A Pair-Electrosynthesis for Formate at Ultra-Low Voltage Via Coupling of CO2 Reduction and Formaldehyde Oxidation
Corresponding Author: Yuqin Zou
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 211
Abstract
Formate can be synthesized electrochemically by CO2 reduction reaction (CO2RR) or formaldehyde oxidation reaction (FOR). The CO2RR approach suffers from kinetic-sluggish oxygen evolution reaction at the anode. To this end, an electrochemical system combining cathodic CO2RR with anodic FOR was developed, which enables the formate electrosynthesis at ultra-low voltage. Cathodic CO2RR employing the BiOCl electrode in H-cell exhibited formate Faradaic efficiency (FE) higher than 90% within a wide potential range from − 0.48 to − 1.32 VRHE. In flow cell, the current density of 100 mA cm−2 was achieved at − 0.67 VRHE. The anodic FOR using the Cu2O electrode displayed a low onset potential of − 0.13 VRHE and nearly 100% formate and H2 selectivity from 0.05 to 0.35 VRHE. The CO2RR and FOR were constructed in a flow cell through membrane electrode assembly for the electrosynthesis of formate, where the CO2RR//FOR delivered an enhanced current density of 100 mA cm−2 at 0.86 V. This work provides a promising pair-electrosynthesis of value-added chemicals with high FE and low energy consumption.
Highlights:
1 Pair electrosynthesis of formate was achieved by combining CO2 reduction reaction (CO2RR) and formaldehyde oxidation reaction (FOR) in the membrane electrode assembly.
2 Replacing oxygen evolution reaction with thermodynamically more favorable FOR reduces energy consumption.
3 CO2RR//FOR exhibits excellent electrochemical performance (100 mA cm−2 @ 0.86 V), electricity consumption normalized by the mass of formate was 0.413 Wh g−1.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Koh, D.H. Won, T. Eom, N.K. Kim, K.D. Jung et al., Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. ACS Catal. 7(8), 5071–5077 (2017). https://doi.org/10.1021/acscatal.7b00707
- Y. Dai, L. Niu, H. Liu, J. Zou, L. Yu et al., Cu-Ni alloy catalyzed electrochemical carboxylation of benzyl bromide with carbon dioxide in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Int. J. Electrochem. Sci. 13, 1084–1095 (2018). https://doi.org/10.20964/2018.01.85
- Y. Luo, C. Xia, R. Abulizi, Q. Feng, W. Liu et al., Electrocatalysis of CO2 reduction on nano silver cathode in ionic liquid BMIMBF4: synthesis of dimethylcarbonate. Int. J. Electrochem. Sci. 12, 4828–4834 (2017). https://doi.org/10.20964/2017.06.67
- Y. Zou, S. Wang, An investigation of active sites for electrochemical CO2 reduction reactions: from in situ characterization to rational design. Adv. Sci. 8(9), 2003579 (2021). https://doi.org/10.1002/advs.202003579
- J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
- D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
- N. Han, P. Ding, L. He, Y. Li, Y. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10(11), 1902338 (2020). https://doi.org/10.1002/aenm.201902338
- N. Han, Y. Wang, H. Yang, J. Deng, J. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
- S. Enthaler, J.V. Langermann, T. Schmidt, Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage? Energy Environ. Sci. 3(9), 1207–1217 (2010). https://doi.org/10.1039/b907569k
- M.E. Scofield, C. Koenigsmann, L. Wang, H. Liu, S.S. Wong, Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 8(1), 350–363 (2015). https://doi.org/10.1039/c4ee02162b
- B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen et al., Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem. Int. Ed. 56(13), 3645–3649 (2017). https://doi.org/10.1002/anie.201612194
- H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14, 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
- Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
- S. He, F. Ni, Y. Ji, L. Wang, Y. Wen et al., The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem. Int. Ed. 57(49), 16114–16119 (2018). https://doi.org/10.1002/anie.201810538
- F.P.G.D. Arquer, O.S. Bushuyev, P.D. Luna, C.T. Dinh, A. Seifitokaldani et al., 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 30(38), 1802858 (2018). https://doi.org/10.1002/adma.201802858
- Y. Zhang, F. Li, X. Zhang, T. Williams, C.D. Easton et al., Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J. Mater. Chem. A 6(11), 4714–4720 (2018). https://doi.org/10.1039/c8ta00023a
- J. Li, G. Liu, B. Liu, Z. Min, D. Qian et al., Fe-doped CoSe2 nanops encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 265(1), 577–585 (2018). https://doi.org/10.1016/j.electacta.2018.01.211
- X. Wei, Y. Li, L. Chen, J. Shi, Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem. Int. Ed. 60(6), 3148–3155 (2021). https://doi.org/10.1002/anie.202012066
- L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui et al., Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem. Int. Ed. 60(19), 10577–10582 (2021). https://doi.org/10.1002/anie.202100610
- C. Cao, D.D. Ma, J. Jia, Q. Xu, X.T. Wu et al., Divergent paths, same goal: a pair-electrosynthesis tactic for cost-efficient and exclusive formate production by metal-organic-framework-derived 2D electrocatalysts. Adv. Mater. 33(25), 2008631 (2021). https://doi.org/10.1002/adma.202008631
- Y. Wang, S. Gonell, U.R. Mathiyazhagan, Y. Liu, D. Wang et al., Simultaneous electrosynthesis of syngas and an aldehyde from CO2 and an alcohol by molecular electrocatalysis. ACS Appl. Energy Mater. 2(1), 97–101 (2019). https://doi.org/10.1021/acsaem.8b01616
- S. Verma, S. Lu, P.J.A. Kenis, Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4(6), 466–474 (2019). https://doi.org/10.1038/s41560-019-0374-6
- S. Choi, M. Balamurugan, K.G. Lee, K.H. Cho, S. Park et al., Mechanistic investigation of biomass oxidation using nickel oxide nanops in a CO2-saturated electrolyte for paired electrolysis. J. Phys. Chem. Lett. 11(8), 2941–2948 (2020). https://doi.org/10.1021/acs.jpclett.0c00425
- G. Bharath, K. Rambabu, A. Hai, N. Ponpandian, J.E. Schmidt et al., Dual-functional paired photoelectrocatalytic system for the photocathodic reduction of CO2 to fuels and the anodic oxidation of furfural to value-added chemicals. Appl. Catal. B Environ. 298, 120520 (2021). https://doi.org/10.1016/j.apcatb.2021.120520
- T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen et al., Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5(1), 66–73 (2022). https://doi.org/10.1038/s41929-021-00721-y
- T. Wang, Z. Huang, T. Liu, L. Tao, J. Tian et al., Transforming electrocatalytic biomass upgrading and hydrogen production from electricity input to electricity output. Angew. Chem. Int. Ed. 61(12), 202115636 (2022). https://doi.org/10.1002/anie.202115636
- H. Wang, D. Yong, S. Chen, S. Jiang, X. Zhang et al., Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 140(5), 1760–1766 (2018). https://doi.org/10.1021/jacs.7b10997
- P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen et al., Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10(1), 743–750 (2020). https://doi.org/10.1021/acscatal.9b04043
- C. Kim, K.M. Cho, K. Park, J.Y. Kim, G.T. Yun et al., Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Adv. Funct. Mater. 31(32), 2102142 (2021). https://doi.org/10.1002/adfm.202102142
- D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier et al., Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18(11), 1222–1227 (2019). https://doi.org/10.1038/s41563-019-0445-x
- S. Verma, B. Kim, H.R.M. Jhong, S. Ma, P.J.A. Kenis, A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. Chemsuschem 9(15), 1972–1979 (2016). https://doi.org/10.1002/cssc.201600394
- O.S. Bushuyev, P.D. Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2(5), 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
- D. Higgins, C. Hahn, C. Xiang, T.F. Jaramillo, A.Z. Weber, Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4(1), 317–324 (2019). https://doi.org/10.1021/acsenergylett.8b02035
- C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360(6390), 783–787 (2018). https://doi.org/10.1126/science.aas9100
- T.N. Nguyen, C.T. Dinh, Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 49(21), 7488–7504 (2020). https://doi.org/10.1039/D0CS00230E
- Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10, 5335 (2019). https://doi.org/10.1038/s41467-019-13375-z
- Y. Zhang, B. Zhou, Z. Wei, W. Zhou, D. Wang et al., Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production. Adv. Mater. 33(48), 2104791 (2021). https://doi.org/10.1002/adma.202104791
- Y. Zhang, B. Zhou, Z. Wei, W. Zhou, D. Wang et al., Concentrated ethanol electrosynthesis from CO2 via a porous hydrophobic adlayer. ACS Appl. Mater. Interfaces 14(3), 4155–4162 (2022). https://doi.org/10.1021/acsami.1c21386
- Z. Wang, Y. Zhou, C. Xia, W. Guo, B. You et al., Efficient electroconversion of carbon dioxide to formate by reconstructed amino-functionalized indium-organic framework electrocatalyst. Angew. Chem. Int. Ed. 60(35), 19107–19112 (2021). https://doi.org/10.1002/anie.202107523
- Y. Li, C. Huo, H. Wang, Z. Ye, P. Luo et al., Coupling CO2 reduction with CH3OH oxidation for efficient electrosynthesis of formate on hierarchical bifunctional CuSn alloy. Nano Energy 98, 107277 (2022). https://doi.org/10.1016/j.nanoen.2022.107277
References
J.H. Koh, D.H. Won, T. Eom, N.K. Kim, K.D. Jung et al., Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index planes of Bi dendrite catalyst. ACS Catal. 7(8), 5071–5077 (2017). https://doi.org/10.1021/acscatal.7b00707
Y. Dai, L. Niu, H. Liu, J. Zou, L. Yu et al., Cu-Ni alloy catalyzed electrochemical carboxylation of benzyl bromide with carbon dioxide in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Int. J. Electrochem. Sci. 13, 1084–1095 (2018). https://doi.org/10.20964/2018.01.85
Y. Luo, C. Xia, R. Abulizi, Q. Feng, W. Liu et al., Electrocatalysis of CO2 reduction on nano silver cathode in ionic liquid BMIMBF4: synthesis of dimethylcarbonate. Int. J. Electrochem. Sci. 12, 4828–4834 (2017). https://doi.org/10.20964/2017.06.67
Y. Zou, S. Wang, An investigation of active sites for electrochemical CO2 reduction reactions: from in situ characterization to rational design. Adv. Sci. 8(9), 2003579 (2021). https://doi.org/10.1002/advs.202003579
J. Li, S.U. Abbas, H. Wang, Z. Zhang, W. Hu, Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 13, 216 (2021). https://doi.org/10.1007/s40820-021-00738-9
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu, Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 13, 5 (2020). https://doi.org/10.1007/s40820-020-00538-7
N. Han, P. Ding, L. He, Y. Li, Y. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10(11), 1902338 (2020). https://doi.org/10.1002/aenm.201902338
N. Han, Y. Wang, H. Yang, J. Deng, J. Wu et al., Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 9, 1320 (2018). https://doi.org/10.1038/s41467-018-03712-z
S. Enthaler, J.V. Langermann, T. Schmidt, Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage? Energy Environ. Sci. 3(9), 1207–1217 (2010). https://doi.org/10.1039/b907569k
M.E. Scofield, C. Koenigsmann, L. Wang, H. Liu, S.S. Wong, Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 8(1), 350–363 (2015). https://doi.org/10.1039/c4ee02162b
B. Kumar, V. Atla, J.P. Brian, S. Kumari, T.Q. Nguyen et al., Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew. Chem. Int. Ed. 56(13), 3645–3649 (2017). https://doi.org/10.1002/anie.201612194
H.Q. Fu, J. Liu, N.M. Bedford, Y. Wang, J. Wright et al., Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 14, 121 (2022). https://doi.org/10.1007/s40820-022-00862-0
Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10, 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
S. He, F. Ni, Y. Ji, L. Wang, Y. Wen et al., The p-orbital delocalization of main-group metals to boost CO2 electroreduction. Angew. Chem. Int. Ed. 57(49), 16114–16119 (2018). https://doi.org/10.1002/anie.201810538
F.P.G.D. Arquer, O.S. Bushuyev, P.D. Luna, C.T. Dinh, A. Seifitokaldani et al., 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction. Adv. Mater. 30(38), 1802858 (2018). https://doi.org/10.1002/adma.201802858
Y. Zhang, F. Li, X. Zhang, T. Williams, C.D. Easton et al., Electrochemical reduction of CO2 on defect-rich Bi derived from Bi2S3 with enhanced formate selectivity. J. Mater. Chem. A 6(11), 4714–4720 (2018). https://doi.org/10.1039/c8ta00023a
J. Li, G. Liu, B. Liu, Z. Min, D. Qian et al., Fe-doped CoSe2 nanops encapsulated in N-doped bamboo-like carbon nanotubes as an efficient electrocatalyst for oxygen evolution reaction. Electrochim. Acta 265(1), 577–585 (2018). https://doi.org/10.1016/j.electacta.2018.01.211
X. Wei, Y. Li, L. Chen, J. Shi, Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem. Int. Ed. 60(6), 3148–3155 (2021). https://doi.org/10.1002/anie.202012066
L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui et al., Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem. Int. Ed. 60(19), 10577–10582 (2021). https://doi.org/10.1002/anie.202100610
C. Cao, D.D. Ma, J. Jia, Q. Xu, X.T. Wu et al., Divergent paths, same goal: a pair-electrosynthesis tactic for cost-efficient and exclusive formate production by metal-organic-framework-derived 2D electrocatalysts. Adv. Mater. 33(25), 2008631 (2021). https://doi.org/10.1002/adma.202008631
Y. Wang, S. Gonell, U.R. Mathiyazhagan, Y. Liu, D. Wang et al., Simultaneous electrosynthesis of syngas and an aldehyde from CO2 and an alcohol by molecular electrocatalysis. ACS Appl. Energy Mater. 2(1), 97–101 (2019). https://doi.org/10.1021/acsaem.8b01616
S. Verma, S. Lu, P.J.A. Kenis, Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4(6), 466–474 (2019). https://doi.org/10.1038/s41560-019-0374-6
S. Choi, M. Balamurugan, K.G. Lee, K.H. Cho, S. Park et al., Mechanistic investigation of biomass oxidation using nickel oxide nanops in a CO2-saturated electrolyte for paired electrolysis. J. Phys. Chem. Lett. 11(8), 2941–2948 (2020). https://doi.org/10.1021/acs.jpclett.0c00425
G. Bharath, K. Rambabu, A. Hai, N. Ponpandian, J.E. Schmidt et al., Dual-functional paired photoelectrocatalytic system for the photocathodic reduction of CO2 to fuels and the anodic oxidation of furfural to value-added chemicals. Appl. Catal. B Environ. 298, 120520 (2021). https://doi.org/10.1016/j.apcatb.2021.120520
T. Wang, L. Tao, X. Zhu, C. Chen, W. Chen et al., Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 5(1), 66–73 (2022). https://doi.org/10.1038/s41929-021-00721-y
T. Wang, Z. Huang, T. Liu, L. Tao, J. Tian et al., Transforming electrocatalytic biomass upgrading and hydrogen production from electricity input to electricity output. Angew. Chem. Int. Ed. 61(12), 202115636 (2022). https://doi.org/10.1002/anie.202115636
H. Wang, D. Yong, S. Chen, S. Jiang, X. Zhang et al., Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 140(5), 1760–1766 (2018). https://doi.org/10.1021/jacs.7b10997
P. Deng, H. Wang, R. Qi, J. Zhu, S. Chen et al., Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10(1), 743–750 (2020). https://doi.org/10.1021/acscatal.9b04043
C. Kim, K.M. Cho, K. Park, J.Y. Kim, G.T. Yun et al., Cu/Cu2O interconnected porous aerogel catalyst for highly productive electrosynthesis of ethanol from CO2. Adv. Funct. Mater. 31(32), 2102142 (2021). https://doi.org/10.1002/adfm.202102142
D. Wakerley, S. Lamaison, F. Ozanam, N. Menguy, D. Mercier et al., Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 18(11), 1222–1227 (2019). https://doi.org/10.1038/s41563-019-0445-x
S. Verma, B. Kim, H.R.M. Jhong, S. Ma, P.J.A. Kenis, A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. Chemsuschem 9(15), 1972–1979 (2016). https://doi.org/10.1002/cssc.201600394
O.S. Bushuyev, P.D. Luna, C.T. Dinh, L. Tao, G. Saur et al., What should we make with CO2 and how can we make it? Joule 2(5), 825–832 (2018). https://doi.org/10.1016/j.joule.2017.09.003
D. Higgins, C. Hahn, C. Xiang, T.F. Jaramillo, A.Z. Weber, Gas-diffusion electrodes for carbon dioxide reduction: a new paradigm. ACS Energy Lett. 4(1), 317–324 (2019). https://doi.org/10.1021/acsenergylett.8b02035
C.T. Dinh, T. Burdyny, M.G. Kibria, A. Seifitokaldani, C.M. Gabardo et al., CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360(6390), 783–787 (2018). https://doi.org/10.1126/science.aas9100
T.N. Nguyen, C.T. Dinh, Gas diffusion electrode design for electrochemical carbon dioxide reduction. Chem. Soc. Rev. 49(21), 7488–7504 (2020). https://doi.org/10.1039/D0CS00230E
Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 10, 5335 (2019). https://doi.org/10.1038/s41467-019-13375-z
Y. Zhang, B. Zhou, Z. Wei, W. Zhou, D. Wang et al., Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production. Adv. Mater. 33(48), 2104791 (2021). https://doi.org/10.1002/adma.202104791
Y. Zhang, B. Zhou, Z. Wei, W. Zhou, D. Wang et al., Concentrated ethanol electrosynthesis from CO2 via a porous hydrophobic adlayer. ACS Appl. Mater. Interfaces 14(3), 4155–4162 (2022). https://doi.org/10.1021/acsami.1c21386
Z. Wang, Y. Zhou, C. Xia, W. Guo, B. You et al., Efficient electroconversion of carbon dioxide to formate by reconstructed amino-functionalized indium-organic framework electrocatalyst. Angew. Chem. Int. Ed. 60(35), 19107–19112 (2021). https://doi.org/10.1002/anie.202107523
Y. Li, C. Huo, H. Wang, Z. Ye, P. Luo et al., Coupling CO2 reduction with CH3OH oxidation for efficient electrosynthesis of formate on hierarchical bifunctional CuSn alloy. Nano Energy 98, 107277 (2022). https://doi.org/10.1016/j.nanoen.2022.107277