Significant Lifetime Enhancement in QLEDs by Reducing Interfacial Charge Accumulation via Fluorine Incorporation in the ZnO Electron Transport Layer
Corresponding Author: Hany Aziz
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 212
Abstract
ZnO nanoparticles are widely used for the electron transport layers (ETLs) of quantum dots light emitting devices (QLEDs). In this work we show that incorporating fluorine (F) into the ZnO ETL results in significant enhancement in device electroluminescence stability, leading to LT50 at 100 cd m−2 of 2,370,000 h in red QLED, 47X longer than the control devices. X-ray photo-electron spectroscopy, time-of-flight secondary ion mass spectroscopy, photoluminescence and electrical measurements show that the F passivates oxygen vacancies and reduces electron traps in ZnO. Transient photoluminescence versus bias measurements and capacitance–voltage-luminance measurements reveal that the CF4 plasma-treated ETLs lead to increased electron concentration in the QD and the QD/hole transport layer interface, subsequently decreasing hole accumulation, and hence the higher stability. The findings provide new insights into the critical roles that optimizing charge distribution across the layers play in influencing stability and present a novel and simple approach for extending QLED lifetimes.
Highlights:
1 Quantum dots light emitting devices (QLEDs) with extremely long half-lifetimes at 100 cd m−2, 2,370,000 h were successfully fabricated using CF4 plasma-treated ZnO nanoparticle electron transport layers.
2 A new experimental approach that probes changes in exciton lifetime under current flow was used to investigate the changes in carrier concentration in QLEDs.
3 Evidence of the dependence of QLED stability on electron and hole concentrations at the QD/HTL interface was revealed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.W. Stouwdam, R.A.J. Janssen, Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J. Mater. Chem. 18(16), 1889–1894 (2008). https://doi.org/10.1039/B800028J
- N. Kirkwood, B. Singh, P. Mulvaney, Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer. Adv. Mater. Interfaces 3(22), 1600868 (2016). https://doi.org/10.1002/admi.201600868
- B.H. Kang, J.S. Kim, J.S. Lee, S.W. Lee, G. Sai-Anand et al., Solution processable CdSe/ZnS quantum dots light-emitting diodes using ZnO nanocrystal as electron transport layer. J. Nanosci. Nanotechnol. 15(9), 7416–7420 (2015). https://doi.org/10.1166/jnn.2015.10542
- J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu et al., Size tunable ZnO nanops to enhance electron injection in solution processed QLEDs. ACS Photon. 3(2), 215–222 (2016). https://doi.org/10.1021/acsphotonics.5b00267
- B.S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou et al., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 7(5), 407–412 (2013). https://doi.org/10.1038/nphoton.2013.70
- L. Qian, Y. Zheng, J. Xue, P.H. Holloway, Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photon. 5(9), 543–548 (2011). https://doi.org/10.1038/nphoton.2011.171
- S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata et al., Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J. Appl. Phys. 93(3), 1624–1630 (2003). https://doi.org/10.1063/1.1534627
- J.H. Jun, B. Park, K. Cho, S. Kim, Flexible TFTs based on solution-processed ZnO nanops. Nanotechnology 20(50), 505201 (2009). https://doi.org/10.1088/0957-4484/20/50/505201
- J. Huang, Z. Yin, Q. Zheng, Applications of ZnO in organic and hybrid solar cells. Energy Environ. Sci. 4(10), 3861–3877 (2011). https://doi.org/10.1088/0957-4484/20/50/505201
- K.W. Jeong, H.S. Kim, G.R. Yi, C.K. Kim, Enhancing the electroluminescenceof OLEDs by using ZnO nanop electron transport layers that exhibit the Auger electron effect. Mol. Cryst. Liquid Cryst. 663(1), 61–70 (2018). https://doi.org/10.1080/15421406.2018.1468099
- J. Song, O. Wang, H. Shen, Q. Lin, Z. Li et al., Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 29(33), 1808377 (2019). https://doi.org/10.1002/adfm.201808377
- Q. Wu, X. Gong, D. Zhao, Y.B. Zhao, F. Cao et al., Efficient tandem quantum-dot leds enabled by an inorganic semiconductor-metal-dielectric interconnecting layer stack. Adv. Mater. 34(4), 2108150 (2022). https://doi.org/10.1002/adma.202108150
- L. Kong, J. Wu, Y. Li, F. Cao, F. Wang et al., Light-emitting field-effect transistors with eqe over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Sci. Bull. 67(5), 529–536 (2022). https://doi.org/10.1016/j.scib.2021.12.013
- H. Wang, X. Gong, D. Zhao, Y.B. Zhao, S. Wang et al., A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4(9), 1977–1987 (2020). https://doi.org/10.1016/j.joule.2020.07.002
- H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11(8), 605–625 (1999). https://doi.org/10.1002/(SICI)1521-4095(199906)11:8%3c605::AID-ADMA605%3e3.0.CO;2-Q
- L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov et al., Oxygen vacancies: the origin of n-type conductivity in ZnO. Phys. Rev. B 93(23), 235305 (2016). https://doi.org/10.1103/PhysRevB.93.235305
- C. Casteleiro, H.L. Gomes, P. Stallinga, L. Bentes, R. Ayouchi et al., Study of trap states in zinc oxide (ZnO) thin films for electronic applications. J. Non-cryst. Solids 354(19–25), 2519–2522 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.059
- S. Chen, W. Cao, T. Liu, S.W. Tsang, Y. Yang et al., On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 10, 765 (2019). https://doi.org/10.1038/s41467-019-08749-2
- B.Y. Lin, W.C. Ding, C.H. Chen, Y.P. Kuo, J.H. Lee et al., Lifetime elongation of quantum-dot light-emitting diodes by inhibiting the degradation of hole transport layer. RSC Adv. 11(34), 20884–20891 (2021). https://doi.org/10.1039/D1RA03310G
- D.S. Chung, T. Davidson-Hall, H. Yu, F. Samaeifar, P. Chun et al., Significant enhancement in quantum-dot light emitting device stability via a ZnO: polyethylenimine mixture in the electron transport layer. Nanoscale Adv. 3(20), 5900–5907 (2021). https://doi.org/10.1039/D1NA00561H
- T. Davidson-Hall, H. Aziz, Significant enhancement in quantum dot light-emitting device stability via a cascading hole transport layer. ACS Appl. Mater. Interfaces 12(14), 16782–16791 (2020). https://doi.org/10.1021/acsami.9b23567
- X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao et al., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014). https://doi.org/10.1038/nature13829
- K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang et al., Polyethylenimine insulativity-dominant charge-injection balance for highly efficient inverted quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017). https://doi.org/10.1021/acsami.7b04662
- Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo et al., Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process. ACS Photon. 5(3), 939–946 (2018). https://doi.org/10.1021/acsphotonics.7b01195
- T. Davidson-Hall, H. Aziz, The role of polyethylenimine in enhancing the efficiency of quantum dot light-emitting devices. Nanoscale 10(5), 2623–2631 (2018). https://doi.org/10.1039/C7NR07683E
- W. Lee, B. Kim, Y. Choi, H. Chae, Polyethylenimine-ethoxylated dual interfacial layers for highly efficient and all-solution-processed inverted quantum dot light-emitting diodes. Opt. Express 28(23), 33971–33981 (2020). https://doi.org/10.1364/OE.406248
- D. Kim, Y. Fu, S. Kim, W. Lee, K.H. Lee et al., Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device. ACS Nano 11(2), 1982–1990 (2017). https://doi.org/10.1021/acsnano.6b08142
- Y.L. Shi, F. Liang, Y. Hu, M.P. Zhuo, X.D. Wang et al., High performance blue quantum dot light-emitting diodes employing polyethylenimine ethoxylated as the interfacial modifier. Nanoscale 9(39), 14792–14797 (2017). https://doi.org/10.1039/C7NR04542E
- Z. Zhang, Y. Ye, C. Pu, Y. Deng, X. Dai et al., High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 30(28), 1801387 (2018). https://doi.org/10.1002/adma.201801387
- Y.H. Won, O. Cho, T. Kim, D.Y. Chung, T. Kim et al., Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575(7784), 634–638 (2019). https://doi.org/10.1038/s41586-019-1771-5
- A. Alexandrov, M. Zvaigzne, D. Lypenko, I. Nabiev, P. Samokhvalov, Al-, Ga-, Mg-, or Li-doped zinc oxide nanops as electron transport layers for quantum dot light-emitting diodes. Sci. Rep. 10, 7496 (2020). https://doi.org/10.1038/s41598-020-64263-2
- Q. Zhang, X. Gu, Q. Zhang, J. Jiang, X. Jin et al., ZnMgO: ZnO composite films for fast electron transport and high charge balance in quantum dot light emitting diodes. Opt. Mater. Express 8(4), 909–918 (2018). https://doi.org/10.1364/OME.8.000909
- M. Chrzanowski, M. Kuchowicz, R. Szukiewicz, P. Sitarek, J. Misiewicz et al., Enhanced efficiency of quantum dot light-emitting diode by sol-gel derived Zn1-xMgxO electron transport layer. Org. Electron. 80, 105656 (2020). https://doi.org/10.1016/j.orgel.2020.105656
- H. Moon, W. Lee, J. Kim, D. Lee, S. Cha et al., Composition-tailored ZnMgO nanops for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 55(88), 13299–13302 (2019). https://doi.org/10.1039/C9CC06882A
- T. Lee, B.J. Kim, H. Lee, D. Hahm, W.K. Bae et al., Bright and stable quantum dot light-emitting diodes. Adv. Mater. 34(4), 2106276 (2022). https://doi.org/10.1002/adma.202106276
- Y.J. Choi, H.H. Park, A simple approach to the fabrication of fluorine-doped zinc oxide thin films by atomic layer deposition at low temperatures and an investigation into the growth mode. J. Mater. Chem. C 2(1), 98–108 (2014). https://doi.org/10.1039/C3TC31478B
- W. Han, S. Oh, C. Lee, J. Kim, H.H. Park, ZnO nanocrystal thin films for quantum-dot light-emitting devices. ACS Appl. Nano Mater. 3(8), 7535–7542 (2020). https://doi.org/10.1021/acsanm.0c01186
- Y.J. Choi, K.M. Kang, H.H. Park, Anion-controlled passivation effect of the atomic layer deposited ZnO films by F substitution to O-related defects on the electronic band structure for transparent contact layer of solar cell applications. Solar Energy Mater. Solar Cells 132, 403–409 (2015). https://doi.org/10.1016/j.solmat.2014.09.029
- E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis et al., Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells. J. Mater. Chem. A 4(30), 11844–11858 (2016). https://doi.org/10.1039/C6TA03594A
- Z. Ye, M. Wong, Characteristics of plasma-fluorinated zinc oxide thin-film transistors. IEEE Electron Dev. Lett. 33(8), 1147–1149 (2012). https://doi.org/10.1109/LED.2012.2201131
- J.S. Seo, J.H. Jeon, Y.H. Hwang, H. Park, M. Ryu et al., Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep. 3, 2085 (2013). https://doi.org/10.1038/srep02085
- R. Pandey, C.H. Wie, X. Lin, J.W. Lim, K.K. Kim et al., Fluorine doped zinc tin oxide multilayer transparent conducting oxides for organic photovoltaic solar cells. Solar Energy Mater. Solar Cells 134, 5–14 (2015). https://doi.org/10.1016/j.solmat.2014.11.021
- Y. Ammaih, B. Hartiti, A. Ridah, A. Lfakir, B.M. Soucase et al.: Effect of F-doping on structural, electrical, and optical properties of ZnO thin films for optoelectronic application. 2016 Int. Renew. Sustain. Energy Conf. (IRSEC), Marrakech, Morocco, 208–211 (2016). https://doi.org/10.1109/IRSEC.2016.7983904
- M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing (John Wiley & Sons, USA, 2005). https://doi.org/10.1002/0471724254
- G. Chen, J. Zhang, S. Yang, Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route. Electrochem. Commun. 10(1), 7–11 (2008). https://doi.org/10.1016/j.elecom.2007.10.006
- H.H. Kim, Y. Lee, Y.J. Lee, J. Jeong, Y. Yi et al., Realization of excitation wavelength independent blue emission of ZnO quantum dots with intrinsic defects. ACS Photon. 7(3), 723–734 (2020). https://doi.org/10.1021/acsphotonics.9b01587
- H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu et al., Blue luminescence of ZnO nanops based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20(4), 561–572 (2010). https://doi.org/10.1002/adfm.200901884
- Y. Xu, B. Bo, X. Gao, Z. Qiao, Passivation effect on ZnO films by SF6 plasma treatment. Crystals 9(5), 236 (2019). https://doi.org/10.3390/cryst9050236
- P. Rodnyi, I. Khodyuk, Optical and luminescence properties of zinc oxide. Opt. Spectros. 111(5), 776–785 (2011). https://doi.org/10.1134/S0030400X11120216
- S. Pramanik, S. Mukherjee, S. Dey, S. Mukherjee, S. Das et al., Cooperative effects of zinc interstitials and oxygen vacancies on violet-blue photoluminescence of ZnO nanops: UV radiation induced enhanced latent fingerprint detection. J. Lumin. 251, 119156 (2022). https://doi.org/10.1016/j.jlumin.2022.119156
- K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z.Z. Chowdhury, M. Johan et al., Influence of Mg doping on ZnO nanops for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13, 229 (2018). https://doi.org/10.1186/s11671-018-2643-x
- U. Würfel, D. Neher, A. Spies, S. Albrecht, Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Commun. 6, 6951 (2015). https://doi.org/10.1038/ncomms7951
- B. Anderson, R. Anderson, Fundamentals of Semiconductor Devices (McGraw-Hill Inc, USA, 2004)
- T. Davidson-Hall, H. Aziz, Perspective: toward highly stable electroluminescent quantum dot light-emitting devices in the visible range. Appl. Phys. Lett. 116(1), 010502 (2020). https://doi.org/10.1063/1.5134090
- Y. Deng, F. Peng, Y. Lu, X. Zhu, W. Jin et al., Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–501 (2022). https://doi.org/10.1038/s41566-022-00999-9
- L. Znaidi, Sol–gel-deposited ZnO thin films: a review. Mater. Sci. Eng. B 174(1–3), 18–30 (2010). https://doi.org/10.1016/j.mseb.2010.07.001
- Y. Chung, K.S. Kim, J.W. Jung, On the role of carboxylated polythiophene in defect passivation of CsPbI2Br surface for efficient and stable all-inorganic perovskite solar cells. Int. J. Energy Res. 46(5), 6012–6021 (2021). https://doi.org/10.1002/er.7540
- M. Mandoc, B.D. Boer, G. Paasch, P. Blom, Trap-limited electron transport in disordered semiconducting polymers. Phys. Rev. B 75(19), 193202 (2007). https://doi.org/10.1103/PhysRevB.75.193202
- Y. Caglar, M. Caglar, S. Ilican, F. Yakuphanoglu, Thermally stimulated current and space charge limited current mechanism in film of the gold/zinc oxide/gold type. Phys. B 392(1–2), 99–103 (2007). https://doi.org/10.1016/j.physb.2006.11.014
- S. Shendre, V.K. Sharma, C. Dang, H.V. Demir, Exciton dynamics in colloidal quantum-dot LEDs under active device operations. ACS Photon. 5(2), 480–486 (2018). https://doi.org/10.1021/acsphotonics.7b00984
- Y. Deng, X. Lin, W. Fang, D. Di, L. Wang et al., Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 11, 2309 (2020). https://doi.org/10.1038/s41467-020-15944-z
- J.D. Rinehart, A.M. Schimpf, A.L. Weaver, A.W. Cohn, D.R. Gamelin, Photochemical electronic doping of colloidal CdSe nanocrystals. J. Am. Chem. Soc. 135(50), 18782–18785 (2013). https://doi.org/10.1021/ja410825c
- P.P. Jha, P. Guyot-Sionnest, Trion decay in colloidal quantum dots. ACS Nano 3(4), 1011–1015 (2009). https://doi.org/10.1021/nn9001177
- D. Bozyigit, O. Yarema, V. Wood, Origins of low quantum efficiencies in quantum dot LEDs. Adv. Funct. Mater. 23(24), 3024–3029 (2013). https://doi.org/10.1002/adfm.201203191
- C.E. Rowland, K. Susumu, M.H. Stewart, E. Oh, A.J. Makinen et al., Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes. Nano Lett. 15(10), 6848–6854 (2015). https://doi.org/10.1021/acs.nanolett.5b02725
- B. Szafran, T. Chwiej, F.M. Peeters, S. Bednarek, J. Adamowski et al., Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots. Phys. Rev. B 71(20), 205316 (2005). https://doi.org/10.1103/PhysRevB.71.205316
- H. Lee, B.G. Jeong, W.K. Bae, D.C. Lee, J. Lim, Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat. Commun. 12, 5669 (2021). https://doi.org/10.1038/s41467-021-25955-z
- J. Lim, Y.S. Park, V.I. Klimov, Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17(1), 42–49 (2018). https://doi.org/10.1038/nmat5011
- N. Langton, D. Matthews, The dielectric constant of zinc oxide over a range of frequencies. British J. Appl. Phys. 9(11), 453 (1958). https://doi.org/10.1088/0508-3443/9/11/308
- J.C. Espínola, X.H. Contreras, Effect of dielectric constant on emission of CdSe quantum dots. J. Mater. Sci. Mater. Electron. 28(10), 7132–7138 (2017). https://doi.org/10.1007/s10854-017-6539-9
- M.P. Hughes, K.D. Rosenthal, N.A. Ran, M. Seifrid, G.C. Bazan et al., Determining the dielectric constants of organic photovoltaic materials using impedance spectroscopy. Adv. Funct. Mater. 28(32), 1801542 (2018). https://doi.org/10.1002/adfm.201801542
- W. Ji, Y. Tian, Q. Zeng, S. Qu, L. Zhang et al., Efficient quantum dot light-emitting diodes by controlling the carrier accumulation and exciton formation. ACS Appl. Mater. Interfaces 6(16), 14001–14007 (2014). https://doi.org/10.1021/am5033567
- Z. Wang, M. Helander, Z. Liu, M. Greiner, J. Qiu et al., Controlling carrier accumulation and exciton formation in organic light emitting diodes. Appl. Phys. Lett. 96(4), 10 (2010). https://doi.org/10.1063/1.3297884
References
J.W. Stouwdam, R.A.J. Janssen, Red, green, and blue quantum dot LEDs with solution processable ZnO nanocrystal electron injection layers. J. Mater. Chem. 18(16), 1889–1894 (2008). https://doi.org/10.1039/B800028J
N. Kirkwood, B. Singh, P. Mulvaney, Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer. Adv. Mater. Interfaces 3(22), 1600868 (2016). https://doi.org/10.1002/admi.201600868
B.H. Kang, J.S. Kim, J.S. Lee, S.W. Lee, G. Sai-Anand et al., Solution processable CdSe/ZnS quantum dots light-emitting diodes using ZnO nanocrystal as electron transport layer. J. Nanosci. Nanotechnol. 15(9), 7416–7420 (2015). https://doi.org/10.1166/jnn.2015.10542
J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu et al., Size tunable ZnO nanops to enhance electron injection in solution processed QLEDs. ACS Photon. 3(2), 215–222 (2016). https://doi.org/10.1021/acsphotonics.5b00267
B.S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou et al., High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 7(5), 407–412 (2013). https://doi.org/10.1038/nphoton.2013.70
L. Qian, Y. Zheng, J. Xue, P.H. Holloway, Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photon. 5(9), 543–548 (2011). https://doi.org/10.1038/nphoton.2011.171
S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata et al., Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. J. Appl. Phys. 93(3), 1624–1630 (2003). https://doi.org/10.1063/1.1534627
J.H. Jun, B. Park, K. Cho, S. Kim, Flexible TFTs based on solution-processed ZnO nanops. Nanotechnology 20(50), 505201 (2009). https://doi.org/10.1088/0957-4484/20/50/505201
J. Huang, Z. Yin, Q. Zheng, Applications of ZnO in organic and hybrid solar cells. Energy Environ. Sci. 4(10), 3861–3877 (2011). https://doi.org/10.1088/0957-4484/20/50/505201
K.W. Jeong, H.S. Kim, G.R. Yi, C.K. Kim, Enhancing the electroluminescenceof OLEDs by using ZnO nanop electron transport layers that exhibit the Auger electron effect. Mol. Cryst. Liquid Cryst. 663(1), 61–70 (2018). https://doi.org/10.1080/15421406.2018.1468099
J. Song, O. Wang, H. Shen, Q. Lin, Z. Li et al., Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer. Adv. Funct. Mater. 29(33), 1808377 (2019). https://doi.org/10.1002/adfm.201808377
Q. Wu, X. Gong, D. Zhao, Y.B. Zhao, F. Cao et al., Efficient tandem quantum-dot leds enabled by an inorganic semiconductor-metal-dielectric interconnecting layer stack. Adv. Mater. 34(4), 2108150 (2022). https://doi.org/10.1002/adma.202108150
L. Kong, J. Wu, Y. Li, F. Cao, F. Wang et al., Light-emitting field-effect transistors with eqe over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Sci. Bull. 67(5), 529–536 (2022). https://doi.org/10.1016/j.scib.2021.12.013
H. Wang, X. Gong, D. Zhao, Y.B. Zhao, S. Wang et al., A multi-functional molecular modifier enabling efficient large-area perovskite light-emitting diodes. Joule 4(9), 1977–1987 (2020). https://doi.org/10.1016/j.joule.2020.07.002
H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11(8), 605–625 (1999). https://doi.org/10.1002/(SICI)1521-4095(199906)11:8%3c605::AID-ADMA605%3e3.0.CO;2-Q
L. Liu, Z. Mei, A. Tang, A. Azarov, A. Kuznetsov et al., Oxygen vacancies: the origin of n-type conductivity in ZnO. Phys. Rev. B 93(23), 235305 (2016). https://doi.org/10.1103/PhysRevB.93.235305
C. Casteleiro, H.L. Gomes, P. Stallinga, L. Bentes, R. Ayouchi et al., Study of trap states in zinc oxide (ZnO) thin films for electronic applications. J. Non-cryst. Solids 354(19–25), 2519–2522 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.10.059
S. Chen, W. Cao, T. Liu, S.W. Tsang, Y. Yang et al., On the degradation mechanisms of quantum-dot light-emitting diodes. Nat. Commun. 10, 765 (2019). https://doi.org/10.1038/s41467-019-08749-2
B.Y. Lin, W.C. Ding, C.H. Chen, Y.P. Kuo, J.H. Lee et al., Lifetime elongation of quantum-dot light-emitting diodes by inhibiting the degradation of hole transport layer. RSC Adv. 11(34), 20884–20891 (2021). https://doi.org/10.1039/D1RA03310G
D.S. Chung, T. Davidson-Hall, H. Yu, F. Samaeifar, P. Chun et al., Significant enhancement in quantum-dot light emitting device stability via a ZnO: polyethylenimine mixture in the electron transport layer. Nanoscale Adv. 3(20), 5900–5907 (2021). https://doi.org/10.1039/D1NA00561H
T. Davidson-Hall, H. Aziz, Significant enhancement in quantum dot light-emitting device stability via a cascading hole transport layer. ACS Appl. Mater. Interfaces 12(14), 16782–16791 (2020). https://doi.org/10.1021/acsami.9b23567
X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao et al., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014). https://doi.org/10.1038/nature13829
K. Ding, H. Chen, L. Fan, B. Wang, Z. Huang et al., Polyethylenimine insulativity-dominant charge-injection balance for highly efficient inverted quantum dot light-emitting diodes. ACS Appl. Mater. Interfaces 9(23), 20231–20238 (2017). https://doi.org/10.1021/acsami.7b04662
Q. Lin, L. Wang, Z. Li, H. Shen, L. Guo et al., Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process. ACS Photon. 5(3), 939–946 (2018). https://doi.org/10.1021/acsphotonics.7b01195
T. Davidson-Hall, H. Aziz, The role of polyethylenimine in enhancing the efficiency of quantum dot light-emitting devices. Nanoscale 10(5), 2623–2631 (2018). https://doi.org/10.1039/C7NR07683E
W. Lee, B. Kim, Y. Choi, H. Chae, Polyethylenimine-ethoxylated dual interfacial layers for highly efficient and all-solution-processed inverted quantum dot light-emitting diodes. Opt. Express 28(23), 33971–33981 (2020). https://doi.org/10.1364/OE.406248
D. Kim, Y. Fu, S. Kim, W. Lee, K.H. Lee et al., Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device. ACS Nano 11(2), 1982–1990 (2017). https://doi.org/10.1021/acsnano.6b08142
Y.L. Shi, F. Liang, Y. Hu, M.P. Zhuo, X.D. Wang et al., High performance blue quantum dot light-emitting diodes employing polyethylenimine ethoxylated as the interfacial modifier. Nanoscale 9(39), 14792–14797 (2017). https://doi.org/10.1039/C7NR04542E
Z. Zhang, Y. Ye, C. Pu, Y. Deng, X. Dai et al., High-performance, solution-processed, and insulating-layer-free light-emitting diodes based on colloidal quantum dots. Adv. Mater. 30(28), 1801387 (2018). https://doi.org/10.1002/adma.201801387
Y.H. Won, O. Cho, T. Kim, D.Y. Chung, T. Kim et al., Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575(7784), 634–638 (2019). https://doi.org/10.1038/s41586-019-1771-5
A. Alexandrov, M. Zvaigzne, D. Lypenko, I. Nabiev, P. Samokhvalov, Al-, Ga-, Mg-, or Li-doped zinc oxide nanops as electron transport layers for quantum dot light-emitting diodes. Sci. Rep. 10, 7496 (2020). https://doi.org/10.1038/s41598-020-64263-2
Q. Zhang, X. Gu, Q. Zhang, J. Jiang, X. Jin et al., ZnMgO: ZnO composite films for fast electron transport and high charge balance in quantum dot light emitting diodes. Opt. Mater. Express 8(4), 909–918 (2018). https://doi.org/10.1364/OME.8.000909
M. Chrzanowski, M. Kuchowicz, R. Szukiewicz, P. Sitarek, J. Misiewicz et al., Enhanced efficiency of quantum dot light-emitting diode by sol-gel derived Zn1-xMgxO electron transport layer. Org. Electron. 80, 105656 (2020). https://doi.org/10.1016/j.orgel.2020.105656
H. Moon, W. Lee, J. Kim, D. Lee, S. Cha et al., Composition-tailored ZnMgO nanops for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 55(88), 13299–13302 (2019). https://doi.org/10.1039/C9CC06882A
T. Lee, B.J. Kim, H. Lee, D. Hahm, W.K. Bae et al., Bright and stable quantum dot light-emitting diodes. Adv. Mater. 34(4), 2106276 (2022). https://doi.org/10.1002/adma.202106276
Y.J. Choi, H.H. Park, A simple approach to the fabrication of fluorine-doped zinc oxide thin films by atomic layer deposition at low temperatures and an investigation into the growth mode. J. Mater. Chem. C 2(1), 98–108 (2014). https://doi.org/10.1039/C3TC31478B
W. Han, S. Oh, C. Lee, J. Kim, H.H. Park, ZnO nanocrystal thin films for quantum-dot light-emitting devices. ACS Appl. Nano Mater. 3(8), 7535–7542 (2020). https://doi.org/10.1021/acsanm.0c01186
Y.J. Choi, K.M. Kang, H.H. Park, Anion-controlled passivation effect of the atomic layer deposited ZnO films by F substitution to O-related defects on the electronic band structure for transparent contact layer of solar cell applications. Solar Energy Mater. Solar Cells 132, 403–409 (2015). https://doi.org/10.1016/j.solmat.2014.09.029
E. Polydorou, A. Zeniou, D. Tsikritzis, A. Soultati, I. Sakellis et al., Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells. J. Mater. Chem. A 4(30), 11844–11858 (2016). https://doi.org/10.1039/C6TA03594A
Z. Ye, M. Wong, Characteristics of plasma-fluorinated zinc oxide thin-film transistors. IEEE Electron Dev. Lett. 33(8), 1147–1149 (2012). https://doi.org/10.1109/LED.2012.2201131
J.S. Seo, J.H. Jeon, Y.H. Hwang, H. Park, M. Ryu et al., Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep. 3, 2085 (2013). https://doi.org/10.1038/srep02085
R. Pandey, C.H. Wie, X. Lin, J.W. Lim, K.K. Kim et al., Fluorine doped zinc tin oxide multilayer transparent conducting oxides for organic photovoltaic solar cells. Solar Energy Mater. Solar Cells 134, 5–14 (2015). https://doi.org/10.1016/j.solmat.2014.11.021
Y. Ammaih, B. Hartiti, A. Ridah, A. Lfakir, B.M. Soucase et al.: Effect of F-doping on structural, electrical, and optical properties of ZnO thin films for optoelectronic application. 2016 Int. Renew. Sustain. Energy Conf. (IRSEC), Marrakech, Morocco, 208–211 (2016). https://doi.org/10.1109/IRSEC.2016.7983904
M.A. Lieberman, A.J. Lichtenberg, Principles of plasma discharges and materials processing (John Wiley & Sons, USA, 2005). https://doi.org/10.1002/0471724254
G. Chen, J. Zhang, S. Yang, Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route. Electrochem. Commun. 10(1), 7–11 (2008). https://doi.org/10.1016/j.elecom.2007.10.006
H.H. Kim, Y. Lee, Y.J. Lee, J. Jeong, Y. Yi et al., Realization of excitation wavelength independent blue emission of ZnO quantum dots with intrinsic defects. ACS Photon. 7(3), 723–734 (2020). https://doi.org/10.1021/acsphotonics.9b01587
H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu et al., Blue luminescence of ZnO nanops based on non-equilibrium processes: defect origins and emission controls. Adv. Funct. Mater. 20(4), 561–572 (2010). https://doi.org/10.1002/adfm.200901884
Y. Xu, B. Bo, X. Gao, Z. Qiao, Passivation effect on ZnO films by SF6 plasma treatment. Crystals 9(5), 236 (2019). https://doi.org/10.3390/cryst9050236
P. Rodnyi, I. Khodyuk, Optical and luminescence properties of zinc oxide. Opt. Spectros. 111(5), 776–785 (2011). https://doi.org/10.1134/S0030400X11120216
S. Pramanik, S. Mukherjee, S. Dey, S. Mukherjee, S. Das et al., Cooperative effects of zinc interstitials and oxygen vacancies on violet-blue photoluminescence of ZnO nanops: UV radiation induced enhanced latent fingerprint detection. J. Lumin. 251, 119156 (2022). https://doi.org/10.1016/j.jlumin.2022.119156
K. Sadaiyandi, A. Kennedy, S. Sagadevan, Z.Z. Chowdhury, M. Johan et al., Influence of Mg doping on ZnO nanops for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13, 229 (2018). https://doi.org/10.1186/s11671-018-2643-x
U. Würfel, D. Neher, A. Spies, S. Albrecht, Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells. Nat. Commun. 6, 6951 (2015). https://doi.org/10.1038/ncomms7951
B. Anderson, R. Anderson, Fundamentals of Semiconductor Devices (McGraw-Hill Inc, USA, 2004)
T. Davidson-Hall, H. Aziz, Perspective: toward highly stable electroluminescent quantum dot light-emitting devices in the visible range. Appl. Phys. Lett. 116(1), 010502 (2020). https://doi.org/10.1063/1.5134090
Y. Deng, F. Peng, Y. Lu, X. Zhu, W. Jin et al., Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–501 (2022). https://doi.org/10.1038/s41566-022-00999-9
L. Znaidi, Sol–gel-deposited ZnO thin films: a review. Mater. Sci. Eng. B 174(1–3), 18–30 (2010). https://doi.org/10.1016/j.mseb.2010.07.001
Y. Chung, K.S. Kim, J.W. Jung, On the role of carboxylated polythiophene in defect passivation of CsPbI2Br surface for efficient and stable all-inorganic perovskite solar cells. Int. J. Energy Res. 46(5), 6012–6021 (2021). https://doi.org/10.1002/er.7540
M. Mandoc, B.D. Boer, G. Paasch, P. Blom, Trap-limited electron transport in disordered semiconducting polymers. Phys. Rev. B 75(19), 193202 (2007). https://doi.org/10.1103/PhysRevB.75.193202
Y. Caglar, M. Caglar, S. Ilican, F. Yakuphanoglu, Thermally stimulated current and space charge limited current mechanism in film of the gold/zinc oxide/gold type. Phys. B 392(1–2), 99–103 (2007). https://doi.org/10.1016/j.physb.2006.11.014
S. Shendre, V.K. Sharma, C. Dang, H.V. Demir, Exciton dynamics in colloidal quantum-dot LEDs under active device operations. ACS Photon. 5(2), 480–486 (2018). https://doi.org/10.1021/acsphotonics.7b00984
Y. Deng, X. Lin, W. Fang, D. Di, L. Wang et al., Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 11, 2309 (2020). https://doi.org/10.1038/s41467-020-15944-z
J.D. Rinehart, A.M. Schimpf, A.L. Weaver, A.W. Cohn, D.R. Gamelin, Photochemical electronic doping of colloidal CdSe nanocrystals. J. Am. Chem. Soc. 135(50), 18782–18785 (2013). https://doi.org/10.1021/ja410825c
P.P. Jha, P. Guyot-Sionnest, Trion decay in colloidal quantum dots. ACS Nano 3(4), 1011–1015 (2009). https://doi.org/10.1021/nn9001177
D. Bozyigit, O. Yarema, V. Wood, Origins of low quantum efficiencies in quantum dot LEDs. Adv. Funct. Mater. 23(24), 3024–3029 (2013). https://doi.org/10.1002/adfm.201203191
C.E. Rowland, K. Susumu, M.H. Stewart, E. Oh, A.J. Makinen et al., Electric field modulation of semiconductor quantum dot photoluminescence: insights into the design of robust voltage-sensitive cellular imaging probes. Nano Lett. 15(10), 6848–6854 (2015). https://doi.org/10.1021/acs.nanolett.5b02725
B. Szafran, T. Chwiej, F.M. Peeters, S. Bednarek, J. Adamowski et al., Exciton and negative trion dissociation by an external electric field in vertically coupled quantum dots. Phys. Rev. B 71(20), 205316 (2005). https://doi.org/10.1103/PhysRevB.71.205316
H. Lee, B.G. Jeong, W.K. Bae, D.C. Lee, J. Lim, Surface state-induced barrierless carrier injection in quantum dot electroluminescent devices. Nat. Commun. 12, 5669 (2021). https://doi.org/10.1038/s41467-021-25955-z
J. Lim, Y.S. Park, V.I. Klimov, Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17(1), 42–49 (2018). https://doi.org/10.1038/nmat5011
N. Langton, D. Matthews, The dielectric constant of zinc oxide over a range of frequencies. British J. Appl. Phys. 9(11), 453 (1958). https://doi.org/10.1088/0508-3443/9/11/308
J.C. Espínola, X.H. Contreras, Effect of dielectric constant on emission of CdSe quantum dots. J. Mater. Sci. Mater. Electron. 28(10), 7132–7138 (2017). https://doi.org/10.1007/s10854-017-6539-9
M.P. Hughes, K.D. Rosenthal, N.A. Ran, M. Seifrid, G.C. Bazan et al., Determining the dielectric constants of organic photovoltaic materials using impedance spectroscopy. Adv. Funct. Mater. 28(32), 1801542 (2018). https://doi.org/10.1002/adfm.201801542
W. Ji, Y. Tian, Q. Zeng, S. Qu, L. Zhang et al., Efficient quantum dot light-emitting diodes by controlling the carrier accumulation and exciton formation. ACS Appl. Mater. Interfaces 6(16), 14001–14007 (2014). https://doi.org/10.1021/am5033567
Z. Wang, M. Helander, Z. Liu, M. Greiner, J. Qiu et al., Controlling carrier accumulation and exciton formation in organic light emitting diodes. Appl. Phys. Lett. 96(4), 10 (2010). https://doi.org/10.1063/1.3297884