Vertically Integrated Electronics: New Opportunities from Emerging Materials and Devices
Corresponding Author: Hocheon Yoo
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 201
Abstract
Vertical three-dimensional (3D) integration is a highly attractive strategy to integrate a large number of transistor devices per unit area. This approach has emerged to accommodate the higher demand of data processing capability and to circumvent the scaling limitation. A huge number of research efforts have been attempted to demonstrate vertically stacked electronics in the last two decades. In this review, we revisit materials and devices for the vertically integrated electronics with an emphasis on the emerging semiconductor materials that can be processable by bottom-up fabrication methods, which are suitable for future flexible and wearable electronics. The vertically stacked integrated circuits are reviewed based on the semiconductor materials: organic semiconductors, carbon nanotubes, metal oxide semiconductors, and atomically thin two-dimensional materials including transition metal dichalcogenides. The features, device performance, and fabrication methods for 3D integration of the transistor based on each semiconductor are discussed. Moreover, we highlight recent advances that can be important milestones in the vertically integrated electronics including advanced integrated circuits, sensors, and display systems. There are remaining challenges to overcome; however, we believe that the vertical 3D integration based on emerging semiconductor materials and devices can be a promising strategy for future electronics.
Highlights:
1 The vertically integrated electronic devices based on emerging semiconductor materials including organic, metal oxide, and two-dimensional materials are revisited.
2 Comprehensive aspects of the device architecture, performance, and fabrication method of the vertically stacked electronics according to each semiconductor material are discussed.
3 Recent advances in vertically integrated electronic devices for emerging applications such as advanced integrated circuits, sensors, and display systems are highlighted.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Laws, 13 sextillion & counting: the long & winding road to the most frequently manufactured human artifact in history. https://computerhistory.org/blog/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history
- A. Hirata, K. Nakanishi, M. Nozoe, A. Miyoshi, The cross charge-control flip-flop: a low-power and high-speed flip-flop suitable for mobile application SoCs. Digest of Technical Papers, 2005 Symposium on VLSI Circuits, Kyoto, Japan, (July, 2005). https://doi.org/10.1109/VLSIC.2005.1469392
- A. Ortiz-Conde, F.G. Sanchez, Multi-gate 3-D SOI MOSFETs as the mainstream technology in high speed CMOS applications. The 11th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications, Orlando, FL, USA, (January, 2003). https://doi.org/10.1109/EDMO.2003.1260004
- R. Wodnicki, G.W. Roberts, M.D. Levine, A foveated image sensor in standard CMOS technology. Proceedings of the IEEE 1995 Custom Integrated Circuits Conference, Santa Clara, CA, USA (August, 1995). https://doi.org/10.1109/CICC.1995.518202
- J. Nakamura, S. Kemeny, E. Fossum, CMOS active pixel image sensor with simple floating gate pixels. IEEE Trans. Electron Devices 42(9), 1693–1694 (1995). https://doi.org/10.1109/16.405286
- S.Y. Lee, D.K. Schroder, 3D IC architecture for high density memories. 2010 IEEE International Memory Workshop, Seoul, Korea (June, 2010). https://doi.org/10.1109/IMW.2010.5488391
- T. Furuyama, Y. Watanabe, T. Ohsawa, S. Watanabe, A new on-chip converter for submicrometer high-density DRAMs. IEEE J. Solid-State Circuits 22(3), 437–441 (1987). https://doi.org/10.1109/JSSC.1987.1052744
- Z.J. Shen, D.N. Okada, F. Lin, S. Anderson, X. Cheng, Lateral power MOSFET for megahertz-frequency, high-density DC/DC converters. IEEE Trans. Power Electron. 21(1), 11–17 (2006). https://doi.org/10.1109/TPEL.2005.861111
- T. López, E. Alarcon, Power MOSFET technology roadmap toward high power density voltage regulators for next-generation computer processors. IEEE Trans. Power Electron. 27(4), 2193–2203 (2011). https://doi.org/10.1109/TPEL.2011.2165343
- P. Livi, G. Indiveri, A current-mode conductance-based silicon neuron for address-event neuromorphic systems. 2009 IEEE International Symposium on Circuits and Systems (2009), pp. 2898–2901. https://doi.org/10.1109/ISCAS.2009.5118408
- L. Zhang, Q. Lai, Y. Chen, Configurable neural phase shifter with spike-timing-dependent plasticity. IEEE Electron Device Lett. 31(7), 716–718 (2010). https://doi.org/10.1109/LED.2010.2049558
- A.B. Sachid, S.B. Desai, A. Javey, C. Hu, High-gain monolithic 3D CMOS inverter using layered semiconductors. Appl. Phys. Lett. 111(22), 222101 (2017). https://doi.org/10.1063/1.5004669
- J. Tang, Q. Wang, Z. Wei, C. Shen, X. Lu et al., Vertical integration of 2D building blocks for all-2D electronics. Adv. Electron. Mater. 6(12), 2000550 (2020). https://doi.org/10.1002/aelm.202000550
- X. Xiong, A. Tong, X. Wang, S. Liu, X. Li et al., Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with ion >700 µA/µm and MoS2/WSe2 CFET. 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA (December, 2021). https://doi.org/10.1109/IEDM19574.2021.9720533
- Y.J. Choi, S. Kim, H.J. Woo, Y.J. Song, Y. Lee et al., Remote gating of Schottky barrier for transistors and their vertical integration. ACS Nano 13(7), 7877–7885 (2019). https://doi.org/10.1021/acsnano.9b02243
- S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11(6), 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
- P.S. Kanhaiya, G. Hills, D.A. Antoniadis, M.M. Shulaker, DISC-FETs: dual independent stacked channel field-effect transistors. IEEE Electron Device Lett. 39(8), 1250–1253 (2018). https://doi.org/10.1109/led.2018.2851191
- M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547(7661), 74–78 (2017). https://doi.org/10.1038/nature22994
- J. Deng, X. Li, M. Li, X. Wang, S. Shao et al., Fabrication and electrical properties of printed three-dimensional integrated carbon nanotube PMOS inverters on flexible substrates. Nanoscale 14(12), 4679–4689 (2022). https://doi.org/10.1039/D1NR08056C
- J.B. Kim, C. Fuentes-Hernandez, D.K. Hwang, S.P. Tiwari, W.J. Potscavage et al., Vertically stacked complementary inverters with solution-processed organic semiconductors. Org. Electron. 12(7), 1132–1136 (2011). https://doi.org/10.1016/j.orgel.2011.04.007
- A. Hübler, G. Schmidt, H. Kempa, K. Reuter, M. Hambsch et al., Three-dimensional integrated circuit using printed electronics. Org. Electron. 12(3), 419–423 (2011). https://doi.org/10.1016/j.orgel.2010.12.010
- B. Peng, X. Ren, Z. Wang, X. Wang, R.C. Roberts et al., High performance organic transistor active-matrix driver developed on paper substrate. Sci. Rep. 4, 6430 (2014). https://doi.org/10.1038/srep06430
- S.M. Seo, C. Baek, H.H. Lee, Stacking of organic thin film transistors: vertical integration. Adv. Mater. 20(10), 1994–1997 (2008). https://doi.org/10.1002/adma.200701770
- A. Dindar, J. Kim, C. Fuentes-Hernandez, B. Kippelen, Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Appl. Phys. Lett. 99(17), 172104 (2011). https://doi.org/10.1063/1.3656974
- H.J. Joo, M.G. Shin, H.S. Jung, H.S. Cha, D. Nam et al., Oxide thin-film transistor-based vertically stacked complementary inverter for logic and photo-sensor operations. Materials 12(23), 3815 (2019). https://doi.org/10.3390/ma12233815
- K. Kudo, I. Kodera, R. Aino, H. Yamauchi, S. Kuniyoshi et al., Fabrication of stacked logic circuits for printed integrated circuits. Jpn. J. Appl. Phys. 53(5), 05HB08 (2014). https://doi.org/10.7567/JJAP.53.05HB08
- C.H. Park, H.S. Lee, K.H. Lee, D.H. Kim, H.R. Kim et al., Organic/oxide hybrid complementary thin-film transistor inverter in vertical stack for logic, photo-gating, and ferroelectric memory operation. Org. Electron. 12(9), 1533–1538 (2011). https://doi.org/10.1016/j.orgel.2011.06.001
- F. Shiono, H. Abe, T. Nagase, T. Kobayashi, H. Naito, Optical memory characteristics of solution-processed organic transistors with self-organized organic floating gates for printable multi-level storage devices. Org. Electron. 67, 109–115 (2019). https://doi.org/10.1016/j.orgel.2019.01.009
- V. Raghuwanshi, D. Bharti, A.K. Mahato, I. Varun, S.P. Tiwari, Solution-processed organic field-effect transistors with high performance and stability on paper substrates. ACS Appl. Mater. Interfaces 11(8), 8357–8364 (2019). https://doi.org/10.1021/acsami.8b21404
- S.D. Ogier, H. Matsui, L. Feng, M. Simms, M. Mashayekhi et al., Uniform, high performance, solution processed organic thin-film transistors integrated in 1 MHz frequency ring oscillators. Org. Electron. 54, 40–47 (2018). https://doi.org/10.1016/j.orgel.2017.12.005
- X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao et al., Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019). https://doi.org/10.1038/s41467-019-10738-4
- C. Zhao, C. Tan, D.H. Lien, X. Song, M. Amani et al., Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 15(1), 53–58 (2020). https://doi.org/10.1038/s41565-019-0585-9
- H.J. Kim, A.R. Han, C.H. Cho, H. Kang, H.H. Cho et al., Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers. Chem. Mater. 24(1), 215–221 (2012). https://doi.org/10.1021/cm203058p
- T. Yokota, K. Kuribara, T. Tokuhara, U. Zschieschang, H. Klauk et al., Flexible low-voltage organic transistors with high thermal stability at 250 °C. Adv. Mater. 25(27), 3639–3644 (2013). https://doi.org/10.1002/adma.201300941
- K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota et al., Organic transistors with high thermal stability for medical applications. Nat. Commun. 3, 723 (2012). https://doi.org/10.1038/ncomms1721
- T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. PNAS 101(27), 9966–9970 (2004). https://doi.org/10.1073/pnas.0401918101
- T. Kawase, H. Sirringhaus, R.H. Friend, T. Shimoda, Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv. Mater. 13(21), 1601–1605 (2001). https://doi.org/10.1002/1521-4095(200111)13:21%3c1601::AID-ADMA1601%3e3.0.CO;2-X
- D. Khim, K.J. Baeg, M. Kang, S.H. Lee, N.K. Kim et al., Inkjet-printing-based soft-etching technique for high-speed polymer ambipolar integrated circuits. ACS Appl. Mater. Interfaces 5(23), 12579–12586 (2013). https://doi.org/10.1021/am4039008
- H. Yoo, H. Park, S. Yoo, S. On, H. Seong et al., Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects. Nat. Commun. 10, 2424 (2019). https://doi.org/10.1038/s41467-019-10412-9
- S.J. Yu, K. Pak, M.J. Kwak, M. Joo, B.J. Kim et al., Initiated chemical vapor deposition: a versatile tool for various device applications. Adv. Eng. Mater. 20(3), 1700622 (2018). https://doi.org/10.1002/adem.201700622
- H. Moon, H. Seong, W.C. Shin, W.T. Park, M. Kim et al., Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 14(6), 628–635 (2015). https://doi.org/10.1038/nmat4237
- J. Choi, J. Kang, C. Lee, K. Jeong, S.G. Im, Heavily crosslinked, high-k ultrathin polymer dielectrics for flexible, low-power organic thin-film transistors (OTFTs). Adv. Electron. Mater. 6(8), 2000314 (2020). https://doi.org/10.1002/aelm.202000314
- J. Xu, S. Wang, G.J.N. Wang, C. Zhu, S. Luo et al., Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320), 59–64 (2017). https://doi.org/10.1126/science.aah4496
- M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459), 458–463 (2013). https://doi.org/10.1038/nature12314
- Y. Zhou, T. Lei, L. Wang, J. Pei, Y. Cao et al., High-performance organic field-effect transistors from organic single-crystal microribbons formed by a solution process. Adv. Mater. 22(13), 1484–1487 (2010). https://doi.org/10.1002/adma.200904171
- H. Ren, N. Cui, Q. Tang, Y. Tong, X. Zhao et al., High-performance, ultrathin, ultraflexible organic thin-film transistor array via solution process. Small 14(33), 1801020 (2018). https://doi.org/10.1002/smll.201801020
- H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda et al., Highly soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 129(51), 15732–15733 (2007). https://doi.org/10.1021/ja074841i
- A.F. Paterson, S. Singh, K.J. Fallon, T. Hodsden, Y. Han et al., Recent progress in high-mobility organic transistors: a reality check. Adv. Mater. 30(36), 1801079 (2018). https://doi.org/10.1002/adma.201801079
- C.S. Kim, S. Lee, E.D. Gomez, J.E. Anthony, Y.L. Loo, Solvent-dependent electrical characteristics and stability of organic thin-film transistors with drop cast bis(triisopropylsilylethynyl) pentacene. Appl. Phys. Lett. 93(10), 327 (2008). https://doi.org/10.1063/1.2979691
- E.K. Lee, M.Y. Lee, C.H. Park, H.R. Lee, J.H. Oh, Toward environmentally robust organic electronics: approaches and applications. Adv. Mater. 29(44), 1703638 (2017). https://doi.org/10.1002/adma.201703638
- T. Okamoto, S. Kumagai, E. Fukuzaki, H. Ishii, G. Watanabe et al., Robust, high-performance n-type organic semiconductors. Sci. Adv. 6(18), eaaz632 (2020). https://doi.org/10.1126/sciadv.aaz0632
- J.T. Quinn, J. Zhu, X. Li, J. Wang, Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C 5(34), 8654–8681 (2017). https://doi.org/10.1039/C7TC01680H
- R.D. Pietro, D. Fazzi, T.B. Kehoe, H. Sirringhaus, Spectroscopic investigation of oxygen- and water-induced electron trapping and charge transport instabilities in n-type polymer semiconductors. J. Am. Chem. Soc. 134(36), 14877–14889 (2012). https://doi.org/10.1021/ja304198e
- H. Yoo, M. Ghittorelli, D.K. Lee, E.C.P. Smits, G.H. Gelinck et al., Balancing hole and electron conduction in ambipolar split-gate thin-film transistors. Sci. Rep. 7(1), 5015 (2017). https://doi.org/10.1038/s41598-017-04933-w
- H. Yoo, S.B. Lee, D.K. Lee, E.C.P. Smits, G.H. Gelinck et al., Top-split-gate ambipolar organic thin-film transistors. Adv. Electron. Mater. 4(5), 1700536 (2018). https://doi.org/10.1002/aelm.201700536
- J.H. Park, H.S. Lee, J. Lee, K. Lee, G. Lee et al., Stability-improved organic n-channel thin-film transistors with nm-thin hydrophobic polymer-coated high-k dielectrics. Phys. Chem. Chem. Phys. 14(41), 14202–14206 (2012). https://doi.org/10.1039/c2cp41544e
- C. Baek, S. Seo, Vertical organic inverter with stacked pentacene thin film transistors. Appl. Phys. Lett. 94(15), 153305 (2009). https://doi.org/10.1063/1.3120568
- R. Hamilton, J. Smith, S. Ogier, M. Heeney, J.E. Anthony et al., High-performance polymer-small molecule blend organic transistors. Adv. Mater. 21(10–11), 1166–1171 (2009). https://doi.org/10.1002/adma.200801725
- S.H. Kim, S. Nam, J. Jang, K. Hong, C. Yang et al., Effect of the hydrophobicity and thickness of polymer gate dielectrics on the hysteresis behavior of pentacene-based field-effect transistors. J. Appl. Phys. 105(10), 104509 (2009). https://doi.org/10.1063/1.3131664
- J.M. Kim, J. Oh, K.M. Jung, K. Park, J.H. Jeon et al., Ultrathin flexible thin film transistors with CYTOP encapsulation by debonding process. Semicond. Sci. Technol. 34(7), 075015 (2019). https://doi.org/10.1088/1361-6641/ab2201
- L. Wang, C. Ruan, M. Li, J. Zou, H. Tao et al., Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J. Mater. Chem. C 5(16), 4017–4024 (2017). https://doi.org/10.1039/C7TC00903H
- D.K. Hwang, C. Fuentes-Hernandez, J. Kim, W.J. Potscavage, S.J. Kim et al., Top-gate organic field-effect transistors with high environmental and operational stability. Adv. Mater. 23(10), 1293–1298 (2011). https://doi.org/10.1002/adma.201004278
- X. Jia, C. Fuentes-Hernandez, C.Y. Wang, Y. Park, B. Kippelen, Stable organic thin-film transistors. Sci. Adv. 4(1), eaao705 (2018). https://doi.org/10.1126/sciadv.aao1705
- J. Jakabovič, J. Kováč, M. Weis, D. Haško, R. Srnánek et al., Preparation and properties of thin parylene layers as the gate dielectrics for organic field effect transistors. Microelectron. J. 40(3), 595–597 (2009). https://doi.org/10.1016/j.mejo.2008.06.029
- K. Fukuda, Y. Takeda, Y. Yoshimura, R. Shiwaku, L.T. Tran et al., Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 5, 4147 (2014). https://doi.org/10.1038/ncomms5147
- T. Marszalek, M. Gazicki-Lipman, J. Ulanski, Parylene C as a versatile dielectric material for organic field-effect transistors. c J. Nanotechnol. 8(1), 1532–1545 (2017). https://doi.org/10.3762/bjnano.8.155
- Y. Takeda, K. Hayasaka, R. Shiwaku, K. Yokosawa, T. Shiba et al., Fabrication of ultra-thin printed organic TFT CMOS logic circuits optimized for low-voltage wearable sensor applications. Sci. Rep. 6, 25714 (2016). https://doi.org/10.1038/srep25714
- L. Feng, C. Jiang, H. Ma, X. Guo, A. Nathan, All ink-jet printed low-voltage organic field-effect transistors on flexible substrate. Org. Electron. 38, 186–192 (2016). https://doi.org/10.1016/j.orgel.2016.08.019
- G. Mattana, A. Loi, M. Woytasik, M. Barbaro, V. Noël et al., All ink-jet printed low-voltage organic field-effect transistors on flexible substrate. Adv. Mater. Technol. 2(10), 1700063 (2017). https://doi.org/10.1002/admt.201700063
- S. Chung, K. Cho, T. Lee, Recent progress in inkjet-printed thin-film transistors. Adv. Sci. 6(6), 1801445 (2019). https://doi.org/10.1002/advs.201801445
- J. Kwon, Y. Takeda, K. Fukuda, K. Cho, S. Tokito et al., Three-dimensional, inkjet-printed organic transistors and integrated circuits with 100% yield, high uniformity, and long-term stability. ACS Nano 10(11), 10324–10330 (2016). https://doi.org/10.1021/acsnano.6b06041
- J. Kwon, S. Kyung, S. Yoon, J.J. Kim, S. Jung, Solution-processed vertically stacked complementary organic circuits with inkjet-printed routing. Adv. Sci. 3(5), 1500439 (2016). https://doi.org/10.1002/advs.201500439
- J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho et al., Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 10, 54 (2019). https://doi.org/10.1038/s41467-018-07904-5
- H. Zhu, E.S. Shin, A. Liu, D. Ji, Y. Xu et al., Printable semiconductors for backplane TFTs of flexible OLED displays. Adv. Funct. Mater. 30(20), 1904588 (2020). https://doi.org/10.1002/adfm.201904588
- H. Chen, Y. Cao, J. Zhang, C. Zhou, Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 5, 4097 (2014). https://doi.org/10.1038/ncomms5097
- K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004). https://doi.org/10.1038/nature03090
- W. Shi, L. Hu, Y. Liu, S. Deng, Y. Xu et al., Arithmetic and logic circuits based on ITO-stabilized ZnO TFT for transparent electronics. IEEE Trans. Circuits Syst. I 69(1), 356–365 (2021). https://doi.org/10.1109/TCSI.2021.3100138
- Y. Zhang, Z. Mei, S. Cui, H. Liang, Y. Liu et al., Flexible transparent field-effect diodes fabricated at low-temperature with all-oxide materials. Adv. Electron. Mater. 2(5), 1500486 (2016). https://doi.org/10.1002/aelm.201500486
- Q. Ma, H.M. Zheng, Y. Shao, B. Zhu, W.J. Liu et al., Atomic-layer-deposition of indium oxide nano-films for thin-film transistors. Nanoscale Res. Lett. 13(1), 4 (2018). https://doi.org/10.1186/s11671-017-2414-0
- J. Lee, J. Moon, J.E. Pi, S.D. Ahn, H. Oh et al., High mobility ultra-thin crystalline indium oxide thin film transistor using atomic layer deposition. Appl. Phys. Lett. 113(11), 112102 (2018). https://doi.org/10.1063/1.5041029
- K.L. Han, W.B. Lee, Y.D. Kim, J.H. Kim, B.D. Choi et al., Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application. ACS Appl. Electron. Mater. 3(11), 5037–5047 (2021). https://doi.org/10.1021/acsaelm.1c00806
- J. Liu, W. Tang, Y. Liu, H. Yang, X. Li, Almost-nonvolatile IGZO-TFT-based near-sensor in-memory computing. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea (April, 2021). https://doi.org/10.1109/ISCAS51556.2021.9401719
- Y. Jianke, X. Ningsheng, D. Shaozhi, C. Jun, S. Juncong et al., Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy. IEEE Trans. Electron Devices 58(4), 1121–1126 (2011). https://doi.org/10.1109/ted.2011.2105879
- W. Li, J. Shi, K.H. Zhang, J.L. MacManus-Driscoll, Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities. Mater. Horiz. 7(11), 2832–2859 (2020). https://doi.org/10.1039/D0MH00899K
- Y. Yang, J. Yang, W. Yin, F. Huang, A. Cui et al., Annealing time modulated the film microstructures and electrical properties of P-type CuO field effect transistors. Appl. Surf. Sci. 481, 632–636 (2019). https://doi.org/10.1016/j.apsusc.2019.03.130
- W. Maeng, S.H. Lee, J.D. Kwon, J. Park, J.S. Park, Atomic layer deposited p-type copper oxide thin films and the associated thin film transistor properties. Ceram. Int. 42(4), 5517–5522 (2016). https://doi.org/10.1016/j.ceramint.2015.12.109
- H.M. Kim, S.H. Choi, H.J. Jeong, J.H. Lee, J. Kim et al., Highly dense and stable p-type thin-film transistor based on atomic layer deposition SnO fabricated by two-step crystallization. ACS Appl. Mater. Interfaces 13(26), 30818–30825 (2021). https://doi.org/10.1021/acsami.1c06038
- S.Y. Ahn, S.C. Jang, A. Song, K.B. Chung, Y.J. Kim et al., Performance enhancement of p-type SnO semiconductors via SiOx passivation. Mater. Today Commun. 26, 101747 (2021). https://doi.org/10.1016/j.mtcomm.2020.101747
- S. Lee, Y. Chen, J. Kim, J. Jang, Vertically integrated, double stack oxide TFT layers for high-resolution AMOLED backplane. J. Soc. Inf. Display 28(6), 469–475 (2020). https://doi.org/10.1002/jsid.907
- K. Nomura, T. Aoki, K. Nakamura, T. Kamiya, T. Nakanishi et al., Three-dimensionally stacked flexible integrated circuit: amorphous oxide/polymer hybrid complementary inverter using n-type a-In-Ga-Zn-O and p-type poly-(9,9-dioctylfluorene-co-bithiophene) thin-film transistors. Appl. Phys. Lett. 96(26), 263509 (2010). https://doi.org/10.1063/1.3458799
- J. Kim, C. Fuentes-Hernandez, D. Hwang, W. Potscavage, H. Cheun et al., Vertically stacked hybrid organic-inorganic complementary inverters with low operating voltage on flexible substrates. Org. Electron. 12(1), 45–50 (2011). https://doi.org/10.1016/j.orgel.2010.10.012
- A. Molina-Sánchez, K. Hummer, L. Wirtz, Vibrational and optical properties of MoS2: from monolayer to bulk. Surf. Sci. Rep. 70(4), 554–586 (2015). https://doi.org/10.1016/j.surfrep.2015.10.001
- J. Jiang, K. Parto, W. Cao, K. Banerjee, Monolithic-3D integration with 2D materials: Toward ultimate vertically-scaled 3D-IC. 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Burlingame, CA, USA (October, 2018). https://doi.org/10.1109/S3S.2018.8640131
- J. Jiang, K. Parto, W. Cao, K. Banerjee, Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 7, 878–887 (2019). https://doi.org/10.1109/JEDS.2019.2925150
- K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015). https://doi.org/10.1038/nature14417
- R. Zhou, J. Appenzeller, Three-dimensional integration of multi-channel MoS2 devices for high drive current FETs. 2018 76th Device Research Conference (DRC), Santa Barbara, CA, USA (June, 2018). https://doi.org/10.1109/DRC.2018.8442137
- W.J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang et al., Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12(3), 246–252 (2013). https://doi.org/10.1038/nmat3518
- A.B. Sachid, M. Tosun, S.B. Desai, C.Y. Hsu, D.H. Lien et al., Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 28(13), 2547–2554 (2016). https://doi.org/10.1002/adma.201505113
- C.C. Yang, K.C. Chiu, C.T. Chou, C.N. Liao, M.H. Chuang et al., Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC. 2016 IEEE Symposium on VlSI Technology, Honolulu, HI, USA (June, 2016). https://doi.org/10.1109/VLSIT.2016.7573448
- J. Xia, J. Zhao, H. Meng, Q. Huang, G. Dong et al., Performance enhancement of carbon nanotube thin film transistor by yttrium oxide capping. Nanoscale 10(9), 4202–4208 (2018). https://doi.org/10.1039/c7nr08676h
- T.J. Ha, K. Chen, S. Chuang, K.M. Yu, D. Kiriya et al., Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. Nano Lett. 15(1), 392–397 (2015). https://doi.org/10.1021/nl5037098
- W. Honda, S. Harada, S. Ishida, T. Arie, S. Akita et al., High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv. Mater. 27(32), 4674–4680 (2015). https://doi.org/10.1002/adma.201502116
- T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer et al., Organic nonvolatile memory transistors for flexible sensor arrays. Science 326(5959), 1516–1519 (2009). https://doi.org/10.1126/science.1179963
- C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1(5), 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
- M.Y. Lee, H.R. Lee, C.H. Park, S.G. Han, J.H. Oh, Organic transistor-based chemical sensors for wearable bioelectronics. Acc. Chem. Res. 51(11), 2829–2838 (2018). https://doi.org/10.1021/acs.accounts.8b00465
- P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24(1), 34–51 (2012). https://doi.org/10.1002/adma.201103334
- J. Li, R. Bao, J. Tao, Y. Peng, C. Pan et al., Recent progress in flexible pressure sensor arrays: from design to applications. J. Mater. Chem. C 6(44), 11878–11892 (2018). https://doi.org/10.1039/C8TC02946F
- H. Li, W. Shi, J. Song, H.J. Jang, J. Dailey et al., Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev. 119(1), 3–35 (2018). https://doi.org/10.1021/acs.chemrev.8b00016
- W. Shi, Y. Guo, Y. Liu, When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things. Adv. Mater. 32(15), 1901493 (2020). https://doi.org/10.1002/adma.201901493
- S.H. Kim, G.W. Baek, J. Yoon, S. Seo, J. Park et al., A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 33(44), 2104690 (2021). https://doi.org/10.1002/adma.202104690
- S.W. Jeong, J.W. Jeong, S. Chang, S.Y. Kang, K.I. Cho et al., The vertically stacked organic sensor-transistor on a flexible substrate. Appl. Phys. Lett. 97(25), 279 (2010). https://doi.org/10.1063/1.3530448
- S.L. Hurst, Multiple-valued logic—its status and its future. IEEE Trans. Comput. 33(12), 1160–1179 (1984). https://doi.org/10.1109/TC.1984.1676392
- J. Choi, C. Lee, C. Lee, H. Park, S.M. Lee et al., Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors. Nat. Commun. 13, 2305 (2022). https://doi.org/10.1038/s41467-022-29756-w
- T. Brody, F.C. Luo, Z.P. Szepesi, D.H. Davies, A 6×6-in 20-lpi electroluminescent display panel. IEEE Trans. Electron Devices 22(9), 739–748 (1975). https://doi.org/10.1109/T-ED.1975.18214
- C.N. King, Electroluminescent displays. J. Vac. Sci. Technol. A 14(3), 1729–1735 (1996). https://doi.org/10.1116/1.580328
- W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao et al., Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16(11), 1231–1236 (2021). https://doi.org/10.1038/s41565-021-00966-5
- J. Bauri, R.B. Choudhary, G. Mandal, Recent advances in efficient emissive materials-based OLED applications: a review. J. Mater. Sci. 56(34), 18837–18866 (2021). https://doi.org/10.1007/s10853-021-06503-y
- E.L. Hsiang, Z. Yang, Q. Yang, Y.F. Lan, S.T. Wu, Prospects and challenges of mini-LED, OLED, and micro-LED displays. J. Soc. Inf. Display 29(6), 446–465 (2021). https://doi.org/10.1002/jsid.1058
- S. Choi, C. Kang, C.W. Byun, H. Cho et al., Thin-film transistor-driven vertically stacked full-color organic light-emitting diodes for high-resolution active-matrix displays. Nat. Commun. 11, 2732 (2020). https://doi.org/10.1038/s41467-020-16551-8
- S. Kyung, J. Kwon, Y.H. Kim, S. Jung, Low-temperature, solution-processed, 3-D complementary organic FETs on flexible substrate. IEEE Trans. Electron Devices 64(5), 1955–1959 (2017). https://doi.org/10.1109/ted.2017.2659741
- W. Kim, S. Jung, Static response of three-dimensional and printed complementary organic TFTs-based static random-access memory. IEEE Electron Device Lett. 43(3), 438–441 (2022). https://doi.org/10.1109/led.2022.3147520
References
D. Laws, 13 sextillion & counting: the long & winding road to the most frequently manufactured human artifact in history. https://computerhistory.org/blog/13-sextillion-counting-the-long-winding-road-to-the-most-frequently-manufactured-human-artifact-in-history
A. Hirata, K. Nakanishi, M. Nozoe, A. Miyoshi, The cross charge-control flip-flop: a low-power and high-speed flip-flop suitable for mobile application SoCs. Digest of Technical Papers, 2005 Symposium on VLSI Circuits, Kyoto, Japan, (July, 2005). https://doi.org/10.1109/VLSIC.2005.1469392
A. Ortiz-Conde, F.G. Sanchez, Multi-gate 3-D SOI MOSFETs as the mainstream technology in high speed CMOS applications. The 11th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications, Orlando, FL, USA, (January, 2003). https://doi.org/10.1109/EDMO.2003.1260004
R. Wodnicki, G.W. Roberts, M.D. Levine, A foveated image sensor in standard CMOS technology. Proceedings of the IEEE 1995 Custom Integrated Circuits Conference, Santa Clara, CA, USA (August, 1995). https://doi.org/10.1109/CICC.1995.518202
J. Nakamura, S. Kemeny, E. Fossum, CMOS active pixel image sensor with simple floating gate pixels. IEEE Trans. Electron Devices 42(9), 1693–1694 (1995). https://doi.org/10.1109/16.405286
S.Y. Lee, D.K. Schroder, 3D IC architecture for high density memories. 2010 IEEE International Memory Workshop, Seoul, Korea (June, 2010). https://doi.org/10.1109/IMW.2010.5488391
T. Furuyama, Y. Watanabe, T. Ohsawa, S. Watanabe, A new on-chip converter for submicrometer high-density DRAMs. IEEE J. Solid-State Circuits 22(3), 437–441 (1987). https://doi.org/10.1109/JSSC.1987.1052744
Z.J. Shen, D.N. Okada, F. Lin, S. Anderson, X. Cheng, Lateral power MOSFET for megahertz-frequency, high-density DC/DC converters. IEEE Trans. Power Electron. 21(1), 11–17 (2006). https://doi.org/10.1109/TPEL.2005.861111
T. López, E. Alarcon, Power MOSFET technology roadmap toward high power density voltage regulators for next-generation computer processors. IEEE Trans. Power Electron. 27(4), 2193–2203 (2011). https://doi.org/10.1109/TPEL.2011.2165343
P. Livi, G. Indiveri, A current-mode conductance-based silicon neuron for address-event neuromorphic systems. 2009 IEEE International Symposium on Circuits and Systems (2009), pp. 2898–2901. https://doi.org/10.1109/ISCAS.2009.5118408
L. Zhang, Q. Lai, Y. Chen, Configurable neural phase shifter with spike-timing-dependent plasticity. IEEE Electron Device Lett. 31(7), 716–718 (2010). https://doi.org/10.1109/LED.2010.2049558
A.B. Sachid, S.B. Desai, A. Javey, C. Hu, High-gain monolithic 3D CMOS inverter using layered semiconductors. Appl. Phys. Lett. 111(22), 222101 (2017). https://doi.org/10.1063/1.5004669
J. Tang, Q. Wang, Z. Wei, C. Shen, X. Lu et al., Vertical integration of 2D building blocks for all-2D electronics. Adv. Electron. Mater. 6(12), 2000550 (2020). https://doi.org/10.1002/aelm.202000550
X. Xiong, A. Tong, X. Wang, S. Liu, X. Li et al., Demonstration of vertically-stacked CVD monolayer channels: MoS2 nanosheets GAA-FET with ion >700 µA/µm and MoS2/WSe2 CFET. 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA (December, 2021). https://doi.org/10.1109/IEDM19574.2021.9720533
Y.J. Choi, S. Kim, H.J. Woo, Y.J. Song, Y. Lee et al., Remote gating of Schottky barrier for transistors and their vertical integration. ACS Nano 13(7), 7877–7885 (2019). https://doi.org/10.1021/acsnano.9b02243
S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras et al., Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 11(6), 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
P.S. Kanhaiya, G. Hills, D.A. Antoniadis, M.M. Shulaker, DISC-FETs: dual independent stacked channel field-effect transistors. IEEE Electron Device Lett. 39(8), 1250–1253 (2018). https://doi.org/10.1109/led.2018.2851191
M.M. Shulaker, G. Hills, R.S. Park, R.T. Howe, K. Saraswat et al., Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547(7661), 74–78 (2017). https://doi.org/10.1038/nature22994
J. Deng, X. Li, M. Li, X. Wang, S. Shao et al., Fabrication and electrical properties of printed three-dimensional integrated carbon nanotube PMOS inverters on flexible substrates. Nanoscale 14(12), 4679–4689 (2022). https://doi.org/10.1039/D1NR08056C
J.B. Kim, C. Fuentes-Hernandez, D.K. Hwang, S.P. Tiwari, W.J. Potscavage et al., Vertically stacked complementary inverters with solution-processed organic semiconductors. Org. Electron. 12(7), 1132–1136 (2011). https://doi.org/10.1016/j.orgel.2011.04.007
A. Hübler, G. Schmidt, H. Kempa, K. Reuter, M. Hambsch et al., Three-dimensional integrated circuit using printed electronics. Org. Electron. 12(3), 419–423 (2011). https://doi.org/10.1016/j.orgel.2010.12.010
B. Peng, X. Ren, Z. Wang, X. Wang, R.C. Roberts et al., High performance organic transistor active-matrix driver developed on paper substrate. Sci. Rep. 4, 6430 (2014). https://doi.org/10.1038/srep06430
S.M. Seo, C. Baek, H.H. Lee, Stacking of organic thin film transistors: vertical integration. Adv. Mater. 20(10), 1994–1997 (2008). https://doi.org/10.1002/adma.200701770
A. Dindar, J. Kim, C. Fuentes-Hernandez, B. Kippelen, Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Appl. Phys. Lett. 99(17), 172104 (2011). https://doi.org/10.1063/1.3656974
H.J. Joo, M.G. Shin, H.S. Jung, H.S. Cha, D. Nam et al., Oxide thin-film transistor-based vertically stacked complementary inverter for logic and photo-sensor operations. Materials 12(23), 3815 (2019). https://doi.org/10.3390/ma12233815
K. Kudo, I. Kodera, R. Aino, H. Yamauchi, S. Kuniyoshi et al., Fabrication of stacked logic circuits for printed integrated circuits. Jpn. J. Appl. Phys. 53(5), 05HB08 (2014). https://doi.org/10.7567/JJAP.53.05HB08
C.H. Park, H.S. Lee, K.H. Lee, D.H. Kim, H.R. Kim et al., Organic/oxide hybrid complementary thin-film transistor inverter in vertical stack for logic, photo-gating, and ferroelectric memory operation. Org. Electron. 12(9), 1533–1538 (2011). https://doi.org/10.1016/j.orgel.2011.06.001
F. Shiono, H. Abe, T. Nagase, T. Kobayashi, H. Naito, Optical memory characteristics of solution-processed organic transistors with self-organized organic floating gates for printable multi-level storage devices. Org. Electron. 67, 109–115 (2019). https://doi.org/10.1016/j.orgel.2019.01.009
V. Raghuwanshi, D. Bharti, A.K. Mahato, I. Varun, S.P. Tiwari, Solution-processed organic field-effect transistors with high performance and stability on paper substrates. ACS Appl. Mater. Interfaces 11(8), 8357–8364 (2019). https://doi.org/10.1021/acsami.8b21404
S.D. Ogier, H. Matsui, L. Feng, M. Simms, M. Mashayekhi et al., Uniform, high performance, solution processed organic thin-film transistors integrated in 1 MHz frequency ring oscillators. Org. Electron. 54, 40–47 (2018). https://doi.org/10.1016/j.orgel.2017.12.005
X. Wang, P. Yu, Z. Lei, C. Zhu, X. Cao et al., Van der Waals negative capacitance transistors. Nat. Commun. 10, 3037 (2019). https://doi.org/10.1038/s41467-019-10738-4
C. Zhao, C. Tan, D.H. Lien, X. Song, M. Amani et al., Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 15(1), 53–58 (2020). https://doi.org/10.1038/s41565-019-0585-9
H.J. Kim, A.R. Han, C.H. Cho, H. Kang, H.H. Cho et al., Solvent-resistant organic transistors and thermally stable organic photovoltaics based on cross-linkable conjugated polymers. Chem. Mater. 24(1), 215–221 (2012). https://doi.org/10.1021/cm203058p
T. Yokota, K. Kuribara, T. Tokuhara, U. Zschieschang, H. Klauk et al., Flexible low-voltage organic transistors with high thermal stability at 250 °C. Adv. Mater. 25(27), 3639–3644 (2013). https://doi.org/10.1002/adma.201300941
K. Kuribara, H. Wang, N. Uchiyama, K. Fukuda, T. Yokota et al., Organic transistors with high thermal stability for medical applications. Nat. Commun. 3, 723 (2012). https://doi.org/10.1038/ncomms1721
T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi et al., A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. PNAS 101(27), 9966–9970 (2004). https://doi.org/10.1073/pnas.0401918101
T. Kawase, H. Sirringhaus, R.H. Friend, T. Shimoda, Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits. Adv. Mater. 13(21), 1601–1605 (2001). https://doi.org/10.1002/1521-4095(200111)13:21%3c1601::AID-ADMA1601%3e3.0.CO;2-X
D. Khim, K.J. Baeg, M. Kang, S.H. Lee, N.K. Kim et al., Inkjet-printing-based soft-etching technique for high-speed polymer ambipolar integrated circuits. ACS Appl. Mater. Interfaces 5(23), 12579–12586 (2013). https://doi.org/10.1021/am4039008
H. Yoo, H. Park, S. Yoo, S. On, H. Seong et al., Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects. Nat. Commun. 10, 2424 (2019). https://doi.org/10.1038/s41467-019-10412-9
S.J. Yu, K. Pak, M.J. Kwak, M. Joo, B.J. Kim et al., Initiated chemical vapor deposition: a versatile tool for various device applications. Adv. Eng. Mater. 20(3), 1700622 (2018). https://doi.org/10.1002/adem.201700622
H. Moon, H. Seong, W.C. Shin, W.T. Park, M. Kim et al., Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 14(6), 628–635 (2015). https://doi.org/10.1038/nmat4237
J. Choi, J. Kang, C. Lee, K. Jeong, S.G. Im, Heavily crosslinked, high-k ultrathin polymer dielectrics for flexible, low-power organic thin-film transistors (OTFTs). Adv. Electron. Mater. 6(8), 2000314 (2020). https://doi.org/10.1002/aelm.202000314
J. Xu, S. Wang, G.J.N. Wang, C. Zhu, S. Luo et al., Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355(6320), 59–64 (2017). https://doi.org/10.1126/science.aah4496
M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara et al., An ultra-lightweight design for imperceptible plastic electronics. Nature 499(7459), 458–463 (2013). https://doi.org/10.1038/nature12314
Y. Zhou, T. Lei, L. Wang, J. Pei, Y. Cao et al., High-performance organic field-effect transistors from organic single-crystal microribbons formed by a solution process. Adv. Mater. 22(13), 1484–1487 (2010). https://doi.org/10.1002/adma.200904171
H. Ren, N. Cui, Q. Tang, Y. Tong, X. Zhao et al., High-performance, ultrathin, ultraflexible organic thin-film transistor array via solution process. Small 14(33), 1801020 (2018). https://doi.org/10.1002/smll.201801020
H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda et al., Highly soluble [1]Benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 129(51), 15732–15733 (2007). https://doi.org/10.1021/ja074841i
A.F. Paterson, S. Singh, K.J. Fallon, T. Hodsden, Y. Han et al., Recent progress in high-mobility organic transistors: a reality check. Adv. Mater. 30(36), 1801079 (2018). https://doi.org/10.1002/adma.201801079
C.S. Kim, S. Lee, E.D. Gomez, J.E. Anthony, Y.L. Loo, Solvent-dependent electrical characteristics and stability of organic thin-film transistors with drop cast bis(triisopropylsilylethynyl) pentacene. Appl. Phys. Lett. 93(10), 327 (2008). https://doi.org/10.1063/1.2979691
E.K. Lee, M.Y. Lee, C.H. Park, H.R. Lee, J.H. Oh, Toward environmentally robust organic electronics: approaches and applications. Adv. Mater. 29(44), 1703638 (2017). https://doi.org/10.1002/adma.201703638
T. Okamoto, S. Kumagai, E. Fukuzaki, H. Ishii, G. Watanabe et al., Robust, high-performance n-type organic semiconductors. Sci. Adv. 6(18), eaaz632 (2020). https://doi.org/10.1126/sciadv.aaz0632
J.T. Quinn, J. Zhu, X. Li, J. Wang, Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C 5(34), 8654–8681 (2017). https://doi.org/10.1039/C7TC01680H
R.D. Pietro, D. Fazzi, T.B. Kehoe, H. Sirringhaus, Spectroscopic investigation of oxygen- and water-induced electron trapping and charge transport instabilities in n-type polymer semiconductors. J. Am. Chem. Soc. 134(36), 14877–14889 (2012). https://doi.org/10.1021/ja304198e
H. Yoo, M. Ghittorelli, D.K. Lee, E.C.P. Smits, G.H. Gelinck et al., Balancing hole and electron conduction in ambipolar split-gate thin-film transistors. Sci. Rep. 7(1), 5015 (2017). https://doi.org/10.1038/s41598-017-04933-w
H. Yoo, S.B. Lee, D.K. Lee, E.C.P. Smits, G.H. Gelinck et al., Top-split-gate ambipolar organic thin-film transistors. Adv. Electron. Mater. 4(5), 1700536 (2018). https://doi.org/10.1002/aelm.201700536
J.H. Park, H.S. Lee, J. Lee, K. Lee, G. Lee et al., Stability-improved organic n-channel thin-film transistors with nm-thin hydrophobic polymer-coated high-k dielectrics. Phys. Chem. Chem. Phys. 14(41), 14202–14206 (2012). https://doi.org/10.1039/c2cp41544e
C. Baek, S. Seo, Vertical organic inverter with stacked pentacene thin film transistors. Appl. Phys. Lett. 94(15), 153305 (2009). https://doi.org/10.1063/1.3120568
R. Hamilton, J. Smith, S. Ogier, M. Heeney, J.E. Anthony et al., High-performance polymer-small molecule blend organic transistors. Adv. Mater. 21(10–11), 1166–1171 (2009). https://doi.org/10.1002/adma.200801725
S.H. Kim, S. Nam, J. Jang, K. Hong, C. Yang et al., Effect of the hydrophobicity and thickness of polymer gate dielectrics on the hysteresis behavior of pentacene-based field-effect transistors. J. Appl. Phys. 105(10), 104509 (2009). https://doi.org/10.1063/1.3131664
J.M. Kim, J. Oh, K.M. Jung, K. Park, J.H. Jeon et al., Ultrathin flexible thin film transistors with CYTOP encapsulation by debonding process. Semicond. Sci. Technol. 34(7), 075015 (2019). https://doi.org/10.1088/1361-6641/ab2201
L. Wang, C. Ruan, M. Li, J. Zou, H. Tao et al., Enhanced moisture barrier performance for ALD-encapsulated OLEDs by introducing an organic protective layer. J. Mater. Chem. C 5(16), 4017–4024 (2017). https://doi.org/10.1039/C7TC00903H
D.K. Hwang, C. Fuentes-Hernandez, J. Kim, W.J. Potscavage, S.J. Kim et al., Top-gate organic field-effect transistors with high environmental and operational stability. Adv. Mater. 23(10), 1293–1298 (2011). https://doi.org/10.1002/adma.201004278
X. Jia, C. Fuentes-Hernandez, C.Y. Wang, Y. Park, B. Kippelen, Stable organic thin-film transistors. Sci. Adv. 4(1), eaao705 (2018). https://doi.org/10.1126/sciadv.aao1705
J. Jakabovič, J. Kováč, M. Weis, D. Haško, R. Srnánek et al., Preparation and properties of thin parylene layers as the gate dielectrics for organic field effect transistors. Microelectron. J. 40(3), 595–597 (2009). https://doi.org/10.1016/j.mejo.2008.06.029
K. Fukuda, Y. Takeda, Y. Yoshimura, R. Shiwaku, L.T. Tran et al., Fully-printed high-performance organic thin-film transistors and circuitry on one-micron-thick polymer films. Nat. Commun. 5, 4147 (2014). https://doi.org/10.1038/ncomms5147
T. Marszalek, M. Gazicki-Lipman, J. Ulanski, Parylene C as a versatile dielectric material for organic field-effect transistors. c J. Nanotechnol. 8(1), 1532–1545 (2017). https://doi.org/10.3762/bjnano.8.155
Y. Takeda, K. Hayasaka, R. Shiwaku, K. Yokosawa, T. Shiba et al., Fabrication of ultra-thin printed organic TFT CMOS logic circuits optimized for low-voltage wearable sensor applications. Sci. Rep. 6, 25714 (2016). https://doi.org/10.1038/srep25714
L. Feng, C. Jiang, H. Ma, X. Guo, A. Nathan, All ink-jet printed low-voltage organic field-effect transistors on flexible substrate. Org. Electron. 38, 186–192 (2016). https://doi.org/10.1016/j.orgel.2016.08.019
G. Mattana, A. Loi, M. Woytasik, M. Barbaro, V. Noël et al., All ink-jet printed low-voltage organic field-effect transistors on flexible substrate. Adv. Mater. Technol. 2(10), 1700063 (2017). https://doi.org/10.1002/admt.201700063
S. Chung, K. Cho, T. Lee, Recent progress in inkjet-printed thin-film transistors. Adv. Sci. 6(6), 1801445 (2019). https://doi.org/10.1002/advs.201801445
J. Kwon, Y. Takeda, K. Fukuda, K. Cho, S. Tokito et al., Three-dimensional, inkjet-printed organic transistors and integrated circuits with 100% yield, high uniformity, and long-term stability. ACS Nano 10(11), 10324–10330 (2016). https://doi.org/10.1021/acsnano.6b06041
J. Kwon, S. Kyung, S. Yoon, J.J. Kim, S. Jung, Solution-processed vertically stacked complementary organic circuits with inkjet-printed routing. Adv. Sci. 3(5), 1500439 (2016). https://doi.org/10.1002/advs.201500439
J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho et al., Three-dimensional monolithic integration in flexible printed organic transistors. Nat. Commun. 10, 54 (2019). https://doi.org/10.1038/s41467-018-07904-5
H. Zhu, E.S. Shin, A. Liu, D. Ji, Y. Xu et al., Printable semiconductors for backplane TFTs of flexible OLED displays. Adv. Funct. Mater. 30(20), 1904588 (2020). https://doi.org/10.1002/adfm.201904588
H. Chen, Y. Cao, J. Zhang, C. Zhou, Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nat. Commun. 5, 4097 (2014). https://doi.org/10.1038/ncomms5097
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004). https://doi.org/10.1038/nature03090
W. Shi, L. Hu, Y. Liu, S. Deng, Y. Xu et al., Arithmetic and logic circuits based on ITO-stabilized ZnO TFT for transparent electronics. IEEE Trans. Circuits Syst. I 69(1), 356–365 (2021). https://doi.org/10.1109/TCSI.2021.3100138
Y. Zhang, Z. Mei, S. Cui, H. Liang, Y. Liu et al., Flexible transparent field-effect diodes fabricated at low-temperature with all-oxide materials. Adv. Electron. Mater. 2(5), 1500486 (2016). https://doi.org/10.1002/aelm.201500486
Q. Ma, H.M. Zheng, Y. Shao, B. Zhu, W.J. Liu et al., Atomic-layer-deposition of indium oxide nano-films for thin-film transistors. Nanoscale Res. Lett. 13(1), 4 (2018). https://doi.org/10.1186/s11671-017-2414-0
J. Lee, J. Moon, J.E. Pi, S.D. Ahn, H. Oh et al., High mobility ultra-thin crystalline indium oxide thin film transistor using atomic layer deposition. Appl. Phys. Lett. 113(11), 112102 (2018). https://doi.org/10.1063/1.5041029
K.L. Han, W.B. Lee, Y.D. Kim, J.H. Kim, B.D. Choi et al., Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application. ACS Appl. Electron. Mater. 3(11), 5037–5047 (2021). https://doi.org/10.1021/acsaelm.1c00806
J. Liu, W. Tang, Y. Liu, H. Yang, X. Li, Almost-nonvolatile IGZO-TFT-based near-sensor in-memory computing. 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea (April, 2021). https://doi.org/10.1109/ISCAS51556.2021.9401719
Y. Jianke, X. Ningsheng, D. Shaozhi, C. Jun, S. Juncong et al., Electrical and photosensitive characteristics of a-IGZO TFTs related to oxygen vacancy. IEEE Trans. Electron Devices 58(4), 1121–1126 (2011). https://doi.org/10.1109/ted.2011.2105879
W. Li, J. Shi, K.H. Zhang, J.L. MacManus-Driscoll, Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities. Mater. Horiz. 7(11), 2832–2859 (2020). https://doi.org/10.1039/D0MH00899K
Y. Yang, J. Yang, W. Yin, F. Huang, A. Cui et al., Annealing time modulated the film microstructures and electrical properties of P-type CuO field effect transistors. Appl. Surf. Sci. 481, 632–636 (2019). https://doi.org/10.1016/j.apsusc.2019.03.130
W. Maeng, S.H. Lee, J.D. Kwon, J. Park, J.S. Park, Atomic layer deposited p-type copper oxide thin films and the associated thin film transistor properties. Ceram. Int. 42(4), 5517–5522 (2016). https://doi.org/10.1016/j.ceramint.2015.12.109
H.M. Kim, S.H. Choi, H.J. Jeong, J.H. Lee, J. Kim et al., Highly dense and stable p-type thin-film transistor based on atomic layer deposition SnO fabricated by two-step crystallization. ACS Appl. Mater. Interfaces 13(26), 30818–30825 (2021). https://doi.org/10.1021/acsami.1c06038
S.Y. Ahn, S.C. Jang, A. Song, K.B. Chung, Y.J. Kim et al., Performance enhancement of p-type SnO semiconductors via SiOx passivation. Mater. Today Commun. 26, 101747 (2021). https://doi.org/10.1016/j.mtcomm.2020.101747
S. Lee, Y. Chen, J. Kim, J. Jang, Vertically integrated, double stack oxide TFT layers for high-resolution AMOLED backplane. J. Soc. Inf. Display 28(6), 469–475 (2020). https://doi.org/10.1002/jsid.907
K. Nomura, T. Aoki, K. Nakamura, T. Kamiya, T. Nakanishi et al., Three-dimensionally stacked flexible integrated circuit: amorphous oxide/polymer hybrid complementary inverter using n-type a-In-Ga-Zn-O and p-type poly-(9,9-dioctylfluorene-co-bithiophene) thin-film transistors. Appl. Phys. Lett. 96(26), 263509 (2010). https://doi.org/10.1063/1.3458799
J. Kim, C. Fuentes-Hernandez, D. Hwang, W. Potscavage, H. Cheun et al., Vertically stacked hybrid organic-inorganic complementary inverters with low operating voltage on flexible substrates. Org. Electron. 12(1), 45–50 (2011). https://doi.org/10.1016/j.orgel.2010.10.012
A. Molina-Sánchez, K. Hummer, L. Wirtz, Vibrational and optical properties of MoS2: from monolayer to bulk. Surf. Sci. Rep. 70(4), 554–586 (2015). https://doi.org/10.1016/j.surfrep.2015.10.001
J. Jiang, K. Parto, W. Cao, K. Banerjee, Monolithic-3D integration with 2D materials: Toward ultimate vertically-scaled 3D-IC. 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Burlingame, CA, USA (October, 2018). https://doi.org/10.1109/S3S.2018.8640131
J. Jiang, K. Parto, W. Cao, K. Banerjee, Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 7, 878–887 (2019). https://doi.org/10.1109/JEDS.2019.2925150
K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656–660 (2015). https://doi.org/10.1038/nature14417
R. Zhou, J. Appenzeller, Three-dimensional integration of multi-channel MoS2 devices for high drive current FETs. 2018 76th Device Research Conference (DRC), Santa Barbara, CA, USA (June, 2018). https://doi.org/10.1109/DRC.2018.8442137
W.J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang et al., Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12(3), 246–252 (2013). https://doi.org/10.1038/nmat3518
A.B. Sachid, M. Tosun, S.B. Desai, C.Y. Hsu, D.H. Lien et al., Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 28(13), 2547–2554 (2016). https://doi.org/10.1002/adma.201505113
C.C. Yang, K.C. Chiu, C.T. Chou, C.N. Liao, M.H. Chuang et al., Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC. 2016 IEEE Symposium on VlSI Technology, Honolulu, HI, USA (June, 2016). https://doi.org/10.1109/VLSIT.2016.7573448
J. Xia, J. Zhao, H. Meng, Q. Huang, G. Dong et al., Performance enhancement of carbon nanotube thin film transistor by yttrium oxide capping. Nanoscale 10(9), 4202–4208 (2018). https://doi.org/10.1039/c7nr08676h
T.J. Ha, K. Chen, S. Chuang, K.M. Yu, D. Kiriya et al., Highly uniform and stable n-type carbon nanotube transistors by using positively charged silicon nitride thin films. Nano Lett. 15(1), 392–397 (2015). https://doi.org/10.1021/nl5037098
W. Honda, S. Harada, S. Ishida, T. Arie, S. Akita et al., High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv. Mater. 27(32), 4674–4680 (2015). https://doi.org/10.1002/adma.201502116
T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer et al., Organic nonvolatile memory transistors for flexible sensor arrays. Science 326(5959), 1516–1519 (2009). https://doi.org/10.1126/science.1179963
C.M. Boutry, Y. Kaizawa, B.C. Schroeder, A. Chortos, A. Legrand et al., A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1(5), 314–321 (2018). https://doi.org/10.1038/s41928-018-0071-7
M.Y. Lee, H.R. Lee, C.H. Park, S.G. Han, J.H. Oh, Organic transistor-based chemical sensors for wearable bioelectronics. Acc. Chem. Res. 51(11), 2829–2838 (2018). https://doi.org/10.1021/acs.accounts.8b00465
P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24(1), 34–51 (2012). https://doi.org/10.1002/adma.201103334
J. Li, R. Bao, J. Tao, Y. Peng, C. Pan et al., Recent progress in flexible pressure sensor arrays: from design to applications. J. Mater. Chem. C 6(44), 11878–11892 (2018). https://doi.org/10.1039/C8TC02946F
H. Li, W. Shi, J. Song, H.J. Jang, J. Dailey et al., Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev. 119(1), 3–35 (2018). https://doi.org/10.1021/acs.chemrev.8b00016
W. Shi, Y. Guo, Y. Liu, When flexible organic field-effect transistors meet biomimetics: a prospective view of the internet of things. Adv. Mater. 32(15), 1901493 (2020). https://doi.org/10.1002/adma.201901493
S.H. Kim, G.W. Baek, J. Yoon, S. Seo, J. Park et al., A bioinspired stretchable sensory-neuromorphic system. Adv. Mater. 33(44), 2104690 (2021). https://doi.org/10.1002/adma.202104690
S.W. Jeong, J.W. Jeong, S. Chang, S.Y. Kang, K.I. Cho et al., The vertically stacked organic sensor-transistor on a flexible substrate. Appl. Phys. Lett. 97(25), 279 (2010). https://doi.org/10.1063/1.3530448
S.L. Hurst, Multiple-valued logic—its status and its future. IEEE Trans. Comput. 33(12), 1160–1179 (1984). https://doi.org/10.1109/TC.1984.1676392
J. Choi, C. Lee, C. Lee, H. Park, S.M. Lee et al., Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors. Nat. Commun. 13, 2305 (2022). https://doi.org/10.1038/s41467-022-29756-w
T. Brody, F.C. Luo, Z.P. Szepesi, D.H. Davies, A 6×6-in 20-lpi electroluminescent display panel. IEEE Trans. Electron Devices 22(9), 739–748 (1975). https://doi.org/10.1109/T-ED.1975.18214
C.N. King, Electroluminescent displays. J. Vac. Sci. Technol. A 14(3), 1729–1735 (1996). https://doi.org/10.1116/1.580328
W. Meng, F. Xu, Z. Yu, T. Tao, L. Shao et al., Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat. Nanotechnol. 16(11), 1231–1236 (2021). https://doi.org/10.1038/s41565-021-00966-5
J. Bauri, R.B. Choudhary, G. Mandal, Recent advances in efficient emissive materials-based OLED applications: a review. J. Mater. Sci. 56(34), 18837–18866 (2021). https://doi.org/10.1007/s10853-021-06503-y
E.L. Hsiang, Z. Yang, Q. Yang, Y.F. Lan, S.T. Wu, Prospects and challenges of mini-LED, OLED, and micro-LED displays. J. Soc. Inf. Display 29(6), 446–465 (2021). https://doi.org/10.1002/jsid.1058
S. Choi, C. Kang, C.W. Byun, H. Cho et al., Thin-film transistor-driven vertically stacked full-color organic light-emitting diodes for high-resolution active-matrix displays. Nat. Commun. 11, 2732 (2020). https://doi.org/10.1038/s41467-020-16551-8
S. Kyung, J. Kwon, Y.H. Kim, S. Jung, Low-temperature, solution-processed, 3-D complementary organic FETs on flexible substrate. IEEE Trans. Electron Devices 64(5), 1955–1959 (2017). https://doi.org/10.1109/ted.2017.2659741
W. Kim, S. Jung, Static response of three-dimensional and printed complementary organic TFTs-based static random-access memory. IEEE Electron Device Lett. 43(3), 438–441 (2022). https://doi.org/10.1109/led.2022.3147520