Supramolecular Polymer Intertwined Free-Standing Bifunctional Membrane Catalysts for All-Temperature Flexible Zn–Air Batteries
Corresponding Author: Jung‑Ho Lee
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 190
Abstract
Rational construction of flexible free-standing electrocatalysts featuring long-lasting durability, high efficiency, and wide temperature tolerance under harsh practical operations are fundamentally significant for commercial zinc–air batteries. Here, 3D flexible free-standing bifunctional membrane electrocatalysts composed of covalently cross-linked supramolecular polymer networks with nitrogen-deficient carbon nitride nanotubes are fabricated (referred to as PEMAC@NDCN) by a facile self-templated approach. PEMAC@NDCN demonstrates the lowest reversible oxygen bifunctional activity of 0.61 V with exceptional long-lasting durability, which outperforms those of commercial Pt/C and RuO2. Theoretical calculations and control experiments reveal the boosted electron transfer, electrolyte mass/ion transports, and abundant active surface site preferences. Moreover, the constructed alkaline Zn–air battery with PEMAC@NDCN air–cathode reveals superb power density, capacity, and discharge–charge cycling stability (over 2160 cycles) compared to the reference Pt/C + RuO2. Solid-state Zn–air batteries enable a high power density of 211 mW cm−2, energy density of 1056 Wh kg−1, stable charge–discharge cycling of 2580 cycles for 50 mA cm−2, and wide temperature tolerance from − 40 to 70 °C with retention of 86% capacity compared to room-temperature counterparts, illustrating prospects over harsh operations.
Highlights:
1 Rational design of 3D flexible free-standing membrane catalysts with protonation between supramolecular polymers and nitrogen-deficient carbon nitride nanotubes frameworks via facile bottom-up self-conversion approach.
2 PEMAC@NDCN demonstrates the lowest reversible oxygen bifunctional activity of 0.61 V with exceptional long-lasting durability, surpassing the commercial and reported champion oxygen catalysts.
3 Engineering catalytically active cathode materials enabled all-temperature flexible Zn–air batteries with high electrochemical and mechanical performances (temperature of − 40 to 70 °C) under harsh operations.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Shinde, J. Jung, N. Wagh, C. Lee, D. Kim et al., Ampere-hour-scale zinc–air pouch cells. Nat. Energy 6, 592–604 (2021). https://doi.org/10.1038/s41560-021-00807-8
- S. Shinde, C. Lee, J. Jung, N. Wagh, S. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 12, 727–738 (2019). https://doi.org/10.1039/c8ee02679c
- T. Cui, Y. Wang, T. Ye, J. Wu, Z. Chen et al., Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc–air battery. Angew. Chem. Int. Ed. 61(12), e202115219 (2022). https://doi.org/10.1002/anie.202115219
- J. Liu, M. Wang, C. Gu, J. Li, Y. Liang et al., Supramolecular gel-derived highly efficient bifunctional catalysts for omnidirectionally stretchable Zn–air batteries with extreme environmental adaptability. Adv. Sci. 9(20), 2200753 (2022). https://doi.org/10.1002/advs.202200753
- C. Lai, H. Li, Y. Sheng, M. Zhou, W. Wang et al., 3D spatial combination of CN vacancy-mediated NiFe-PBA with N-doped carbon nanofibers network toward free-standing bifunctional electrode for Zn–air batteries. Adv. Sci. 9(11), 2105925 (2022). https://doi.org/10.1002/advs.202105925
- X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 892–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
- L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou et al., Atomic Fe–N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn–air batteries with stable cycling over 1000 h. Adv. Mater. 34(5), 2105410 (2022). https://doi.org/10.1002/adma.202105410
- J. Jiang, J. Liu, Iron anode-based aqueous electrochemical energy storage devices: recent advances and future perspectives. Interdiscip. Mater. 1, 116–139 (2022). https://doi.org/10.1002/idm2.12007
- N. Wagh, D. Kim, S. Kim, S. Shinde, J. Lee, Heuristic iron–cobalt-mediated robust pH-universal oxygen bifunctional lusters for reversible aqueous and flexible solid-state Zn–air cells. ACS Nano 15(9), 14683–14696 (2021). https://doi.org/10.1021/acsnano.1c04471
- C. Gu, X. Xie, Y. Liang, J. Li, H. Wang et al., Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn–air batteries working from -50 to 100 °C. Energy Environ. Sci. 14, 4451 (2021). https://doi.org/10.1039/d1ee01134k
- M. Zhao, H. Liu, H. Zhang, W. Chen, H. Sun et al., A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy Environ. Sci. 14, 6455 (2021). https://doi.org/10.1039/d1ee01602d
- Y. Niu, X. Teng, S. Gong, M. Xu, S. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
- P. Liu, J. Ran, B. Xia, S. Xi, D. Gao et al., Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn–air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- S. Shinde, J. Yu, J. Song, Y. Nam, D. Kim et al., Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn–air batteries. Nanoscale Horiz. 2, 333–341 (2017). https://doi.org/10.1039/C7NH00058H
- Y. Han, H. Duan, C. Zhou, H. Meng, Q. Jiang et al., Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc−air batteries. Nano Lett. 22, 2497–2505 (2022). https://doi.org/10.1021/acs.nanolett.2c00278
- S. Sarkar, A. Biswas, E. Siddharthan, R. Thapa, R. Dey, Strategic modulation of target-specific isolated Fe, Co single-atom active sites for oxygen electrocatalysis impacting high power Zn−air battery. ACS Nano 16(5), 7890–7903 (2022). https://doi.org/10.1021/acsnano.2c00547
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc–air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2022). https://doi.org/10.1007/s40820-021-00768-3
- Z. Li, J. Yang, X. Ge, Y. Deng, G. Jiang et al., Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn–air batteries. Nano Energy 89, 106314 (2021). https://doi.org/10.1016/j.nanoen.2021.106314
- Y. Wu, C. Ye, L. Yu, Y. Liu, J. Huang et al., Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn–air batteries. Energy Storage Mater. 45, 805–813 (2022). https://doi.org/10.1016/j.ensm.2021.12.029
- Y. Jiang, Y. Deng, R. Liang, J. Fu, D. Luo et al., Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn–air batteries. Adv. Energy Mater. 9(24), 1900911 (2019). https://doi.org/10.1002/aenm.201900911
- T. Tam, S. Kang, M. Kim, S. Lee, S. Hur et al., Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn–air batteries and overall water splitting. Adv. Energy Mater. 9(26), 1900945 (2019). https://doi.org/10.1002/aenm.201900945
- Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn–air batteries. Adv. Mater. 28(15), 3000–3006 (2016). https://doi.org/10.1002/adma.201506112
- Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu et al., Sulfuration of an Fe–N–C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn–air batteries. Adv. Mater. 30(46), 1804504 (2018). https://doi.org/10.1002/adma.201804504
- N. Wagh, S. Shinde, C. Lee, J. Jung, D. Kim et al., Densely colonized isolated Cu-N single sites for efficient bifunctional electrocatalysts and rechargeable advanced Zn–air batteries. Appl. Catal. B Environ. 268, 118746 (2020). https://doi.org/10.1016/j.apcatb.2020.118746
- S. Shinde, C. Lee, A. Sami, D. Kim, S. Lee et al., Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11(1), 347–357 (2017). https://doi.org/10.1021/acsnano.6b05914
- S. Shinde, C. Lee, J. Yu, D. Kim, S. Lee et al., Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn–air batteries. ACS Nano 12(1), 596–608 (2018). https://doi.org/10.1021/acsnano.7b07473
- Z. Seh, J. Kibsgaard, C. Dickens, I. Chorkendorff, J. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen et al., Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28(43), 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
- C. Liu, F. Liu, H. Li, J. Chen, J. Fei et al., One-dimensional van der Waals heterostructures as efficient metal-free oxygen electrocatalysts. ACS Nano 15(2), 3309–3319 (2021). https://doi.org/10.1021/acsnano.0c10242
- W. Niu, K. Marcus, L. Zhou, Z. Li, L. Shi et al., Enhancing electron transfer and electrocatalytic activity on crystalline carbon-conjugated g-C3N4. ACS Catal. 8(3), 1926–1931 (2018). https://doi.org/10.1021/acscatal.8b00026
- K. Kim, K. Min, Y. Go, Y. Lee, S. Shim et al., FeCo alloy nanops embedded in N-doped carbon supported on highly defective ketjenblack as effective bifunctional electrocatalysts for rechargeable Zn–air batteries. Appl. Catal. B Environ. 315, 121501 (2022). https://doi.org/10.1016/j.apcatb.2022.121501
- Y. Chang, N. Shi, S. Zhao, D. Xu, C. Liu et al., Coralloid Co2P2O7 nanocrystals encapsulated by thin carbon shells for enhanced electrochemical water oxidation. ACS Appl. Mater. Interfaces 8(34), 22534–22544 (2016). https://doi.org/10.1021/acsami.6b07209
- N. Sahoo, S. Rana, J. Cho, L. Li, S. Chan, Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010). https://doi.org/10.1016/j.progpolymsci.2010.03.002
- Y. Zhang, X. Fan, J. Jian, D. Yu, Z. Zhang et al., A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes. Energy Environ. Sci. 10, 2312–2317 (2017). https://doi.org/10.1039/c7ee01702b
- B. Li, S. Zhang, B. Wang, Z. Xia, C. Tang et al., A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy Environ. Sci. 11, 1723–1729 (2018). https://doi.org/10.1039/c8ee00977e
- Z. Zhang, X. Zhao, S. Xi, L. Zhang, Z. Chen et al., Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn–air battery and self-driven water splitting. Adv. Energy Mater. 10(48), 2002896 (2020). https://doi.org/10.1002/aenm.202002896
- X. Wei, X. Luo, H. Wang, W. Gu, W. Cai et al., Highly-defective Fe–N–C catalysts towards pH-Universal oxygen reduction reaction. Appl. Catal. B Environ. 263, 118347 (2020). https://doi.org/10.1016/j.apcatb.2019.118347
- Z. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou et al., Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 31(12), 1808043 (2019). https://doi.org/10.1002/adma.201808043
- C. Hu, S.L. Bai, L. Gao, S. Liang, J. Yang et al., Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts. ACS Catal. 9(12), 11579–11588 (2019). https://doi.org/10.1021/acscatal.9b03175
- L. Zhang, J. Xiong, Y.H. Qin, C.W. Wang, Porous N–C catalyst synthesized by pyrolyzing g-C3N4 embedded in carbon as highly efficient oxygen reduction electrocatalysts for primary Zn–air battery. Carbon 150, 475–484 (2019). https://doi.org/10.1016/j.carbon.2019.05.044
- H. Zhang, M. Zhao, H. Liu, S. Shi, Z. Wang et al., Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn−air batteries. Nano Lett. 21, 2255–2264 (2021). https://doi.org/10.1021/acs.nanolett.1c00077
- T. Ma, S. Dai, M. Jaroniec, S. Qiao, Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53(28), 7281–7285 (2014). https://doi.org/10.1002/anie.201403946
- K. Lee, L. Li, L. Dai, Asymmetric end-functionalization of multi-walled carbon nanotubes. Am. Chem. Soc. 127(12), 4122–4123 (2005). https://doi.org/10.1021/ja0423670
- C. Zhao, L. Tian, Z. Zou, Z. Chen, H. Tang et al., Revealing and accelerating interfacial charge carrier dynamics in Z-scheme heterojunctions for highly efficient photocatalytic oxygen evolution. Appl. Catal. B Environ. 268, 118445 (2020). https://doi.org/10.1016/j.apcatb.2019.118445
- Y. Chang, H. Hsieh, W. Pong, M. Tsai, F. Chien et al., Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy. Phys. Rev. Lett. 82, 5377 (1999). https://doi.org/10.1103/PhysRevLett.82.5377
- S. Roy, P. Papakonstantinou, T. Okpalugo, H. Murphy, Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: near edge X-ray absorption fine structure study. J. Appl. Phys. 100, 053703 (2006). https://doi.org/10.1063/1.2260821
- J. Choe, M. Ahmed, S. Jeon, 3,4-Ethylenedioxythiophene functionalized graphene with palladium nanops for enhanced electrocatalytic oxygen reduction reaction. J. Power Sources 281, 211 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.176
- R. Zhou, Y. Zheng, M. Jaroniec, S. Qiao, Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catal. 6(7), 4720–4728 (2016). https://doi.org/10.1021/acscatal.6b01581
- J. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- I. Man, H. Su, F. Calle-Vallejo, H. Hansen, J. Martinez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
- C. Lee, B. Jun, S. Lee, Theoretical evaluation of the structure–activity relationship in graphene-based electrocatalysts for hydrogen evolution reactions. RSC Adv. 7(43), 27033–27039 (2017). https://doi.org/10.1039/C7RA04115B
- C. Lee, B. Jun, S. Lee, Metal-free oxygen evolution and oxygen reduction reaction bifunctional electrocatalyst in alkaline media: from mechanisms to structure–catalytic activity relationship. ACS Sustain. Chem. Eng. 6(4), 4973–4980 (2018). https://doi.org/10.1021/acssuschemeng.7b04608
- S. Zhang, P. Kang, S. Ubnoske, M. Brennaman, N. Song et al., Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136(22), 7845–7848 (2014). https://doi.org/10.1021/ja5031529
- J. Song, Y. Chen, H. Huang, J. Wang, S. Huang et al., Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc–air battery. Adv. Sci. 9(6), 2104522 (2022). https://doi.org/10.1002/advs.202104522
References
S. Shinde, J. Jung, N. Wagh, C. Lee, D. Kim et al., Ampere-hour-scale zinc–air pouch cells. Nat. Energy 6, 592–604 (2021). https://doi.org/10.1038/s41560-021-00807-8
S. Shinde, C. Lee, J. Jung, N. Wagh, S. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn–air batteries. Energy Environ. Sci. 12, 727–738 (2019). https://doi.org/10.1039/c8ee02679c
T. Cui, Y. Wang, T. Ye, J. Wu, Z. Chen et al., Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc–air battery. Angew. Chem. Int. Ed. 61(12), e202115219 (2022). https://doi.org/10.1002/anie.202115219
J. Liu, M. Wang, C. Gu, J. Li, Y. Liang et al., Supramolecular gel-derived highly efficient bifunctional catalysts for omnidirectionally stretchable Zn–air batteries with extreme environmental adaptability. Adv. Sci. 9(20), 2200753 (2022). https://doi.org/10.1002/advs.202200753
C. Lai, H. Li, Y. Sheng, M. Zhou, W. Wang et al., 3D spatial combination of CN vacancy-mediated NiFe-PBA with N-doped carbon nanofibers network toward free-standing bifunctional electrode for Zn–air batteries. Adv. Sci. 9(11), 2105925 (2022). https://doi.org/10.1002/advs.202105925
X. Fan, X. Ji, L. Chen, J. Chen, T. Deng et al., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 892–890 (2019). https://doi.org/10.1038/s41560-019-0474-3
L. Yang, X. Zhang, L. Yu, J. Hou, Z. Zhou et al., Atomic Fe–N4/C in flexible carbon fiber membrane as binder-free air cathode for Zn–air batteries with stable cycling over 1000 h. Adv. Mater. 34(5), 2105410 (2022). https://doi.org/10.1002/adma.202105410
J. Jiang, J. Liu, Iron anode-based aqueous electrochemical energy storage devices: recent advances and future perspectives. Interdiscip. Mater. 1, 116–139 (2022). https://doi.org/10.1002/idm2.12007
N. Wagh, D. Kim, S. Kim, S. Shinde, J. Lee, Heuristic iron–cobalt-mediated robust pH-universal oxygen bifunctional lusters for reversible aqueous and flexible solid-state Zn–air cells. ACS Nano 15(9), 14683–14696 (2021). https://doi.org/10.1021/acsnano.1c04471
C. Gu, X. Xie, Y. Liang, J. Li, H. Wang et al., Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn–air batteries working from -50 to 100 °C. Energy Environ. Sci. 14, 4451 (2021). https://doi.org/10.1039/d1ee01134k
M. Zhao, H. Liu, H. Zhang, W. Chen, H. Sun et al., A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy Environ. Sci. 14, 6455 (2021). https://doi.org/10.1039/d1ee01602d
Y. Niu, X. Teng, S. Gong, M. Xu, S. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
P. Liu, J. Ran, B. Xia, S. Xi, D. Gao et al., Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn–air batteries. Nano-Micro Lett. 12, 68 (2020). https://doi.org/10.1007/s40820-020-0406-6
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc–air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
S. Shinde, J. Yu, J. Song, Y. Nam, D. Kim et al., Highly active and durable carbon nitride fibers as metal-free bifunctional oxygen electrodes for flexible Zn–air batteries. Nanoscale Horiz. 2, 333–341 (2017). https://doi.org/10.1039/C7NH00058H
Y. Han, H. Duan, C. Zhou, H. Meng, Q. Jiang et al., Stabilizing cobalt single atoms via flexible carbon membranes as bifunctional electrocatalysts for binder-free zinc−air batteries. Nano Lett. 22, 2497–2505 (2022). https://doi.org/10.1021/acs.nanolett.2c00278
S. Sarkar, A. Biswas, E. Siddharthan, R. Thapa, R. Dey, Strategic modulation of target-specific isolated Fe, Co single-atom active sites for oxygen electrocatalysis impacting high power Zn−air battery. ACS Nano 16(5), 7890–7903 (2022). https://doi.org/10.1021/acsnano.2c00547
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc–air batteries: recent advances and future perspectives. Nano-Micro Lett. 14, 36 (2022). https://doi.org/10.1007/s40820-021-00768-3
Z. Li, J. Yang, X. Ge, Y. Deng, G. Jiang et al., Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn–air batteries. Nano Energy 89, 106314 (2021). https://doi.org/10.1016/j.nanoen.2021.106314
Y. Wu, C. Ye, L. Yu, Y. Liu, J. Huang et al., Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn–air batteries. Energy Storage Mater. 45, 805–813 (2022). https://doi.org/10.1016/j.ensm.2021.12.029
Y. Jiang, Y. Deng, R. Liang, J. Fu, D. Luo et al., Multidimensional ordered bifunctional air electrode enables flash reactants shuttling for high-energy flexible Zn–air batteries. Adv. Energy Mater. 9(24), 1900911 (2019). https://doi.org/10.1002/aenm.201900911
T. Tam, S. Kang, M. Kim, S. Lee, S. Hur et al., Novel graphene hydrogel/B-doped graphene quantum dots composites as trifunctional electrocatalysts for Zn–air batteries and overall water splitting. Adv. Energy Mater. 9(26), 1900945 (2019). https://doi.org/10.1002/aenm.201900945
Q. Liu, Y. Wang, L. Dai, J. Yao, Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn–air batteries. Adv. Mater. 28(15), 3000–3006 (2016). https://doi.org/10.1002/adma.201506112
Y. Qiao, P. Yuan, Y. Hu, J. Zhang, S. Mu et al., Sulfuration of an Fe–N–C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn–air batteries. Adv. Mater. 30(46), 1804504 (2018). https://doi.org/10.1002/adma.201804504
N. Wagh, S. Shinde, C. Lee, J. Jung, D. Kim et al., Densely colonized isolated Cu-N single sites for efficient bifunctional electrocatalysts and rechargeable advanced Zn–air batteries. Appl. Catal. B Environ. 268, 118746 (2020). https://doi.org/10.1016/j.apcatb.2020.118746
S. Shinde, C. Lee, A. Sami, D. Kim, S. Lee et al., Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11(1), 347–357 (2017). https://doi.org/10.1021/acsnano.6b05914
S. Shinde, C. Lee, J. Yu, D. Kim, S. Lee et al., Hierarchically designed 3D holey C2N aerogels as bifunctional oxygen electrodes for flexible and rechargeable Zn–air batteries. ACS Nano 12(1), 596–608 (2018). https://doi.org/10.1021/acsnano.7b07473
Z. Seh, J. Kibsgaard, C. Dickens, I. Chorkendorff, J. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
Y. Jia, L. Zhang, A. Du, G. Gao, J. Chen et al., Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28(43), 9532–9538 (2016). https://doi.org/10.1002/adma.201602912
C. Liu, F. Liu, H. Li, J. Chen, J. Fei et al., One-dimensional van der Waals heterostructures as efficient metal-free oxygen electrocatalysts. ACS Nano 15(2), 3309–3319 (2021). https://doi.org/10.1021/acsnano.0c10242
W. Niu, K. Marcus, L. Zhou, Z. Li, L. Shi et al., Enhancing electron transfer and electrocatalytic activity on crystalline carbon-conjugated g-C3N4. ACS Catal. 8(3), 1926–1931 (2018). https://doi.org/10.1021/acscatal.8b00026
K. Kim, K. Min, Y. Go, Y. Lee, S. Shim et al., FeCo alloy nanops embedded in N-doped carbon supported on highly defective ketjenblack as effective bifunctional electrocatalysts for rechargeable Zn–air batteries. Appl. Catal. B Environ. 315, 121501 (2022). https://doi.org/10.1016/j.apcatb.2022.121501
Y. Chang, N. Shi, S. Zhao, D. Xu, C. Liu et al., Coralloid Co2P2O7 nanocrystals encapsulated by thin carbon shells for enhanced electrochemical water oxidation. ACS Appl. Mater. Interfaces 8(34), 22534–22544 (2016). https://doi.org/10.1021/acsami.6b07209
N. Sahoo, S. Rana, J. Cho, L. Li, S. Chan, Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010). https://doi.org/10.1016/j.progpolymsci.2010.03.002
Y. Zhang, X. Fan, J. Jian, D. Yu, Z. Zhang et al., A general polymer-assisted strategy enables unexpected efficient metal-free oxygen-evolution catalysis on pure carbon nanotubes. Energy Environ. Sci. 10, 2312–2317 (2017). https://doi.org/10.1039/c7ee01702b
B. Li, S. Zhang, B. Wang, Z. Xia, C. Tang et al., A porphyrin covalent organic framework cathode for flexible Zn–air batteries. Energy Environ. Sci. 11, 1723–1729 (2018). https://doi.org/10.1039/c8ee00977e
Z. Zhang, X. Zhao, S. Xi, L. Zhang, Z. Chen et al., Atomically dispersed cobalt trifunctional electrocatalysts with tailored coordination environment for flexible rechargeable Zn–air battery and self-driven water splitting. Adv. Energy Mater. 10(48), 2002896 (2020). https://doi.org/10.1002/aenm.202002896
X. Wei, X. Luo, H. Wang, W. Gu, W. Cai et al., Highly-defective Fe–N–C catalysts towards pH-Universal oxygen reduction reaction. Appl. Catal. B Environ. 263, 118347 (2020). https://doi.org/10.1016/j.apcatb.2019.118347
Z. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou et al., Trifunctional self-supporting cobalt-embedded carbon nanotube films for ORR, OER, and HER triggered by solid diffusion from bulk metal. Adv. Mater. 31(12), 1808043 (2019). https://doi.org/10.1002/adma.201808043
C. Hu, S.L. Bai, L. Gao, S. Liang, J. Yang et al., Porosity-induced high selectivity for CO2 electroreduction to CO on Fe-doped ZIF-derived carbon catalysts. ACS Catal. 9(12), 11579–11588 (2019). https://doi.org/10.1021/acscatal.9b03175
L. Zhang, J. Xiong, Y.H. Qin, C.W. Wang, Porous N–C catalyst synthesized by pyrolyzing g-C3N4 embedded in carbon as highly efficient oxygen reduction electrocatalysts for primary Zn–air battery. Carbon 150, 475–484 (2019). https://doi.org/10.1016/j.carbon.2019.05.044
H. Zhang, M. Zhao, H. Liu, S. Shi, Z. Wang et al., Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn−air batteries. Nano Lett. 21, 2255–2264 (2021). https://doi.org/10.1021/acs.nanolett.1c00077
T. Ma, S. Dai, M. Jaroniec, S. Qiao, Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem. Int. Ed. 53(28), 7281–7285 (2014). https://doi.org/10.1002/anie.201403946
K. Lee, L. Li, L. Dai, Asymmetric end-functionalization of multi-walled carbon nanotubes. Am. Chem. Soc. 127(12), 4122–4123 (2005). https://doi.org/10.1021/ja0423670
C. Zhao, L. Tian, Z. Zou, Z. Chen, H. Tang et al., Revealing and accelerating interfacial charge carrier dynamics in Z-scheme heterojunctions for highly efficient photocatalytic oxygen evolution. Appl. Catal. B Environ. 268, 118445 (2020). https://doi.org/10.1016/j.apcatb.2019.118445
Y. Chang, H. Hsieh, W. Pong, M. Tsai, F. Chien et al., Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy. Phys. Rev. Lett. 82, 5377 (1999). https://doi.org/10.1103/PhysRevLett.82.5377
S. Roy, P. Papakonstantinou, T. Okpalugo, H. Murphy, Temperature dependent evolution of the local electronic structure of atmospheric plasma treated carbon nanotubes: near edge X-ray absorption fine structure study. J. Appl. Phys. 100, 053703 (2006). https://doi.org/10.1063/1.2260821
J. Choe, M. Ahmed, S. Jeon, 3,4-Ethylenedioxythiophene functionalized graphene with palladium nanops for enhanced electrocatalytic oxygen reduction reaction. J. Power Sources 281, 211 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.176
R. Zhou, Y. Zheng, M. Jaroniec, S. Qiao, Determination of the electron transfer number for the oxygen reduction reaction: from theory to experiment. ACS Catal. 6(7), 4720–4728 (2016). https://doi.org/10.1021/acscatal.6b01581
J. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
I. Man, H. Su, F. Calle-Vallejo, H. Hansen, J. Martinez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
C. Lee, B. Jun, S. Lee, Theoretical evaluation of the structure–activity relationship in graphene-based electrocatalysts for hydrogen evolution reactions. RSC Adv. 7(43), 27033–27039 (2017). https://doi.org/10.1039/C7RA04115B
C. Lee, B. Jun, S. Lee, Metal-free oxygen evolution and oxygen reduction reaction bifunctional electrocatalyst in alkaline media: from mechanisms to structure–catalytic activity relationship. ACS Sustain. Chem. Eng. 6(4), 4973–4980 (2018). https://doi.org/10.1021/acssuschemeng.7b04608
S. Zhang, P. Kang, S. Ubnoske, M. Brennaman, N. Song et al., Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136(22), 7845–7848 (2014). https://doi.org/10.1021/ja5031529
J. Song, Y. Chen, H. Huang, J. Wang, S. Huang et al., Heterointerface engineering of hierarchically assembling layered double hydroxides on cobalt selenide as efficient trifunctional electrocatalysts for water splitting and zinc–air battery. Adv. Sci. 9(6), 2104522 (2022). https://doi.org/10.1002/advs.202104522