Progress of Materials and Devices for Neuromorphic Vision Sensors
Corresponding Author: Sung Kyu Park
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 203
Abstract
The latest developments in bio-inspired neuromorphic vision sensors can be summarized in 3 keywords: smaller, faster, and smarter. (1) Smaller: Devices are becoming more compact by integrating previously separated components such as sensors, memory, and processing units. As a prime example, the transition from traditional sensory vision computing to in-sensor vision computing has shown clear benefits, such as simpler circuitry, lower power consumption, and less data redundancy. (2) Swifter: Owing to the nature of physics, smaller and more integrated devices can detect, process, and react to input more quickly. In addition, the methods for sensing and processing optical information using various materials (such as oxide semiconductors) are evolving. (3) Smarter: Owing to these two main research directions, we can expect advanced applications such as adaptive vision sensors, collision sensors, and nociceptive sensors. This review mainly focuses on the recent progress, working mechanisms, image pre-processing techniques, and advanced features of two types of neuromorphic vision sensors based on near-sensor and in-sensor vision computing methodologies.
Highlights:
1 The neuromorphic vision sensors for near-sensor and in-sensor computing of visual information are implemented using optoelectronic synaptic circuits and single-device optoelectronic synapses, respectively.
2 This review focuses on the recent progress, working mechanisms, and image pre-processing techniques about two types of neuromorphic vision sensors based on near-sensor and in-sensor vision computing methodologies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
- F. Liao, F. Zhou, Y. Chai, Neuromorphic vision sensors: principle, progress and perspectives. J. Semicond. 42, 013105 (2021). https://doi.org/10.1088/1674-4926/42/1/013105
- Y. Chai, In-sensor computing for machine vision. Nature 579, 32–33 (2020). https://doi.org/10.1038/d41586-020-00592-6
- T. Wan, S. Ma, F. Liao, L. Fan, Y. Chai, Neuromorphic sensory computing. Sci. China Inf. Sci. 65, 141401 (2022). https://doi.org/10.1007/s11432-021-3336-8
- C.D. Schuman, S.R. Kulkarni, M. Parsa, J.P. Mitchell, P. Date et al., Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022). https://doi.org/10.1038/s43588-021-00184-y
- M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
- W. Chen, Z. Zhang, G. Liu, Retinomorphic optoelectronic devices for intelligent machine vision. iScience 25, 103729 (2022). https://doi.org/10.1016/j.isci.2021.103729
- M.S. Kim, M.S. Kim, G.J. Lee, S.H. Sunwoo, S. Chang et al., Bio-inspired artificial vision and neuromorphic image processing devices. Adv. Mater. Technol. 7(2), 2100144 (2022). https://doi.org/10.1002/admt.202100144
- W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu et al., Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020). https://doi.org/10.1038/s41928-020-0435-7
- S. Choi, J. Yang, G. Wang, Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 32(51), 2004659 (2020). https://doi.org/10.1002/adma.202004659
- S. Chen, Z. Lou, D. Chen, G. Shen, An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 30(7), 1705400 (2018). https://doi.org/10.1002/adma.201705400
- M. Kumar, H. Seo, Mimicking melanopsin behavior with integrated photoregulated memory. Adv. Opt. Mater. 9(24), 2101372 (2021). https://doi.org/10.1002/adom.202101372
- S. Seo, S.H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
- H. Wang, Q. Zhao, Z. Ni, Q. Li, H. Liu et al., A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 30(46), 1803961 (2018). https://doi.org/10.1002/adma.201803961
- J. Zhu, T. Zhang, Y. Yang, R. Huang, A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7(1), 011312 (2020). https://doi.org/10.1063/1.5118217
- S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
- X. Li, Y. Liu, J. Zhang, F. Wu, M. Hu et al., Flexible artificial synapses based on field effect transistors: from materials, mechanics towards applications. Adv. Intell. Syst. (2022). https://doi.org/10.1002/aisy.202200015
- Y. He, L. Zhu, Y. Zhu, C. Chen, S. Jiang et al., Recent progress on emerging transistor-based neuromorphic devices. Adv. Intell. Syst. 3(7), 2000210 (2021). https://doi.org/10.1002/aisy.202000210
- C.S. Yang, D.S. Shang, N. Liu, G. Shi, X. Shen et al., A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29(27), 1700906 (2017). https://doi.org/10.1002/adma.201700906
- S. Oh, J.I. Cho, B.H. Lee, S. Seo, J.H. Lee et al., Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 7(44), eabg9450 (2021). https://doi.org/10.1126/sciadv.abg9450
- F. Yu, L.Q. Zhu, H. Xiao, W.T. Gao, Y.B. Guo, Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Adv. Funct. Mater. 28(44), 1804025 (2018). https://doi.org/10.1002/adfm.201804025
- W. Xu, S. Min, H. Hwang, T. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2(6), e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
- D. Seo, Y. Lee, G. Go, M. Pei, S. Jung et al., Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuroprosthetics. Nano Energy 65, 104035 (2019). https://doi.org/10.1016/j.nanoen.2019.104035
- J. Yu, C. Lee, D. Kim, H. Park, J. Han et al., All-solid-state ion synaptic transistor for wafer-scale integration with electrolyte of a nanoscale thickness. Adv. Funct. Mater. 31(23), 2010971 (2021). https://doi.org/10.1002/adfm.202010971
- C.S. Yang, D.S. Shang, N. Liu, E.J. Fuller, S. Agrawal et al., All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 28(42), 1804170 (2018). https://doi.org/10.1002/adfm.201804170
- L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014). https://doi.org/10.1038/ncomms4158
- Y. Li, J. Lu, D. Shang, Q. Liu, S. Wu et al., Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Adv. Mater. 32(47), 2003018 (2020). https://doi.org/10.1002/adma.202003018
- S.T. Han, Y. Zhou, V.A.L. Roy, Towards the development of flexible non-volatile memories. Adv. Mater. 25(38), 5425–5449 (2013). https://doi.org/10.1002/adma.201301361
- I. Chakraborty, A. Jaiswal, A.K. Saha, S.K. Gupta, K. Roy, Pathways to efficient neuromorphic computing with non-volatile memory technologies. Phys. Rev. 7(2), 021308 (2020). https://doi.org/10.1063/1.5113536
- J. Kim, Y. Kim, O. Kwon, T. Kim, S. Oh et al., Modulation of synaptic plasticity mimicked in AI nanop-embedded IGZO synaptic transistor. Adv. Electron. Mater. 6(4), 1901072 (2020). https://doi.org/10.1002/aelm.201901072
- B. Lyu, Y. Choi, H. Jing, C. Qian, H. Kang et al., 2D MXene–TiO2 core–shell nanosheets as a data-storage medium in memory devices. Adv. Mater. 32(17), 1907633 (2020). https://doi.org/10.1002/adma.201907633
- X. Niu, B. Tian, Q. Zhu, B. Dkhil, C. Duan, Ferroelectric polymers for neuromorphic computing. Appl. Phys. Rev. 9(2), 021309 (2022). https://doi.org/10.1063/5.0073085
- M. Lederer, T. Kämpfe, T. Ali, F. Müller, R. Olivo et al., Ferroelectric field effect transistors as a synapse for neuromorphic application. IEEE Trans. Electron Devices 68, 2295–2300 (2021). https://doi.org/10.1109/TED.2021.3068716
- M.K. Kim, J.S. Lee, Ferroelectric analog synaptic transistors. Nano Lett. 19, 2044–2050 (2019). https://doi.org/10.1021/acs.nanolett.9b00180
- S. Kim, K. Heo, S. Lee, S. Seo, H. Kim et al., Ferroelectric polymer-based artificial synapse for neuromorphic computing. Nanoscale Horiz. 6, 139–147 (2021). https://doi.org/10.1039/D0NH00559B
- W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13, 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
- K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
- Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017). https://doi.org/10.1038/nmat4756
- A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa et al., Controlling the synaptic plasticity of a Cu2S gap-type atomic switch. Adv. Funct. Mater. 22(17), 3606–3613 (2012). https://doi.org/10.1002/adfm.201200640
- W. Chen, R. Fang, M.B. Balaban, W. Yu, Y. Gonzalez-Velo et al., A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells. Nanotechnology 27, 255202 (2016). https://doi.org/10.1088/0957-4484/27/25/255202
- S.G. Kim, Q.V. Le, J.S. Han, H. Kim, M.J. Choi et al., Dual-phase all-inorganic cesium halide perovskites for conducting-bridge memory-based artificial synapses. Adv. Funct. Mater. 29(49), 1906686 (2019). https://doi.org/10.1002/adfm.201906686
- T.Y. Wang, J.L. Meng, M.Y. Rao, Z.Y. He, L. Chen et al., Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 20, 4111–4120 (2020). https://doi.org/10.1021/acs.nanolett.9b05271
- M. Xiao, D. Shen, K.P. Musselman, W.W. Duley, Y.N. Zhou, Oxygen vacancy migration/diffusion induced synaptic plasticity in a single titanate nanobelt. Nanoscale 10, 6069–6079 (2018). https://doi.org/10.1039/C7NR09335G
- R.A. John, N. Yantara, Y.F. Ng, G. Narasimman, E. Mosconi et al., Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv. Mater. 30(51), 1805454 (2018). https://doi.org/10.1002/adma.201805454
- J.Y. Mao, Z. Zheng, Z.Y. Xiong, P. Huang, G.L. Ding et al., Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 71, 104616 (2020). https://doi.org/10.1016/j.nanoen.2020.104616
- H.S.P. Wong, H.Y. Lee, S. Yu, Y.S. Chen, Y. Wu et al., Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012). https://doi.org/10.1109/JPROC.2012.2190369
- A. Saleem, D. Kumar, A. Singh, S. Rajasekaran, T.Y. Tseng, Oxygen vacancy transition in HfOx -based flexible, robust, and synaptic Bi-layer memristor for neuromorphic and wearable applications. Adv. Mater. Technol. 7(7), 2101208 (2021). https://doi.org/10.1002/admt.202101208
- Y. Li, K.W. Ang, Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv. Intell. Syst. 3(1), 2000137 (2021). https://doi.org/10.1002/aisy.202000137
- Y. Xue, S. Yan, S. Lv, S. Song, Z. Song, Ta-doped Sb2Te allows ultrafast phase-change memory with excellent high-temperature operation characteristics. Nano-Micro Lett. 13, 33 (2021). https://doi.org/10.1007/s40820-020-00557-4
- X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
- C. Choi, J. Leem, M.S. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
- L. Zhao, Z. Fan, S. Cheng, L. Hong, Y. Li et al., An artificial optoelectronic synapse based on a photoelectric memcapacitor. Adv. Electron. Mater. 6(2), 1900858 (2019). https://doi.org/10.1002/aelm.201900858
- X. Huang, Q. Li, W. Shi, K. Liu, Y. Zhang et al., Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small 17(36), 2102820 (2021). https://doi.org/10.1002/smll.202102820
- F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3
- Q.B. Zhu, B. Li, D.D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.1038/s41467-021-22047-w
- C. Jo, J. Kim, J.Y. Kwak, S.M. Kwon, J.B. Park et al., Retina-inspired color-cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays. Adv. Mater. 34(12), 2108979 (2022). https://doi.org/10.1002/adma.202108979
- Y. Wang, L. Yin, W. Huang, Y. Li, S. Huang et al., Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 3(1), 2000099 (2021). https://doi.org/10.1002/aisy.202000099
- H. Han, H. Yu, H. Wei, J. Gong, W. Xu, Recent progress in three-terminal artificial synapses: from device to system. Small 15(32), 1900695 (2019). https://doi.org/10.1002/smll.201900695
- S.W. Cho, S.M. Kwon, Y.H. Kim, S.K. Park, Recent progress in transistor-based optoelectronic synapses: from neuromorphic computing to artificial sensory system. Adv. Intell. Syst. 3(6), 2000162 (2021). https://doi.org/10.1002/aisy.202000162
- Q. Shi, D. Liu, D. Hao, J. Zhang, L. Tian et al., Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy 87, 106197 (2021). https://doi.org/10.1016/j.nanoen.2021.106197
- Q. Liu, L. Yin, C. Zhao, Z. Wu, J. Wang, X. Yu et al., All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy 97, 107171 (2022). https://doi.org/10.1016/j.nanoen.2022.107171
- S.W. Cho, S.M. Kwon, M. Lee, J.W. Jo, J.S. Heo et al., Multi-spectral gate-triggered heterogeneous photonic neuro-transistors for power-efficient brain-inspired neuromorphic computing. Nano Energy 66, 104097 (2019). https://doi.org/10.1016/j.nanoen.2019.104097
- J. Zhang, T. Sun, S. Zeng, D. Hao, B. Yang et al., Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy 95, 106987 (2022). https://doi.org/10.1016/j.nanoen.2022.106987
- T. Ahmed, M. Tahir, M.X. Low, Y. Ren, S.A. Tawfik et al., Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater. 33(10), 2004207 (2020). https://doi.org/10.1002/adma.202004207
- Q. Shi, D. Liu, S. Dai, J. Huang, A wavelength-tunable multi-functional transistor with visible-light detection and inverse photomemory for logic gate and retina emulation. Adv. Opt. Mater. 9(20), 2100654 (2021). https://doi.org/10.1002/adom.202100654
- S.M. Kwon, J.Y. Kwak, S. Song, J. Kim, C. Jo et al., Large-area pixelized optoelectronic neuromorphic devices with multispectral light-modulated bidirectional synaptic circuits. Adv. Mater. 33(45), 2105017 (2021). https://doi.org/10.1002/adma.202105017
- Y. Yu, Q. Ma, H. Ling, W. Li, R. Ju et al., Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv. Funct. Mater. 29(50), 1904602 (2019). https://doi.org/10.1002/adfm.201904602
- T. Zhao, C. Zhao, W. Xu, Y. Liu, H. Gao et al., Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate. Adv. Funct. Mater. 31(45), 2106000 (2021). https://doi.org/10.1002/adfm.202106000
- J. Sun, S. Oh, Y. Choi, S. Seo, M.J. Oh et al., Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 28(47), 1804397 (2018). https://doi.org/10.1002/adfm.201804397
- Y.C. Chiang, C.C. Hung, Y.C. Lin, Y.C. Chiu, T. Isono et al., High-performance nonvolatile organic photonic transistor memory devices using conjugated rod–coil materials as a floating gate. Adv. Mater. 32(36), 2002638 (2020). https://doi.org/10.1002/adma.202002638
- Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
- J.L. Meng, T.Y. Wang, L. Chen, Q.Q. Sun, H. Zhu et al., Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 83, 105815 (2021). https://doi.org/10.1016/j.nanoen.2021.105815
- H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28(3), 403–433 (2016). https://doi.org/10.1002/adma.201503534
- N. Huo, G. Konstantatos, Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 30(51), 1801164 (2018). https://doi.org/10.1002/adma.201801164
- S. Jeon, I. Song, S. Lee, B. Ryu, S.E. Ahn et al., Origin of high photoconductive gain in fully transparent heterojunction nanocrystalline oxide image sensors and interconnects. Adv. Mater. 26(41), 7102–7109 (2014). https://doi.org/10.1002/adma.201401955
- S.E. Ahn, I. Song, S. Jeon, Y.W. Jeon, Y. Kim et al., Metal oxide thin film phototransistor for remote touch interactive displays. Adv. Mater. 24(19), 2631–2636 (2012). https://doi.org/10.1002/adma.201200293
- M. Lee, W. Lee, S. Choi, J.W. Jo, J. Kim et al., Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 29(28), 1700951 (2017). https://doi.org/10.1002/adma.201700951
- S. Jeon, S.E. Ahn, I. Song, C.J. Kim, U.I. Chung et al., Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 11, 301–305 (2012). https://doi.org/10.1038/nmat3256
- M.G. Yun, Y.K. Kim, C.H. Ahn, S.W. Cho, W.J. Kang et al., Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process. Sci. Rep. 6, 31991 (2016). https://doi.org/10.1038/srep31991
- N. Duan, Y. Li, H.C. Chiang, J. Chen, W.Q. Pan et al., An electro-photo-sensitive synaptic transistor for edge neuromorphic visual systems. Nanoscale 11, 17590–17599 (2019). https://doi.org/10.1039/C9NR04195H
- M. Kim, J. Lee, Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv. Mater. 32(12), 1907826 (2020). https://doi.org/10.1002/adma.201907826
- A. Bera, H. Peng, J. Lourembam, Y. Shen, X.W. Sun et al., A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Adv. Funct. Mater. 23(39), 4977–4984 (2013). https://doi.org/10.1002/adfm.201300509
- S.E. Ng, J. Yang, R.A. John, N. Mathews, Adaptive latent inhibition in associatively responsive optoelectronic synapse. Adv. Funct. Mater. 31(28), 2100807 (2021). https://doi.org/10.1002/adfm.202100807
- C. Yang, J. Qian, S. Jiang, H. Wang, Q. Wang et al., An optically modulated organic Schottky-barrier planar-diode-based artificial synapse. Adv. Opt. Mater. 8(13), 2000153 (2020). https://doi.org/10.1002/adom.202000153
- H. Tan, G. Liu, H. Yang, X. Yi, L. Pan et al., Light-gated memristor with integrated logic and memory functions. ACS Nano 11(11), 11298–11305 (2017). https://doi.org/10.1021/acsnano.7b05762
- S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13(2), 2634–2642 (2019). https://doi.org/10.1021/acsnano.9b00340
- L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7(20), eabg1455 (2021). https://doi.org/10.1126/sciadv.abg1455
- T.Y. Wang, J.L. Meng, Q.X. Li, Z.Y. He, H. Zhu et al., Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021). https://doi.org/10.1016/j.nanoen.2021.106291
- L. Hu, J. Yuan, Y. Ren, Y. Wang, J.Q. Yang et al., Phosphorene/ZnO nano-heterojunctions for broadband photonic nonvolatile memory applications. Adv. Mater. 30(30), 1801232 (2018). https://doi.org/10.1002/adma.201801232
- X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from cus quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2022). https://doi.org/10.1007/s40820-021-00740-1
- H. Lia, X. Jiangb, W. Yec, H. Zhangb, L. Zhoua et al., Fully photon modulated heterostructure for neuromorphic computing. Nano Energy 65, 104000 (2019). https://doi.org/10.1016/j.nanoen.2019.104000
- G.J. Lee, C. Choi, D.H. Kim, Y.M. Song, Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses. Adv. Funct. Mater. 28(24), 1705202 (2018). https://doi.org/10.1002/adfm.201705202
- Z. Jiang, Y. Jiang, N. Chen, X. Chen, Artificial visual electronics for closed-loop sensation/action systems. Adv. Intell. Syst. 3(9), 2100071 (2021). https://doi.org/10.1002/aisy.202100071
- Z. He, D. Ye, L. Liu, C.A. Di, D. Zhu, Advances in materials and devices for mimicking sensory adaptation. Mater. Horiz. 9, 147–163 (2022). https://doi.org/10.1039/D1MH01111A
- F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
- S.M. Kwon, S.W. Cho, M. Kim, J.S. Heo, Y.H. Kim et al., Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv. Mater. 31(52), 1906433 (2019). https://doi.org/10.1002/adma.201906433
- T.J. Lee, K.R. Yun, S.K. Kim, J.H. Kim, J. Jin et al., Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv. Mater. 33(51), 2105485 (2021). https://doi.org/10.1002/adma.202105485
- D. Xie, L. Wei, M. Xie, L. Jiang, J. Yang et al., Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv. Funct. Mater. 31(14), 2010655 (2021). https://doi.org/10.1002/adfm.202010655
- S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh et al., Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1−xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14(8), 9796–9806 (2020). https://doi.org/10.1021/acsnano.0c01689
- S.E. Ng, Y.B. Tay, T.Y.K. Ho, N. Ankit, Mathews, inorganic electrochromic transistors as environmentally adaptable photodetectors. Nano Energy 97, 107142 (2022). https://doi.org/10.1016/j.nanoen.2022.107142
- Z. He, H. Shen, D. Ye, L. Xiang, W. Zhao et al., An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4, 522–529 (2021). https://doi.org/10.1038/s41928-021-00615-8
- X. Geng, L. Hu, F. Zhuge, X. Wei, Retina-inspired two-terminal optoelectronic neuromorphic devices with light-tunable short-term plasticity for self-adjusting sensing. Adv. Intell. Syst. 4(6), 2200019 (2022). https://doi.org/10.1002/aisy.202200019
- J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22(1), 81–89 (2022). https://doi.org/10.1021/acs.nanolett.1c03240
- T. Wan, B. Shao, S. Ma, Y. Zhou, Q. Li et al., In-sensor computing: materials, devices, and integration technologies. Adv. Mater. (2022). https://doi.org/10.1002/adma.202203830
- C. Chen, Y. He, H. Mao, L. Zhu, X. Wang et al., A photoelectric spiking neuron for visual depth perception. Adv. Mater. 34(20), 2201895 (2022). https://doi.org/10.1002/adma.202201895
- R.A. John, J. Ko, M.R. Kulkarni, N. Tiwari, N.A. Chien et al., Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 13(32), 1701193 (2017). https://doi.org/10.1002/smll.201701193
- D. Jayachandran, A. Oberoi, A. Sebastian, T.H. Choudhury, B. Shankar et al., A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron 3, 646–655 (2020). https://doi.org/10.1038/s41928-020-00466-9
- Y. Wang, Y. Gong, S. Huang, X. Xing, Z. Lv et al., Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 12, 5979 (2021). https://doi.org/10.1038/s41467-021-26314-8
- M.K. Akbari, J. Hu, F. Verpoort, H. Lu, S. Zhuiykov, Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor. Nano-Micro Lett. 12, 83 (2020). https://doi.org/10.1007/s40820-020-00419-z
- G. Feng, J. Jiang, Y. Li, D. Xie, B. Tian et al., Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor. Adv. Funct. Mater. 31(36), 2104327 (2021). https://doi.org/10.1002/adfm.202104327
- G. Feng, J. Jiang, Y. Zhao, S. Wang, B. Liu et al., A Sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Adv. Mater. 32(6), 1906171 (2020). https://doi.org/10.1002/adma.201906171
- X. Deng, S.Q. Wang, Y.X. Liu, N. Zhong, Y.H. He et al., A flexible Mott synaptic transistor for nociceptor simulation and neuromorphic computing. Adv. Funct. Mater. 31(23), 2101099 (2021). https://doi.org/10.1002/adfm.202101099
- Y. Kim, Y.J. Kwon, D.E. Kwon, K.J. Yoon, J.H. Yoon et al., Nociceptive memristor. Adv. Mater. 30(8), 1704320 (2018). https://doi.org/10.1002/adma.201704320
- H. Wei, Y. Ni, L. Sun, H. Yu, J. Gong et al., Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy 81, 105648 (2021). https://doi.org/10.1016/j.nanoen.2020.105648
- L. Zhou, S.R. Zhang, J.Q. Yang, J.Y. Mao, Y. Ren et al., UV damage sensing nociceptive device for bionic application. Nanoscale 12, 1484–1494 (2020). https://doi.org/10.1039/C9NR08872E
- Y. Gong, X. Xing, Z. Lv, J. Chen, P. Xie et al., Ultrasensitive flexible memory phototransistor with detectivity of 1.8×1013 jones for artificial visual. Adv. Intell. Syst. 4(8), 2100257 (2022). https://doi.org/10.1002/aisy.202100257
- S. Li, H. Lyu, J. Li, Y. He, X. Gao et al., Multiterminal ionic synaptic transistor with artificial blink reflex function. IEEE Electron Device Lett. 42, 351–354 (2021). https://doi.org/10.1109/LED.2021.3051645
- M. Kumar, H.S. Kim, J. Kim, A highly transparent artificial photonic nociceptor. Adv. Mater. 31(19), 1900021 (2019). https://doi.org/10.1002/adma.201900021
- S. Ke, Y. He, L. Zhu, Z. Jiang, H. Mao et al., Indium-gallium-zinc-oxide based photoelectric neuromorphic transistors for modulable photoexcited corneal nociceptor emulation. Adv. Electron. Mater. 7(11), 2100487 (2021). https://doi.org/10.1002/aelm.202100487
- H.L. Park, H. Kim, D. Lim, H. Zhou, Y.H. Kim et al., Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 32(11), 1906899 (2020). https://doi.org/10.1002/adma.201906899
- B. Wang, Z. Cao, A review of impedance matching techniques in power line communications. Electronics 8, 1022 (2019). https://doi.org/10.3390/electronics8091022
- B. Couraud, R. Vauche, S.N. Daskalakis, D. Flynn, T. Deleruyelle et al., Internet of things: a review on theory based impedance matching techniques for energy efficient RF systems. J. Low Power Electron. Appl. 1, 16 (2021). https://doi.org/10.3390/jlpea11020016
References
F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
F. Liao, F. Zhou, Y. Chai, Neuromorphic vision sensors: principle, progress and perspectives. J. Semicond. 42, 013105 (2021). https://doi.org/10.1088/1674-4926/42/1/013105
Y. Chai, In-sensor computing for machine vision. Nature 579, 32–33 (2020). https://doi.org/10.1038/d41586-020-00592-6
T. Wan, S. Ma, F. Liao, L. Fan, Y. Chai, Neuromorphic sensory computing. Sci. China Inf. Sci. 65, 141401 (2022). https://doi.org/10.1007/s11432-021-3336-8
C.D. Schuman, S.R. Kulkarni, M. Parsa, J.P. Mitchell, P. Date et al., Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022). https://doi.org/10.1038/s43588-021-00184-y
M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
W. Chen, Z. Zhang, G. Liu, Retinomorphic optoelectronic devices for intelligent machine vision. iScience 25, 103729 (2022). https://doi.org/10.1016/j.isci.2021.103729
M.S. Kim, M.S. Kim, G.J. Lee, S.H. Sunwoo, S. Chang et al., Bio-inspired artificial vision and neuromorphic image processing devices. Adv. Mater. Technol. 7(2), 2100144 (2022). https://doi.org/10.1002/admt.202100144
W. Zhang, B. Gao, J. Tang, P. Yao, S. Yu et al., Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020). https://doi.org/10.1038/s41928-020-0435-7
S. Choi, J. Yang, G. Wang, Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 32(51), 2004659 (2020). https://doi.org/10.1002/adma.202004659
S. Chen, Z. Lou, D. Chen, G. Shen, An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 30(7), 1705400 (2018). https://doi.org/10.1002/adma.201705400
M. Kumar, H. Seo, Mimicking melanopsin behavior with integrated photoregulated memory. Adv. Opt. Mater. 9(24), 2101372 (2021). https://doi.org/10.1002/adom.202101372
S. Seo, S.H. Jo, S. Kim, J. Shim, S. Oh et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018). https://doi.org/10.1038/s41467-018-07572-5
H. Wang, Q. Zhao, Z. Ni, Q. Li, H. Liu et al., A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 30(46), 1803961 (2018). https://doi.org/10.1002/adma.201803961
J. Zhu, T. Zhang, Y. Yang, R. Huang, A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7(1), 011312 (2020). https://doi.org/10.1063/1.5118217
S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
X. Li, Y. Liu, J. Zhang, F. Wu, M. Hu et al., Flexible artificial synapses based on field effect transistors: from materials, mechanics towards applications. Adv. Intell. Syst. (2022). https://doi.org/10.1002/aisy.202200015
Y. He, L. Zhu, Y. Zhu, C. Chen, S. Jiang et al., Recent progress on emerging transistor-based neuromorphic devices. Adv. Intell. Syst. 3(7), 2000210 (2021). https://doi.org/10.1002/aisy.202000210
C.S. Yang, D.S. Shang, N. Liu, G. Shi, X. Shen et al., A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29(27), 1700906 (2017). https://doi.org/10.1002/adma.201700906
S. Oh, J.I. Cho, B.H. Lee, S. Seo, J.H. Lee et al., Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 7(44), eabg9450 (2021). https://doi.org/10.1126/sciadv.abg9450
F. Yu, L.Q. Zhu, H. Xiao, W.T. Gao, Y.B. Guo, Restickable oxide neuromorphic transistors with spike-timing-dependent plasticity and pavlovian associative learning activities. Adv. Funct. Mater. 28(44), 1804025 (2018). https://doi.org/10.1002/adfm.201804025
W. Xu, S. Min, H. Hwang, T. Lee, Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2(6), e1501326 (2016). https://doi.org/10.1126/sciadv.1501326
D. Seo, Y. Lee, G. Go, M. Pei, S. Jung et al., Versatile neuromorphic electronics by modulating synaptic decay of single organic synaptic transistor: from artificial neural networks to neuroprosthetics. Nano Energy 65, 104035 (2019). https://doi.org/10.1016/j.nanoen.2019.104035
J. Yu, C. Lee, D. Kim, H. Park, J. Han et al., All-solid-state ion synaptic transistor for wafer-scale integration with electrolyte of a nanoscale thickness. Adv. Funct. Mater. 31(23), 2010971 (2021). https://doi.org/10.1002/adfm.202010971
C.S. Yang, D.S. Shang, N. Liu, E.J. Fuller, S. Agrawal et al., All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater. 28(42), 1804170 (2018). https://doi.org/10.1002/adfm.201804170
L.Q. Zhu, C.J. Wan, L.Q. Guo, Y. Shi, Q. Wan, Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014). https://doi.org/10.1038/ncomms4158
Y. Li, J. Lu, D. Shang, Q. Liu, S. Wu et al., Oxide-based electrolyte-gated transistors for spatiotemporal information processing. Adv. Mater. 32(47), 2003018 (2020). https://doi.org/10.1002/adma.202003018
S.T. Han, Y. Zhou, V.A.L. Roy, Towards the development of flexible non-volatile memories. Adv. Mater. 25(38), 5425–5449 (2013). https://doi.org/10.1002/adma.201301361
I. Chakraborty, A. Jaiswal, A.K. Saha, S.K. Gupta, K. Roy, Pathways to efficient neuromorphic computing with non-volatile memory technologies. Phys. Rev. 7(2), 021308 (2020). https://doi.org/10.1063/1.5113536
J. Kim, Y. Kim, O. Kwon, T. Kim, S. Oh et al., Modulation of synaptic plasticity mimicked in AI nanop-embedded IGZO synaptic transistor. Adv. Electron. Mater. 6(4), 1901072 (2020). https://doi.org/10.1002/aelm.201901072
B. Lyu, Y. Choi, H. Jing, C. Qian, H. Kang et al., 2D MXene–TiO2 core–shell nanosheets as a data-storage medium in memory devices. Adv. Mater. 32(17), 1907633 (2020). https://doi.org/10.1002/adma.201907633
X. Niu, B. Tian, Q. Zhu, B. Dkhil, C. Duan, Ferroelectric polymers for neuromorphic computing. Appl. Phys. Rev. 9(2), 021309 (2022). https://doi.org/10.1063/5.0073085
M. Lederer, T. Kämpfe, T. Ali, F. Müller, R. Olivo et al., Ferroelectric field effect transistors as a synapse for neuromorphic application. IEEE Trans. Electron Devices 68, 2295–2300 (2021). https://doi.org/10.1109/TED.2021.3068716
M.K. Kim, J.S. Lee, Ferroelectric analog synaptic transistors. Nano Lett. 19, 2044–2050 (2019). https://doi.org/10.1021/acs.nanolett.9b00180
S. Kim, K. Heo, S. Lee, S. Seo, H. Kim et al., Ferroelectric polymer-based artificial synapse for neuromorphic computing. Nanoscale Horiz. 6, 139–147 (2021). https://doi.org/10.1039/D0NH00559B
W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13, 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
K.C. Kwon, J.H. Baek, K. Hong, S.Y. Kim, H.W. Jang, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14, 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16, 101–108 (2017). https://doi.org/10.1038/nmat4756
A. Nayak, T. Ohno, T. Tsuruoka, K. Terabe, T. Hasegawa et al., Controlling the synaptic plasticity of a Cu2S gap-type atomic switch. Adv. Funct. Mater. 22(17), 3606–3613 (2012). https://doi.org/10.1002/adfm.201200640
W. Chen, R. Fang, M.B. Balaban, W. Yu, Y. Gonzalez-Velo et al., A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells. Nanotechnology 27, 255202 (2016). https://doi.org/10.1088/0957-4484/27/25/255202
S.G. Kim, Q.V. Le, J.S. Han, H. Kim, M.J. Choi et al., Dual-phase all-inorganic cesium halide perovskites for conducting-bridge memory-based artificial synapses. Adv. Funct. Mater. 29(49), 1906686 (2019). https://doi.org/10.1002/adfm.201906686
T.Y. Wang, J.L. Meng, M.Y. Rao, Z.Y. He, L. Chen et al., Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 20, 4111–4120 (2020). https://doi.org/10.1021/acs.nanolett.9b05271
M. Xiao, D. Shen, K.P. Musselman, W.W. Duley, Y.N. Zhou, Oxygen vacancy migration/diffusion induced synaptic plasticity in a single titanate nanobelt. Nanoscale 10, 6069–6079 (2018). https://doi.org/10.1039/C7NR09335G
R.A. John, N. Yantara, Y.F. Ng, G. Narasimman, E. Mosconi et al., Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv. Mater. 30(51), 1805454 (2018). https://doi.org/10.1002/adma.201805454
J.Y. Mao, Z. Zheng, Z.Y. Xiong, P. Huang, G.L. Ding et al., Lead-free monocrystalline perovskite resistive switching device for temporal information processing. Nano Energy 71, 104616 (2020). https://doi.org/10.1016/j.nanoen.2020.104616
H.S.P. Wong, H.Y. Lee, S. Yu, Y.S. Chen, Y. Wu et al., Metal–oxide RRAM. Proc. IEEE 100, 1951–1970 (2012). https://doi.org/10.1109/JPROC.2012.2190369
A. Saleem, D. Kumar, A. Singh, S. Rajasekaran, T.Y. Tseng, Oxygen vacancy transition in HfOx -based flexible, robust, and synaptic Bi-layer memristor for neuromorphic and wearable applications. Adv. Mater. Technol. 7(7), 2101208 (2021). https://doi.org/10.1002/admt.202101208
Y. Li, K.W. Ang, Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv. Intell. Syst. 3(1), 2000137 (2021). https://doi.org/10.1002/aisy.202000137
Y. Xue, S. Yan, S. Lv, S. Song, Z. Song, Ta-doped Sb2Te allows ultrafast phase-change memory with excellent high-temperature operation characteristics. Nano-Micro Lett. 13, 33 (2021). https://doi.org/10.1007/s40820-020-00557-4
X. Zhu, D. Li, X. Liang, W.D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 18, 141–148 (2019). https://doi.org/10.1038/s41563-018-0248-5
C. Choi, J. Leem, M.S. Kim, A. Taqieddin, C. Cho et al., Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020). https://doi.org/10.1038/s41467-020-19806-6
L. Zhao, Z. Fan, S. Cheng, L. Hong, Y. Li et al., An artificial optoelectronic synapse based on a photoelectric memcapacitor. Adv. Electron. Mater. 6(2), 1900858 (2019). https://doi.org/10.1002/aelm.201900858
X. Huang, Q. Li, W. Shi, K. Liu, Y. Zhang et al., Dual-mode learning of ambipolar synaptic phototransistor based on 2D perovskite/organic heterojunction for flexible color recognizable visual system. Small 17(36), 2102820 (2021). https://doi.org/10.1002/smll.202102820
F. Zhou, Z. Zhou, J. Chen, T.H. Choy, J. Wang et al., Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019). https://doi.org/10.1038/s41565-019-0501-3
Q.B. Zhu, B. Li, D.D. Yang, C. Liu, S. Feng et al., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021). https://doi.org/10.1038/s41467-021-22047-w
C. Jo, J. Kim, J.Y. Kwak, S.M. Kwon, J.B. Park et al., Retina-inspired color-cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays. Adv. Mater. 34(12), 2108979 (2022). https://doi.org/10.1002/adma.202108979
Y. Wang, L. Yin, W. Huang, Y. Li, S. Huang et al., Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 3(1), 2000099 (2021). https://doi.org/10.1002/aisy.202000099
H. Han, H. Yu, H. Wei, J. Gong, W. Xu, Recent progress in three-terminal artificial synapses: from device to system. Small 15(32), 1900695 (2019). https://doi.org/10.1002/smll.201900695
S.W. Cho, S.M. Kwon, Y.H. Kim, S.K. Park, Recent progress in transistor-based optoelectronic synapses: from neuromorphic computing to artificial sensory system. Adv. Intell. Syst. 3(6), 2000162 (2021). https://doi.org/10.1002/aisy.202000162
Q. Shi, D. Liu, D. Hao, J. Zhang, L. Tian et al., Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system. Nano Energy 87, 106197 (2021). https://doi.org/10.1016/j.nanoen.2021.106197
Q. Liu, L. Yin, C. Zhao, Z. Wu, J. Wang, X. Yu et al., All-in-one metal-oxide heterojunction artificial synapses for visual sensory and neuromorphic computing systems. Nano Energy 97, 107171 (2022). https://doi.org/10.1016/j.nanoen.2022.107171
S.W. Cho, S.M. Kwon, M. Lee, J.W. Jo, J.S. Heo et al., Multi-spectral gate-triggered heterogeneous photonic neuro-transistors for power-efficient brain-inspired neuromorphic computing. Nano Energy 66, 104097 (2019). https://doi.org/10.1016/j.nanoen.2019.104097
J. Zhang, T. Sun, S. Zeng, D. Hao, B. Yang et al., Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy 95, 106987 (2022). https://doi.org/10.1016/j.nanoen.2022.106987
T. Ahmed, M. Tahir, M.X. Low, Y. Ren, S.A. Tawfik et al., Fully light-controlled memory and neuromorphic computation in layered black phosphorus. Adv. Mater. 33(10), 2004207 (2020). https://doi.org/10.1002/adma.202004207
Q. Shi, D. Liu, S. Dai, J. Huang, A wavelength-tunable multi-functional transistor with visible-light detection and inverse photomemory for logic gate and retina emulation. Adv. Opt. Mater. 9(20), 2100654 (2021). https://doi.org/10.1002/adom.202100654
S.M. Kwon, J.Y. Kwak, S. Song, J. Kim, C. Jo et al., Large-area pixelized optoelectronic neuromorphic devices with multispectral light-modulated bidirectional synaptic circuits. Adv. Mater. 33(45), 2105017 (2021). https://doi.org/10.1002/adma.202105017
Y. Yu, Q. Ma, H. Ling, W. Li, R. Ju et al., Small-molecule-based organic field-effect transistor for nonvolatile memory and artificial synapse. Adv. Funct. Mater. 29(50), 1904602 (2019). https://doi.org/10.1002/adfm.201904602
T. Zhao, C. Zhao, W. Xu, Y. Liu, H. Gao et al., Bio-inspired photoelectric artificial synapse based on two-dimensional Ti3C2Tx MXenes floating gate. Adv. Funct. Mater. 31(45), 2106000 (2021). https://doi.org/10.1002/adfm.202106000
J. Sun, S. Oh, Y. Choi, S. Seo, M.J. Oh et al., Optoelectronic synapse based on IGZO-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 28(47), 1804397 (2018). https://doi.org/10.1002/adfm.201804397
Y.C. Chiang, C.C. Hung, Y.C. Lin, Y.C. Chiu, T. Isono et al., High-performance nonvolatile organic photonic transistor memory devices using conjugated rod–coil materials as a floating gate. Adv. Mater. 32(36), 2002638 (2020). https://doi.org/10.1002/adma.202002638
Y. Wang, Z. Lv, J. Chen, Z. Wang, Y. Zhou et al., Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30(38), 1802883 (2018). https://doi.org/10.1002/adma.201802883
J.L. Meng, T.Y. Wang, L. Chen, Q.Q. Sun, H. Zhu et al., Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 83, 105815 (2021). https://doi.org/10.1016/j.nanoen.2021.105815
H. Chen, H. Liu, Z. Zhang, K. Hu, X. Fang, Nanostructured photodetectors: from ultraviolet to terahertz. Adv. Mater. 28(3), 403–433 (2016). https://doi.org/10.1002/adma.201503534
N. Huo, G. Konstantatos, Recent progress and future prospects of 2D-based photodetectors. Adv. Mater. 30(51), 1801164 (2018). https://doi.org/10.1002/adma.201801164
S. Jeon, I. Song, S. Lee, B. Ryu, S.E. Ahn et al., Origin of high photoconductive gain in fully transparent heterojunction nanocrystalline oxide image sensors and interconnects. Adv. Mater. 26(41), 7102–7109 (2014). https://doi.org/10.1002/adma.201401955
S.E. Ahn, I. Song, S. Jeon, Y.W. Jeon, Y. Kim et al., Metal oxide thin film phototransistor for remote touch interactive displays. Adv. Mater. 24(19), 2631–2636 (2012). https://doi.org/10.1002/adma.201200293
M. Lee, W. Lee, S. Choi, J.W. Jo, J. Kim et al., Brain-inspired photonic neuromorphic devices using photodynamic amorphous oxide semiconductors and their persistent photoconductivity. Adv. Mater. 29(28), 1700951 (2017). https://doi.org/10.1002/adma.201700951
S. Jeon, S.E. Ahn, I. Song, C.J. Kim, U.I. Chung et al., Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. Nat. Mater. 11, 301–305 (2012). https://doi.org/10.1038/nmat3256
M.G. Yun, Y.K. Kim, C.H. Ahn, S.W. Cho, W.J. Kang et al., Low voltage-driven oxide phototransistors with fast recovery, high signal-to-noise ratio, and high responsivity fabricated via a simple defect-generating process. Sci. Rep. 6, 31991 (2016). https://doi.org/10.1038/srep31991
N. Duan, Y. Li, H.C. Chiang, J. Chen, W.Q. Pan et al., An electro-photo-sensitive synaptic transistor for edge neuromorphic visual systems. Nanoscale 11, 17590–17599 (2019). https://doi.org/10.1039/C9NR04195H
M. Kim, J. Lee, Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv. Mater. 32(12), 1907826 (2020). https://doi.org/10.1002/adma.201907826
A. Bera, H. Peng, J. Lourembam, Y. Shen, X.W. Sun et al., A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Adv. Funct. Mater. 23(39), 4977–4984 (2013). https://doi.org/10.1002/adfm.201300509
S.E. Ng, J. Yang, R.A. John, N. Mathews, Adaptive latent inhibition in associatively responsive optoelectronic synapse. Adv. Funct. Mater. 31(28), 2100807 (2021). https://doi.org/10.1002/adfm.202100807
C. Yang, J. Qian, S. Jiang, H. Wang, Q. Wang et al., An optically modulated organic Schottky-barrier planar-diode-based artificial synapse. Adv. Opt. Mater. 8(13), 2000153 (2020). https://doi.org/10.1002/adom.202000153
H. Tan, G. Liu, H. Yang, X. Yi, L. Pan et al., Light-gated memristor with integrated logic and memory functions. ACS Nano 11(11), 11298–11305 (2017). https://doi.org/10.1021/acsnano.7b05762
S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen et al., An oxide Schottky junction artificial optoelectronic synapse. ACS Nano 13(2), 2634–2642 (2019). https://doi.org/10.1021/acsnano.9b00340
L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7(20), eabg1455 (2021). https://doi.org/10.1126/sciadv.abg1455
T.Y. Wang, J.L. Meng, Q.X. Li, Z.Y. He, H. Zhu et al., Reconfigurable optoelectronic memristor for in-sensor computing applications. Nano Energy 89, 106291 (2021). https://doi.org/10.1016/j.nanoen.2021.106291
L. Hu, J. Yuan, Y. Ren, Y. Wang, J.Q. Yang et al., Phosphorene/ZnO nano-heterojunctions for broadband photonic nonvolatile memory applications. Adv. Mater. 30(30), 1801232 (2018). https://doi.org/10.1002/adma.201801232
X. Chen, T. Wang, J. Shi, W. Lv, Y. Han et al., A novel artificial neuron-like gas sensor constructed from cus quantum dots/Bi2S3 nanosheets. Nano-Micro Lett. 14, 8 (2022). https://doi.org/10.1007/s40820-021-00740-1
H. Lia, X. Jiangb, W. Yec, H. Zhangb, L. Zhoua et al., Fully photon modulated heterostructure for neuromorphic computing. Nano Energy 65, 104000 (2019). https://doi.org/10.1016/j.nanoen.2019.104000
G.J. Lee, C. Choi, D.H. Kim, Y.M. Song, Bioinspired artificial eyes: optic components, digital cameras, and visual prostheses. Adv. Funct. Mater. 28(24), 1705202 (2018). https://doi.org/10.1002/adfm.201705202
Z. Jiang, Y. Jiang, N. Chen, X. Chen, Artificial visual electronics for closed-loop sensation/action systems. Adv. Intell. Syst. 3(9), 2100071 (2021). https://doi.org/10.1002/aisy.202100071
Z. He, D. Ye, L. Liu, C.A. Di, D. Zhu, Advances in materials and devices for mimicking sensory adaptation. Mater. Horiz. 9, 147–163 (2022). https://doi.org/10.1039/D1MH01111A
F. Liao, Z. Zhou, B.J. Kim, J. Chen, J. Wang et al., Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022). https://doi.org/10.1038/s41928-022-00713-1
S.M. Kwon, S.W. Cho, M. Kim, J.S. Heo, Y.H. Kim et al., Environment-adaptable artificial visual perception behaviors using a light-adjustable optoelectronic neuromorphic device array. Adv. Mater. 31(52), 1906433 (2019). https://doi.org/10.1002/adma.201906433
T.J. Lee, K.R. Yun, S.K. Kim, J.H. Kim, J. Jin et al., Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv. Mater. 33(51), 2105485 (2021). https://doi.org/10.1002/adma.202105485
D. Xie, L. Wei, M. Xie, L. Jiang, J. Yang et al., Photoelectric visual adaptation based on 0D-CsPbBr3-quantum-dots/2D-MoS2 mixed-dimensional heterojunction transistor. Adv. Funct. Mater. 31(14), 2010655 (2021). https://doi.org/10.1002/adfm.202010655
S. Hong, S.H. Choi, J. Park, H. Yoo, J.Y. Oh et al., Sensory adaptation and neuromorphic phototransistors based on CsPb(Br1−xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14(8), 9796–9806 (2020). https://doi.org/10.1021/acsnano.0c01689
S.E. Ng, Y.B. Tay, T.Y.K. Ho, N. Ankit, Mathews, inorganic electrochromic transistors as environmentally adaptable photodetectors. Nano Energy 97, 107142 (2022). https://doi.org/10.1016/j.nanoen.2022.107142
Z. He, H. Shen, D. Ye, L. Xiang, W. Zhao et al., An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4, 522–529 (2021). https://doi.org/10.1038/s41928-021-00615-8
X. Geng, L. Hu, F. Zhuge, X. Wei, Retina-inspired two-terminal optoelectronic neuromorphic devices with light-tunable short-term plasticity for self-adjusting sensing. Adv. Intell. Syst. 4(6), 2200019 (2022). https://doi.org/10.1002/aisy.202200019
J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22(1), 81–89 (2022). https://doi.org/10.1021/acs.nanolett.1c03240
T. Wan, B. Shao, S. Ma, Y. Zhou, Q. Li et al., In-sensor computing: materials, devices, and integration technologies. Adv. Mater. (2022). https://doi.org/10.1002/adma.202203830
C. Chen, Y. He, H. Mao, L. Zhu, X. Wang et al., A photoelectric spiking neuron for visual depth perception. Adv. Mater. 34(20), 2201895 (2022). https://doi.org/10.1002/adma.202201895
R.A. John, J. Ko, M.R. Kulkarni, N. Tiwari, N.A. Chien et al., Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 13(32), 1701193 (2017). https://doi.org/10.1002/smll.201701193
D. Jayachandran, A. Oberoi, A. Sebastian, T.H. Choudhury, B. Shankar et al., A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron 3, 646–655 (2020). https://doi.org/10.1038/s41928-020-00466-9
Y. Wang, Y. Gong, S. Huang, X. Xing, Z. Lv et al., Memristor-based biomimetic compound eye for real-time collision detection. Nat. Commun. 12, 5979 (2021). https://doi.org/10.1038/s41467-021-26314-8
M.K. Akbari, J. Hu, F. Verpoort, H. Lu, S. Zhuiykov, Nanoscale all-oxide-heterostructured bio-inspired optoresponsive nociceptor. Nano-Micro Lett. 12, 83 (2020). https://doi.org/10.1007/s40820-020-00419-z
G. Feng, J. Jiang, Y. Li, D. Xie, B. Tian et al., Flexible vertical photogating transistor network with an ultrashort channel for in-sensor visual nociceptor. Adv. Funct. Mater. 31(36), 2104327 (2021). https://doi.org/10.1002/adfm.202104327
G. Feng, J. Jiang, Y. Zhao, S. Wang, B. Liu et al., A Sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation. Adv. Mater. 32(6), 1906171 (2020). https://doi.org/10.1002/adma.201906171
X. Deng, S.Q. Wang, Y.X. Liu, N. Zhong, Y.H. He et al., A flexible Mott synaptic transistor for nociceptor simulation and neuromorphic computing. Adv. Funct. Mater. 31(23), 2101099 (2021). https://doi.org/10.1002/adfm.202101099
Y. Kim, Y.J. Kwon, D.E. Kwon, K.J. Yoon, J.H. Yoon et al., Nociceptive memristor. Adv. Mater. 30(8), 1704320 (2018). https://doi.org/10.1002/adma.201704320
H. Wei, Y. Ni, L. Sun, H. Yu, J. Gong et al., Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy 81, 105648 (2021). https://doi.org/10.1016/j.nanoen.2020.105648
L. Zhou, S.R. Zhang, J.Q. Yang, J.Y. Mao, Y. Ren et al., UV damage sensing nociceptive device for bionic application. Nanoscale 12, 1484–1494 (2020). https://doi.org/10.1039/C9NR08872E
Y. Gong, X. Xing, Z. Lv, J. Chen, P. Xie et al., Ultrasensitive flexible memory phototransistor with detectivity of 1.8×1013 jones for artificial visual. Adv. Intell. Syst. 4(8), 2100257 (2022). https://doi.org/10.1002/aisy.202100257
S. Li, H. Lyu, J. Li, Y. He, X. Gao et al., Multiterminal ionic synaptic transistor with artificial blink reflex function. IEEE Electron Device Lett. 42, 351–354 (2021). https://doi.org/10.1109/LED.2021.3051645
M. Kumar, H.S. Kim, J. Kim, A highly transparent artificial photonic nociceptor. Adv. Mater. 31(19), 1900021 (2019). https://doi.org/10.1002/adma.201900021
S. Ke, Y. He, L. Zhu, Z. Jiang, H. Mao et al., Indium-gallium-zinc-oxide based photoelectric neuromorphic transistors for modulable photoexcited corneal nociceptor emulation. Adv. Electron. Mater. 7(11), 2100487 (2021). https://doi.org/10.1002/aelm.202100487
H.L. Park, H. Kim, D. Lim, H. Zhou, Y.H. Kim et al., Retina-inspired carbon nitride-based photonic synapses for selective detection of UV light. Adv. Mater. 32(11), 1906899 (2020). https://doi.org/10.1002/adma.201906899
B. Wang, Z. Cao, A review of impedance matching techniques in power line communications. Electronics 8, 1022 (2019). https://doi.org/10.3390/electronics8091022
B. Couraud, R. Vauche, S.N. Daskalakis, D. Flynn, T. Deleruyelle et al., Internet of things: a review on theory based impedance matching techniques for energy efficient RF systems. J. Low Power Electron. Appl. 1, 16 (2021). https://doi.org/10.3390/jlpea11020016