c01879
- L. Chen, M. Zhou, Z. Luo, M. Wakeel, A.M. Asiri et al., Template-free synthesis of carbon-doped boron nitride nanosheets for enhanced photocatalytic hydrogen evolution. Appl. Catal. B 241, 246–255 (2019). https://doi.org/10.1016/j.apcatb.2018.09.034
- M. Florent, T.J. Bandosz, Irreversible water mediated transformation of BCN from a 3D highly porous form to its nonporous hydrolyzed counterpart. J. Mater. Chem. A Mater. 6(8), 3510–3521 (2018). https://doi.org/10.1039/C7TA11359E
- C. Tang, Y. Bando, Y. Huang, C. Zhi, D. Golberg, Synthetic routes and formation mechanisms of spherical boron nitride nanops. Adv. Funct. Mater. 18(22), 3653–3661 (2008). https://doi.org/10.1002/adfm.200800493
- S. Beniwal, J. Hooper, D.P. Miller, P.S. Costa, G. Chen et al., Graphene-like boron–carbon–nitrogen monolayers. ACS Nano 11(3), 2486 (2017). https://doi.org/10.1021/acsnano.6b08136
- S. Sarkar, A. Biswas, E.E. Siddharthan, R. Thapa, R.S. Dey, Strategic modulation of target-specific isolated Fe, Co single-atom active sites for oxygen electrocatalysis impacting high power Zn–air battery. ACS Nano 16(6), 7890–7903 (2022). https://doi.org/10.1021/acsnano.2c00547
- J. Matsoso, K. Ranganathan, B.K. Mutuma, T. Lerotholi, G. Jones et al., Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia. New J. Chem. 41(17), 9497–9504 (2017). https://doi.org/10.1039/C7NJ01886J
- D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu et al., Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10, 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
- L.J. Terminello, A. Chaiken, D.A. Lapiano-Smith, G.L. Doll, T. Sato, Morphology and bonding measured from boron-nitride powders and films using near-edge x-ray absorption fine structure. J. Vacuum Sci. Technol. A 12, 2462 (1998). https://doi.org/10.1116/1.579194
- Q. Li, P. Shen, Y. Tian, X. Li, K. Chu, Metal-free BN quantum dots/graphitic C3N4 heterostructure for nitrogen reduction reaction. J. Colloid Interface Sci. 606, 204–212 (2022). https://doi.org/10.1016/j.jcis.2021.08.032
- T. Hemraj-Benny, S. Banerjee, S. Sambasivan, D.A. Fischer, W. Han et al., Investigating the structure of boron nitride nanotubes by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Phys. Chem. Chem. Phys. 7(6), 1103–1106 (2005). https://doi.org/10.1039/b415423a
- F. Frati, M.O.J.Y. Hunault, F.M.F. Groot, Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120(9), 4056–4110 (2020). https://doi.org/10.1021/acs.chemrev.9b00439
- M.O. Watanabe, S. Itoh, K. Mizushima, T. Sasaki, Bonding characterization of BC2N thin films. Appl. Phys. Lett. 68, 2962 (1998). https://doi.org/10.1063/1.116369
- M. Terauchi, M. Tanaka, T. Matsumoto, Y. Saito, Electron energy-loss spectroscopy study of the electronic structure of boron nitride nanotubes. J. Electron. Microsc. 47(4), 319–324 (1998). https://doi.org/10.1093/oxfordjournals.jmicro.a023598
- P.A. Brühwiler, A.J. Maxwell, C. Puglia, A. Nilsson, S. Andersson et al., π* and σ* excitons in C 1s absorption of graphite. Phys. Rev. Lett. 74, 614 (1995). https://doi.org/10.1103/PhysRevLett.74.614
- N. Lazouski, K.J. Steinberg, M.L. Gala, D. Krishnamurthy, V. Viswanathan et al., Proton donors induce a differential transport effect for selectivity toward ammonia in lithium-mediated nitrogen reduction. ACS Catal. 12(9), 5197–5208 (2022). https://doi.org/10.1021/acscatal.2c00389
- K. Krempl, J.B. Pedersen, J. Kibsgaard, P.C.K. Vesborg, I. Chorkendorff, Electrolyte acidification from anode reactions during lithium mediated ammonia synthesis. Electrochem. Commun. 134, 107186 (2022). https://doi.org/10.1016/j.elecom.2021.107186
- Y. Guo, J. Gu, R. Zhang, S. Zhang, Z. Li et al., Molecular crowding effect in aqueous electrolytes to suppress hydrogen reduction reaction and enhance electrochemical nitrogen reduction. Adv. Energy Mater. 11(36), 2101699 (2021). https://doi.org/10.1002/aenm.202101699
- Z. Liu, M. Zhang, H. Wang, D. Cang, X. Ji et al., Defective carbon-doped boron nitride nanosheets for highly efficient electrocatalytic conversion of N2 to NH3. ACS Sustain. Chem. Eng. 8(13), 5278–5286 (2020). https://doi.org/10.1021/acssuschemeng.0c00330
- K. Chu, X. Li, Y. Tian, Q. Li, Y. Guo, Boron nitride quantum dots/Ti3C2Tx-MXene heterostructure for efficient electrocatalytic nitrogen fixation. Energy Environ. Mater. (2021). https://doi.org/10.1002/eem2.12247
- Q. Zhang, F. Luo, Y. Ling, S. Xiao, M. Li et al., Identification of functionality of heteroatoms in boron, nitrogen and fluorine ternary-doped carbon as a robust electrocatalyst for nitrogen reduction reaction powered by rechargeable zinc–air batteries. J. Mater. Chem. A Mater. 8, 8430–8439 (2020). https://doi.org/10.1039/D0TA01572E
- K. Yesudoss, G. Lee, S. Shanmugam, Strong catalyst support interactions in defect-rich γ-Mo2N nanops loaded 2D-h-BN hybrid for highly selective nitrogen reduction reaction. Appl. Catal. B 287, 119952 (2021). https://doi.org/10.1016/j.apcatb.2021.119952
- K. Chu, X. Li, Q. Li, Y. Guo, H. Zhang, Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 17(40), 2102363 (2021). https://doi.org/10.1002/smll.202102363
- L. Shi, Y. Yin, S. Wang, H. Sun, Rational catalyst design for N2 reduction under ambient conditions: strategies toward enhanced conversion efficiency. ACS Catal. 10(12), 6870–6899 (2020). https://doi.org/10.1021/acscatal.0c01081
- C. He, Z.Y. Wu, L. Zhao, M. Ming, Y. Zhang et al., Identification of FeN4 as an efficient active site for electrochemical N2 reduction. ACS Catal. 9(8), 7311–7317 (2019). https://doi.org/10.1021/acscatal.9b00959
- U.K. Ghorai, S. Paul, B. Ghorai, A. Adalder, S. Kapse et al., Scalable production of cobalt phthalocyanine nanotubes: efficient and robust hollow electrocatalyst for ammonia synthesis at room temperature. ACS Nano 15(3), 5230–5239 (2021). https://doi.org/10.1021/acsnano.0c10596
- S. Murmu, S. Paul, S. Kapse, R. Thapa, S. Chattopadhyay et al., Unveiling the genesis of the high catalytic activity in nickel phthalocyanine for electrochemical ammonia synthesis. J. Mater. Chem. A 9(25), 14477–14484 (2021). https://doi.org/10.1039/D1TA00766A
References
Y. Ren, C. Yu, X. Tan, H. Huang, Q. Wei et al., Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives. Energy Environ. Sci. 14(3), 1176–1193 (2021). https://doi.org/10.1039/D0EE03596C
J. Choi, B.H.R. Suryanto, D. Wang, H.L. Du, R.Y. Hodgetts et al., Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 11, 5546 (2020). https://doi.org/10.1038/s41467-020-19130-z
U. Shahid, Y. Chen, S. Gu, W. Li, M. Shao, Electrochemical nitrogen reduction: an intriguing but challenging quest. Trends Chem. 4, 142 (2022). https://doi.org/10.1016/j.trechm.2021.11.007
Y. Sun, Z. Deng, X.M. Song, H. Li, Z. Huang et al., Bismuth-based free-standing electrodes for ambient-condition ammonia production in neutral media. Nano-Micro Lett. 12, 133 (2020). https://doi.org/10.1007/s40820-020-00444-y
W. Zhang, B.W. Zhang, Bi-atom electrocatalyst for electrochemical nitrogen reduction reactions. Nano-Micro Lett. 13, 106 (2021). https://doi.org/10.1007/s40820-021-00638-y
X. Li, P. Shen, Y. Luo, Y. Li, Y. Guo et al., PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem. Int. Ed. 61(28), e202205923 (2022). https://doi.org/10.1002/anie.202205923
G.F. Chen, X. Cao, S. Wu, X. Zeng, L.X. Ding et al., Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 139(29), 9771–9774 (2017). https://doi.org/10.1021/jacs.7b04393
B.H.R. Suryanto, D. Wang, L.M. Azofra, M. Harb, L. Cavallo et al., MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. ACS Energy Lett. 4(2), 430–435 (2019). https://doi.org/10.1021/acsenergylett.8b02257
X. Chia, P. Lazar, Z. Sofer, J. Luxa, M. Pumera, Layered SnS versus SnS2: valence and structural implications on electrochemistry and clean energy electrocatalysis. J. Phys. Chem. C 120(42), 24098–24111 (2016). https://doi.org/10.1021/acs.jpcc.6b06977
S. Biswas, N. Nandi, J. Kamboj, A.B. Pan et al., Alteration of electronic band structure via a metal–semiconductor interfacial effect enables high faradaic efficiency for electrochemical nitrogen fixation. ACS Nano 15(12), 20364–20376 (2021). https://doi.org/10.1021/acsnano.1c08652
K. Chu, Y. Luo, P. Shen, X. Li, Q. Li et al., Unveiling the synergy of O-vacancy and heterostructure over MoO3-x/MXene for N2 electroreduction to NH3. Adv. Energy Mater. 12(3), 2103022 (2022). https://doi.org/10.1002/aenm.202103022
L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng et al., Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 9(4), 2902–2908 (2019). https://doi.org/10.1021/acscatal.9b00366
Y. Fu, P. Richardson, K. Li, H. Yu, B. Yu et al., Transition metal aluminum boride as a new candidate for ambient-condition electrochemical ammonia synthesis. Nano-Micro Lett. 12, 65 (2020). https://doi.org/10.1007/s40820-020-0400-z
C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin et al., Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141(7), 2884–2888 (2019). https://doi.org/10.1021/jacs.8b13165
Y. Huang, T. Yang, L. Yang, R. Liu, G. Zhang et al., Graphene–boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A Mater. 7(25), 15173–15180 (2019). https://doi.org/10.1039/C9TA02947H
Y. Li, D. Gao, S. Zhao, Y. Xiao, Z. Guo et al., Carbon doped hexagonal boron nitride nanoribbon as efficient metal-free electrochemical nitrogen reduction catalyst. Chem. Eng. J. 410, 128419 (2021). https://doi.org/10.1016/j.cej.2021.128419
C. Chen, D. Yan, Y. Wang, Y. Zhou, Y. Zou et al., B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency. Small 15(7), 1805029 (2019). https://doi.org/10.1002/smll.201805029
B. Chang, L. Li, D. Shi, H. Jiang, Z. Ai et al., Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Appl. Catal. B 283, 119622 (2021). https://doi.org/10.1016/j.apcatb.2020.119622
X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu et al., Boron-doped graphene for electrocatalytic N2 reduction. Joule 2(8), 1610–1622 (2018). https://doi.org/10.1016/j.joule.2018.06.007
Z. Feng, Y. Tang, W. Chen, D. Wei, Y. Ma et al., O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction. Mol. Catal. 483, 110705 (2020). https://doi.org/10.1016/j.mcat.2019.110705
Y. Yang, L. Zhang, Z. Hu, Y. Zheng, C. Tang et al., The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 59(11), 4525–4531 (2020). https://doi.org/10.1002/anie.201915001
P. Shen, X. Li, Y. Luo, Y. Guo, X. Zhao et al., High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2–x in water-in-salt electrolytes. ACS Nano 16(5), 7915–7925 (2022). https://doi.org/10.1021/acsnano.2c00596
P. Shen, X. Li, Y. Luo, N. Zhang, X. Zhao et al., Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl. Catal. B 316, 121651 (2022). https://doi.org/10.1016/j.apcatb.2022.121651
Q. Zhang, B. Liu, L. Yu, Y. Bei, B. Tang, Synergistic promotion of the electrochemical reduction of nitrogen to ammonia by phosphorus and potassium. ChemCatChem 12, 334–341 (2020). https://doi.org/10.1002/cctc.201901519
A. Biswas, S. Kapse, B. Ghosh, R. Thapa, R.S. Dey, Lewis acid–dominated aqueous electrolyte acting as co-catalyst and overcoming N2 activation issues on catalyst surface. PNAS 119(33), e2204638119 (2022). https://doi.org/10.1073/pnas.2204638119
A. Nag, K. Raidongia, K.P.S.S. Hembram, R. Datta, U. Waghmare et al., Graphene analogues of BN: novel synthesis and properties. ACS Nano 4(3), 1539–1544 (2010). https://doi.org/10.1021/nn9018762
S. Biswas, M. Sarkar, N. Das, R.S. Kamboj, Dey, A no-sweat strategy for graphene-macrocycle co-assembled electrocatalyst toward oxygen reduction and ambient ammonia synthesis. Inorg. Chem. 59(22), 16385–16397 (2020). https://doi.org/10.1021/acs.inorgchem.0c02176
D.C. Grahame, The electrical double layer and the theory of electrocapillarity. Chem. Rev. 41(3), 441–501 (1947). https://doi.org/10.1021/cr60130a002
Y. Zhang, H. Du, Y. Ma, L. Ji, H. Guo et al., Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 12, 919–924 (2019). https://doi.org/10.1007/s12274-019-2323-x
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994). https://doi.org/10.1103/PhysRevB.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Kapse, S. Janwari, U.V. Waghmare, R. Thapa, Energy parameter and electronic descriptor for carbon based catalyst predicted using QM/ML. Appl. Catal. B 286, 119866 (2021). https://doi.org/10.1016/j.apcatb.2020.119866
X. Chen, W.J. Ong, X. Zhao, P. Zhang, N. Li, Insights into electrochemical nitrogen reduction reaction mechanisms: combined effect of single transition-metal and boron atom. J. Energy Chem. 58, 577–585 (2021). https://doi.org/10.1016/j.jechem.2020.10.043
J. Zheng, Y. Lyu, M. Qiao, J.P. Veder, R.D. Marco et al., Tuning the electron localization of gold enables the control of nitrogen-to-ammonia fixation. Angew. Chem. Int. Ed. 58(51), 18604–18609 (2019). https://doi.org/10.1002/anie.201909477
V.S.K. Choutipalli, K. Esackraj, V. Subramanian, Nitrogen fixation at the edges of boron nitride nanomaterials: synergy of doping. Front. Chem. 9, 1216 (2022). https://doi.org/10.3389/fchem.2021.799903
P. Giusto, H. Arazoe, D. Cruz, P. Lova, T. Heil et al., Boron carbon nitride thin films: from disordered to ordered conjugated ternary materials. J. Am. Chem. Soc. 142(49), 20883–20891 (2020). https://doi.org/10.1021/jacs.0c10945
S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund et al., Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 140(25), 7851–7859 (2018). https://doi.org/10.1021/jacs.8b02798
M. Zhou, S. Wang, P. Yang, C. Huang, X. Wang, Boron carbon nitride semiconductors decorated with CdS nanops for photocatalytic reduction of CO2. ACS Catal. 8(6), 4928–4936 (2018). https://doi.org/10.1021/acscatal.8b00104
X. Wang, C. Zhi, L. Li, H. Zeng, C. Li et al., “Chemical blowing” of thin-walled bubbles: high-throughput fabrication of large-area, few-layered BN and Cx-BN nanosheets. Adv. Mater. 23(35), 4072–4076 (2011). https://doi.org/10.1002/adma.201101788
C. Huang, C. Chen, M. Zhang, L. Lin, X. Ye et al., Carbon-doped BN nanosheets for metal-free photoredox catalysis. Nat. Commun. 6, 7698 (2015). https://doi.org/10.1038/ncomms8698
S. Sarkar, A. Biswas, N. Kamboj, R.S. Dey, Unveiling the potential of an Fe bis(terpyridine) complex for precise development of an Fe-N-C electrocatalyst to promote the oxygen reduction reaction. Inorg. Chem. 59(18), 13453–13464 (2020). https://doi.org/10.1021/acs.inorgchem.0c01879
L. Chen, M. Zhou, Z. Luo, M. Wakeel, A.M. Asiri et al., Template-free synthesis of carbon-doped boron nitride nanosheets for enhanced photocatalytic hydrogen evolution. Appl. Catal. B 241, 246–255 (2019). https://doi.org/10.1016/j.apcatb.2018.09.034
M. Florent, T.J. Bandosz, Irreversible water mediated transformation of BCN from a 3D highly porous form to its nonporous hydrolyzed counterpart. J. Mater. Chem. A Mater. 6(8), 3510–3521 (2018). https://doi.org/10.1039/C7TA11359E
C. Tang, Y. Bando, Y. Huang, C. Zhi, D. Golberg, Synthetic routes and formation mechanisms of spherical boron nitride nanops. Adv. Funct. Mater. 18(22), 3653–3661 (2008). https://doi.org/10.1002/adfm.200800493
S. Beniwal, J. Hooper, D.P. Miller, P.S. Costa, G. Chen et al., Graphene-like boron–carbon–nitrogen monolayers. ACS Nano 11(3), 2486 (2017). https://doi.org/10.1021/acsnano.6b08136
S. Sarkar, A. Biswas, E.E. Siddharthan, R. Thapa, R.S. Dey, Strategic modulation of target-specific isolated Fe, Co single-atom active sites for oxygen electrocatalysis impacting high power Zn–air battery. ACS Nano 16(6), 7890–7903 (2022). https://doi.org/10.1021/acsnano.2c00547
J. Matsoso, K. Ranganathan, B.K. Mutuma, T. Lerotholi, G. Jones et al., Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia. New J. Chem. 41(17), 9497–9504 (2017). https://doi.org/10.1039/C7NJ01886J
D. Gu, Y. Zhou, R. Ma, F. Wang, Q. Liu et al., Facile synthesis of N-doped graphene-like carbon nanoflakes as efficient and stable electrocatalysts for the oxygen reduction reaction. Nano-Micro Lett. 10, 29 (2018). https://doi.org/10.1007/s40820-017-0181-1
L.J. Terminello, A. Chaiken, D.A. Lapiano-Smith, G.L. Doll, T. Sato, Morphology and bonding measured from boron-nitride powders and films using near-edge x-ray absorption fine structure. J. Vacuum Sci. Technol. A 12, 2462 (1998). https://doi.org/10.1116/1.579194
Q. Li, P. Shen, Y. Tian, X. Li, K. Chu, Metal-free BN quantum dots/graphitic C3N4 heterostructure for nitrogen reduction reaction. J. Colloid Interface Sci. 606, 204–212 (2022). https://doi.org/10.1016/j.jcis.2021.08.032
T. Hemraj-Benny, S. Banerjee, S. Sambasivan, D.A. Fischer, W. Han et al., Investigating the structure of boron nitride nanotubes by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Phys. Chem. Chem. Phys. 7(6), 1103–1106 (2005). https://doi.org/10.1039/b415423a
F. Frati, M.O.J.Y. Hunault, F.M.F. Groot, Oxygen K-edge X-ray absorption spectra. Chem. Rev. 120(9), 4056–4110 (2020). https://doi.org/10.1021/acs.chemrev.9b00439
M.O. Watanabe, S. Itoh, K. Mizushima, T. Sasaki, Bonding characterization of BC2N thin films. Appl. Phys. Lett. 68, 2962 (1998). https://doi.org/10.1063/1.116369
M. Terauchi, M. Tanaka, T. Matsumoto, Y. Saito, Electron energy-loss spectroscopy study of the electronic structure of boron nitride nanotubes. J. Electron. Microsc. 47(4), 319–324 (1998). https://doi.org/10.1093/oxfordjournals.jmicro.a023598
P.A. Brühwiler, A.J. Maxwell, C. Puglia, A. Nilsson, S. Andersson et al., π* and σ* excitons in C 1s absorption of graphite. Phys. Rev. Lett. 74, 614 (1995). https://doi.org/10.1103/PhysRevLett.74.614
N. Lazouski, K.J. Steinberg, M.L. Gala, D. Krishnamurthy, V. Viswanathan et al., Proton donors induce a differential transport effect for selectivity toward ammonia in lithium-mediated nitrogen reduction. ACS Catal. 12(9), 5197–5208 (2022). https://doi.org/10.1021/acscatal.2c00389
K. Krempl, J.B. Pedersen, J. Kibsgaard, P.C.K. Vesborg, I. Chorkendorff, Electrolyte acidification from anode reactions during lithium mediated ammonia synthesis. Electrochem. Commun. 134, 107186 (2022). https://doi.org/10.1016/j.elecom.2021.107186
Y. Guo, J. Gu, R. Zhang, S. Zhang, Z. Li et al., Molecular crowding effect in aqueous electrolytes to suppress hydrogen reduction reaction and enhance electrochemical nitrogen reduction. Adv. Energy Mater. 11(36), 2101699 (2021). https://doi.org/10.1002/aenm.202101699
Z. Liu, M. Zhang, H. Wang, D. Cang, X. Ji et al., Defective carbon-doped boron nitride nanosheets for highly efficient electrocatalytic conversion of N2 to NH3. ACS Sustain. Chem. Eng. 8(13), 5278–5286 (2020). https://doi.org/10.1021/acssuschemeng.0c00330
K. Chu, X. Li, Y. Tian, Q. Li, Y. Guo, Boron nitride quantum dots/Ti3C2Tx-MXene heterostructure for efficient electrocatalytic nitrogen fixation. Energy Environ. Mater. (2021). https://doi.org/10.1002/eem2.12247
Q. Zhang, F. Luo, Y. Ling, S. Xiao, M. Li et al., Identification of functionality of heteroatoms in boron, nitrogen and fluorine ternary-doped carbon as a robust electrocatalyst for nitrogen reduction reaction powered by rechargeable zinc–air batteries. J. Mater. Chem. A Mater. 8, 8430–8439 (2020). https://doi.org/10.1039/D0TA01572E
K. Yesudoss, G. Lee, S. Shanmugam, Strong catalyst support interactions in defect-rich γ-Mo2N nanops loaded 2D-h-BN hybrid for highly selective nitrogen reduction reaction. Appl. Catal. B 287, 119952 (2021). https://doi.org/10.1016/j.apcatb.2021.119952
K. Chu, X. Li, Q. Li, Y. Guo, H. Zhang, Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 17(40), 2102363 (2021). https://doi.org/10.1002/smll.202102363
L. Shi, Y. Yin, S. Wang, H. Sun, Rational catalyst design for N2 reduction under ambient conditions: strategies toward enhanced conversion efficiency. ACS Catal. 10(12), 6870–6899 (2020). https://doi.org/10.1021/acscatal.0c01081
C. He, Z.Y. Wu, L. Zhao, M. Ming, Y. Zhang et al., Identification of FeN4 as an efficient active site for electrochemical N2 reduction. ACS Catal. 9(8), 7311–7317 (2019). https://doi.org/10.1021/acscatal.9b00959
U.K. Ghorai, S. Paul, B. Ghorai, A. Adalder, S. Kapse et al., Scalable production of cobalt phthalocyanine nanotubes: efficient and robust hollow electrocatalyst for ammonia synthesis at room temperature. ACS Nano 15(3), 5230–5239 (2021). https://doi.org/10.1021/acsnano.0c10596
S. Murmu, S. Paul, S. Kapse, R. Thapa, S. Chattopadhyay et al., Unveiling the genesis of the high catalytic activity in nickel phthalocyanine for electrochemical ammonia synthesis. J. Mater. Chem. A 9(25), 14477–14484 (2021). https://doi.org/10.1039/D1TA00766A