High-Transconductance, Highly Elastic, Durable and Recyclable All-Polymer Electrochemical Transistors with 3D Micro-Engineered Interfaces
Corresponding Author: Zhuang Xie
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 184
Abstract
Organic electrochemical transistors (OECTs) have emerged as versatile platforms for broad applications spanning from flexible and wearable integrated circuits to biomedical monitoring to neuromorphic computing. A variety of materials and tailored micro/nanostructures have recently been developed to realized stretchable OECTs, however, a solid-state OECT with high elasticity has not been demonstrated to date. Herein, we present a general platform developed for the facile generation of highly elastic all-polymer OECTs with high transconductance (up to 12.7 mS), long-term mechanical and environmental durability, and sustainability. Rapid prototyping of these devices was achieved simply by transfer printing lithium bis(trifluoromethane)sulfonimide doped poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS/LiTFSI) microstructures onto a resilient gelatin-based gel electrolyte, in which both depletion-mode and enhancement-mode OECTs were produced using various active channels. Remarkably, the elaborate 3D architectures of the PEDOT:PSS were engineered, and an imprinted 3D-microstructured channel/electrolyte interface combined with wrinkled electrodes provided performance that was retained (> 70%) through biaxial stretching of 100% strain and after 1000 repeated cycles of 80% strain. Furthermore, the anti-drying and degradable gelatin and the self-crosslinked PEDOT:PSS/LiTFSI jointly enabled stability during > 4 months of storage and on-demand disposal and recycling. This work thus represents a straightforward approach towards high-performance stretchable organic electronics for wearable/implantable/neuromorphic/sustainable applications.
Highlights:
1 Facile fabrication of high-transconductance (>10 mS) and highly elastic all-polymer organic electrochemical transistors was presented using gelatin-based electrolyte supporting printed PEDOT:PSS/LiTFSI microstructures.
2 PEDOT:PSS/LiTFSI wrinkled microelectrodes and imprinted 3D-microstructured channel/electrolyte interface allowed biaxial stretchability of 100% strain and performance preservation after 1000 cycles of 80% strain.
3 The glycerol-soaked elastic gelatin electrolyte also permitted long-term environmental stability for months and enabled readily recyclable device, paving the way to wide applications spanning from artificial synapses to wearable sensing.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren et al., Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
- P.A. Ersman, R. Lassnig, J. Strandberg, D. Tu, V. Keshmiri et al., All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 10, 5053 (2019). https://doi.org/10.1038/s41467-019-13079-4
- A. Nawaz, Q. Liu, W.L. Leong, K.E. Fairfull-Smith, P. Sonar, Organic electrochemical transistors for in vivo bioelectronics. Adv. Mater. 33(49), 2101874 (2021). https://doi.org/10.1002/adma.202101874
- Y. Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414 (2017). https://doi.org/10.1038/nmat4856
- C. Cea, G.D. Spyropoulos, P. Jastrzebska-Perfect, J.J. Ferrero, J.N. Gelinas et al., Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679 (2020). https://doi.org/10.1038/s41563-020-0638-3
- F. Molina-Lopez, T.Z. Gao, U. Kraft, C. Zhu, T. Ohlund et al., Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019). https://doi.org/10.1038/s41467-019-10569-3
- H. Wang, W. Wang, Z. Xie, Patterning meets gels: advances in engineering functional gels at micro/nanoscales for soft devices. J. Polym. Sci. (2022). https://doi.org/10.1002/pol.20220148
- D. Wang, S. Zhao, R. Yin, L. Li, Z. Lou et al., Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex Electron 5, 13 (2021). https://doi.org/10.1038/s41528-021-00110-2
- Y.J. Jo, H. Kim, J. Ok, Y.J. Shin, J.H. Shin et al., Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with choline-based ionic liquid and polysaccharide. Adv. Funct. Mater. 30(29), 1909707 (2020). https://doi.org/10.1002/adfm.201909707
- H. Lee, S. Lee, W. Lee, T. Yokota, K. Fukuda et al., Ultrathin organic electrochemical transistor with nonvolatile and thin gel electrolyte for long-term electrophysiological monitoring. Adv. Funct. Mater. 29(48), 1906982 (2019). https://doi.org/10.1002/adfm.201906982
- A. Melianas, T.J. Quill, G. LeCroy, Y. Tuchman, H. Loo et al., Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020). https://doi.org/10.1126/sciadv.abb2958
- S. Han, S. Yu, S. Hu, H. Chen, J. Wu et al., A high endurance, temperature-resilient, and robust organic electrochemical transistor for neuromorphic circuits. J. Mater. Chem. C 9(35), 11801–11808 (2021). https://doi.org/10.1039/D1TC02215F
- J.C. Ho, Y.C. Lin, C.K. Chen, L.C. Hsu, W.C. Chen, Hydrogel-based sustainable and stretchable field-effect transistors. Org. Electron. 100, 106358 (2022). https://doi.org/10.1016/j.orgel.2021.106358
- X. Dai, R. Vo, H.H. Hsu, P. Deng, Y. Zhang et al., Modularized field-effect transistor biosensors. Nano Lett. 19, 6658 (2019). https://doi.org/10.1021/acs.nanolett.9b02939
- S. Chen, A. Surendran, X. Wu, W.L. Leong, Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv. Funct. Mater. 30(51), 2006186 (2020). https://doi.org/10.1002/adfm.202006186
- Z. Xie, C. Zhuge, Y. Zhao, W. Xiao, Y. Fu et al., All-solid-state vertical three-terminal N-type organic synaptic devices for neuromorphic computing. Adv. Funct. Mater. 32(21), 2107314 (2022). https://doi.org/10.1002/adfm.202107314
- Y. Dai, H. Hu, M. Wang, J. Xu, S. Wang, Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17 (2021). https://doi.org/10.1038/s41928-020-00513-5
- J. Chen, W. Huang, D. Zheng, Z. Xie, X. Zhuang et al., Highly stretchable organic electrochemical transistors with strain-resistant performance. Nat. Mater. 21, 564 (2022). https://doi.org/10.1038/s41563-022-01239-9
- Y. Wang, C.X. Zhu, R. Pfattner, H.P. Yan, L.H. Jin et al., A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017). https://doi.org/10.1126/sciadv.1602076
- Y. Li, S. Zhang, X. Li, V.R.N. Unnava, F. Cicoira, Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition. Flex. Print. Electron. 4, 044004 (2019). https://doi.org/10.1088/2058-8585/ab5202
- S. Zhang, Y. Li, G. Tomasello, M. Anthonisen, X. Li et al., Tuning the electromechanical properties of PEDOT:PSS films for stretchable transistors and pressure sensors. Adv. Electron. Mater. 5(6), 1900191 (2019). https://doi.org/10.1002/aelm.201900191
- X. Su, X. Wu, S. Chen, A.M. Nedumaran, M. Stephen et al., A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 34(19), 2200682 (2022). https://doi.org/10.1002/adma.202200682
- P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13, 358 (2022). https://doi.org/10.1038/s41467-022-28027-y
- Y. Jiang, Z. Zhang, Y.X. Wang, D. Li, C.T. Coen et al., Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375(6587), 1411–1417 (2022). https://doi.org/10.1126/science.abj7564
- S.M. Zhang, E. Hubis, G. Tomasello, G. Soliveri, P. Kumar et al., Patterning of stretchable organic electrochemical transistors. Chem. Mater. 29, 3126 (2017). https://doi.org/10.1021/acs.chemmater.7b00181
- W. Lee, S. Kobayashi, M. Nagase, Y. Jimbo, I. Saito et al., Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018). https://doi.org/10.1126/sciadv.aau2426
- N. Matsuhisa, Y. Jiang, Z. Liu, G. Chen, C. Wan et al., High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater. 5(8), 1900347 (2019). https://doi.org/10.1002/aelm.201900347
- Y. Lee, J.Y. Oh, W. Xu, O. Kim, T.R. Kim et al., Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 4(11), eaat7387 (2018). https://doi.org/10.1126/sciadv.aat7387
- J.T. Kim, J. Pyo, J. Rho, J.H. Ahn, J.H. Je et al., Three-dimensional writing of highly stretchable organic nanowires. ACS Macro Lett. 1(3), 375–379 (2012). https://doi.org/10.1021/mz200249c
- A. Yang, Y. Li, C. Yang, Y. Fu, N. Wang et al., Fabric organic electrochemical transistors for biosensors. Adv. Mater. 30(23), 1800051 (2018). https://doi.org/10.1002/adma.201800051
- Y. Li, N. Wang, A. Yang, H. Ling, F. Yan, Biomimicking stretchable organic electrochemical transistor. Adv. Electron. Mater. 5(10), 1900566 (2019). https://doi.org/10.1002/aelm.201900566
- L. Teng, S.C. Ye, S. Handschuh-Wang, X.H. Zhou, T.S. Gan et al., Liquid metal-based transient circuits for flexible and recyclable electronics. Adv. Funct. Mater. 29(11), 1808739 (2019). https://doi.org/10.1002/adfm.201808739
- X. Tao, S. Liao, Y. Wang, Polymer-assisted fully recyclable flexible sensors. EcoMat 3, e12083 (2021). https://doi.org/10.1002/eom2.12083
- L. Lan, J. Chen, Y. Wang, P. Li, Y. Yu et al., Facilely accessible porous conjugated polymers toward high-performance and flexible organic electrochemical transistors. Chem. Mater. 34(4), 1666–1676 (2022). https://doi.org/10.1021/acs.chemmater.1c03797
- D. Zhou, F. Chen, J. Wang, T. Li, B. Li et al., Tough protein organohydrogels. J. Mater. Chem. B 6(45), 7366–7372 (2018). https://doi.org/10.1039/C8TB02236D
- Z. Qin, D. Dong, M. Yao, Q. Yu, X. Sun et al., Freezing-tolerant supramolecular organohydrogel with high toughness, thermoplasticity, and healable and adhesive properties. ACS Appl. Mater. Interfaces 11(23), 21184–21193 (2019). https://doi.org/10.1021/acsami.9b05652
- H. Park, H.W. Park, J.W. Chung, K. Nam, S. Choi et al., Highly stretchable, high-mobility, free-standing all-organic transistors modulated by solid-state elastomer electrolytes. Adv. Funct. Mater. 29(18), 1808909 (2019). https://doi.org/10.1002/adfm.201808909
- Z. Rao, A. Thukral, P. Yang, Y. Lu, H. Shim et al., All-polymer based stretchable rubbery electronics and sensors. Adv. Funct. Mater. 32(15), 2111232 (2021). https://doi.org/10.1002/adfm.202111232
- M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102 (2020). https://doi.org/10.1038/s41563-020-0699-3
- L. Fang, J. Zhang, W. Wang, Y. Zhang, F. Chen et al., Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes. ACS Appl. Mater. Interfaces 12(50), 56393–56402 (2020). https://doi.org/10.1021/acsami.0c14472
- X. Li, Z. Liu, Z. Zhou, H. Gao, G. Liang et al., Effects of cationic species in salts on the electrical conductivity of doped PEDOT:PSS films. ACS Appl. Polym. Mater. 3(1), 98–103 (2020). https://doi.org/10.1021/acsapm.0c01084
- Q. Li, M. Deng, S. Zhang, D. Zhao, Q. Jiang et al., Synergistic enhancement of thermoelectric and mechanical performances of ionic liquid LiTFSI modulated PEDOT flexible films. J. Mater. Chem. C 7(15), 4374–4381 (2019). https://doi.org/10.1039/C9TC00310J
- J. Yan, Y. Qin, W.T. Fan, W.T. Wu, S.W. Lv et al., Plasticizer and catalyst co-functionalized PEDOT:PSS enables stretchable electrochemical sensing of living cells. Chem. Sci. 12(43), 14432–14440 (2021). https://doi.org/10.1039/D1SC04138J
- J. Wang, Q. Li, K. Li, X. Sun, Y. Wang et al., Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 34(12), 2109904 (2022). https://doi.org/10.1002/adma.202109904
- J. Rivnay, P. Leleux, M. Ferro, M. Sessolo, A. Williamson et al., High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1(4), e1400251 (2015). https://doi.org/10.1126/sciadv.1400251
- X. Wu, A. Surendran, J. Ko, O. Filonik, E.M. Herzig et al., Ionic-liquid doping enables high transconductance, fast response time, and high ion sensitivity in organic electrochemical transistors. Adv. Mater. 31(2), 1805544 (2019). https://doi.org/10.1002/adma.201805544
- W. Wang, F. Chen, L. Fang, Z. Li, Z. Xie, Reversibly stretchable organohydrogel-based soft electronics with robust and redox-active interfaces enabled by polyphenol-incorporated double networks. ACS Appl. Mater. Interfaces 14(10), 12583–12595 (2022). https://doi.org/10.1021/acsami.1c21273
- S. Kang, B.Y. Lee, S.H. Lee, S.D. Lee, High resolution micro-patterning of stretchable polymer electrodes through directed wetting localization. Sci. Rep. 9, 13066 (2019). https://doi.org/10.1038/s41598-019-49322-7
- S. Zhang, H. Ling, Y. Chen, Q. Cui, J. Ni et al., Hydrogel-enabled transfer-printing of conducting polymer films for soft organic bioelectronics. Adv. Funct. Mater. 30(6), 1906016 (2019). https://doi.org/10.1002/adfm.201906016
- Y.J. Jo, K.Y. Kwon, Z.U. Khan, X. Crispin, T.I. Kim, Gelatin hydrogel-based organic electrochemical transistors and their integrated logic circuits. ACS Appl. Mater. Interfaces 10(45), 39083–39090 (2018). https://doi.org/10.1021/acsami.8b11362
- T. Nguyen-Dang, K. Harrison, A. Lill, A. Dixon, E. Lewis et al., Biomaterial-based solid-electrolyte organic electrochemical transistors for electronic and neuromorphic applications. Adv. Electron. Mater. 7(12), 2100519 (2021). https://doi.org/10.1002/aelm.202100519
- J. Ko, X. Wu, A. Surendran, B.T. Muhammad, W.L. Leong, Self-healable organic electrochemical transistor with high transconductance, fast response, and long-term stability. ACS Appl. Mater. Interfaces 12(30), 33979–33988 (2020). https://doi.org/10.1021/acsami.0c07913
- L. Fang, Z. Cai, Z. Ding, T. Chen, J. Zhang et al., Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors. ACS Appl. Mater. Interfaces 11(24), 21895–21903 (2019). https://doi.org/10.1021/acsami.9b03410
- R. Guo, Y. Yu, J. Zeng, X. Liu, X. Zhou et al., Biomimicking topographic elastomeric petals (E-petals) for omnidirectional stretchable and printable electronics. Adv. Sci. 2(3), 1400021 (2015). https://doi.org/10.1002/advs.201400021
- A. Corletto, J.G. Shapter, High-resolution and scalable printing of highly conductive PEDOT:PSS for printable electronics. J. Mater. Chem. C 9(40), 14161–14174 (2021). https://doi.org/10.1039/D1TC03761G
- Z. Qin, X. Sun, H. Zhang, Q. Yu, X. Wang et al., A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature. J. Mater. Chem. A 8(8), 4447–4456 (2020). https://doi.org/10.1039/C9TA13196E
- H. Shen, A. Abtahi, B. Lussem, B.W. Boudouris, J. Mei, Device engineering in organic electrochemical transistors toward multifunctional applications. ACS Appl. Electron. Mater. 3(6), 2434–2448 (2021). https://doi.org/10.1021/acsaelm.1c00312
- Y. Dai, S. Dai, N. Li, Y. Li, M. Moser et al., Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater. 34(23), 2201178 (2022). https://doi.org/10.1002/adma.202201178
- C. Sun, X. Wang, M.A. Auwalu, S. Cheng, W. Hu, Organic thin film transistors-based biosensors. EcoMat 3(2), e12094 (2021). https://doi.org/10.1002/eom2.12094
References
J. Rivnay, S. Inal, A. Salleo, R.M. Owens, M. Berggren et al., Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). https://doi.org/10.1038/natrevmats.2017.86
P.A. Ersman, R. Lassnig, J. Strandberg, D. Tu, V. Keshmiri et al., All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 10, 5053 (2019). https://doi.org/10.1038/s41467-019-13079-4
A. Nawaz, Q. Liu, W.L. Leong, K.E. Fairfull-Smith, P. Sonar, Organic electrochemical transistors for in vivo bioelectronics. Adv. Mater. 33(49), 2101874 (2021). https://doi.org/10.1002/adma.202101874
Y. Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414 (2017). https://doi.org/10.1038/nmat4856
C. Cea, G.D. Spyropoulos, P. Jastrzebska-Perfect, J.J. Ferrero, J.N. Gelinas et al., Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679 (2020). https://doi.org/10.1038/s41563-020-0638-3
F. Molina-Lopez, T.Z. Gao, U. Kraft, C. Zhu, T. Ohlund et al., Inkjet-printed stretchable and low voltage synaptic transistor array. Nat. Commun. 10, 2676 (2019). https://doi.org/10.1038/s41467-019-10569-3
H. Wang, W. Wang, Z. Xie, Patterning meets gels: advances in engineering functional gels at micro/nanoscales for soft devices. J. Polym. Sci. (2022). https://doi.org/10.1002/pol.20220148
D. Wang, S. Zhao, R. Yin, L. Li, Z. Lou et al., Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex Electron 5, 13 (2021). https://doi.org/10.1038/s41528-021-00110-2
Y.J. Jo, H. Kim, J. Ok, Y.J. Shin, J.H. Shin et al., Biocompatible and biodegradable organic transistors using a solid-state electrolyte incorporated with choline-based ionic liquid and polysaccharide. Adv. Funct. Mater. 30(29), 1909707 (2020). https://doi.org/10.1002/adfm.201909707
H. Lee, S. Lee, W. Lee, T. Yokota, K. Fukuda et al., Ultrathin organic electrochemical transistor with nonvolatile and thin gel electrolyte for long-term electrophysiological monitoring. Adv. Funct. Mater. 29(48), 1906982 (2019). https://doi.org/10.1002/adfm.201906982
A. Melianas, T.J. Quill, G. LeCroy, Y. Tuchman, H. Loo et al., Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Sci. Adv. 6, eabb2958 (2020). https://doi.org/10.1126/sciadv.abb2958
S. Han, S. Yu, S. Hu, H. Chen, J. Wu et al., A high endurance, temperature-resilient, and robust organic electrochemical transistor for neuromorphic circuits. J. Mater. Chem. C 9(35), 11801–11808 (2021). https://doi.org/10.1039/D1TC02215F
J.C. Ho, Y.C. Lin, C.K. Chen, L.C. Hsu, W.C. Chen, Hydrogel-based sustainable and stretchable field-effect transistors. Org. Electron. 100, 106358 (2022). https://doi.org/10.1016/j.orgel.2021.106358
X. Dai, R. Vo, H.H. Hsu, P. Deng, Y. Zhang et al., Modularized field-effect transistor biosensors. Nano Lett. 19, 6658 (2019). https://doi.org/10.1021/acs.nanolett.9b02939
S. Chen, A. Surendran, X. Wu, W.L. Leong, Contact modulated ionic transfer doping in all-solid-state organic electrochemical transistor for ultra-high sensitive tactile perception at low operating voltage. Adv. Funct. Mater. 30(51), 2006186 (2020). https://doi.org/10.1002/adfm.202006186
Z. Xie, C. Zhuge, Y. Zhao, W. Xiao, Y. Fu et al., All-solid-state vertical three-terminal N-type organic synaptic devices for neuromorphic computing. Adv. Funct. Mater. 32(21), 2107314 (2022). https://doi.org/10.1002/adfm.202107314
Y. Dai, H. Hu, M. Wang, J. Xu, S. Wang, Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17 (2021). https://doi.org/10.1038/s41928-020-00513-5
J. Chen, W. Huang, D. Zheng, Z. Xie, X. Zhuang et al., Highly stretchable organic electrochemical transistors with strain-resistant performance. Nat. Mater. 21, 564 (2022). https://doi.org/10.1038/s41563-022-01239-9
Y. Wang, C.X. Zhu, R. Pfattner, H.P. Yan, L.H. Jin et al., A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3, e1602076 (2017). https://doi.org/10.1126/sciadv.1602076
Y. Li, S. Zhang, X. Li, V.R.N. Unnava, F. Cicoira, Highly stretchable PEDOT:PSS organic electrochemical transistors achieved via polyethylene glycol addition. Flex. Print. Electron. 4, 044004 (2019). https://doi.org/10.1088/2058-8585/ab5202
S. Zhang, Y. Li, G. Tomasello, M. Anthonisen, X. Li et al., Tuning the electromechanical properties of PEDOT:PSS films for stretchable transistors and pressure sensors. Adv. Electron. Mater. 5(6), 1900191 (2019). https://doi.org/10.1002/aelm.201900191
X. Su, X. Wu, S. Chen, A.M. Nedumaran, M. Stephen et al., A highly conducting polymer for self-healable, printable, and stretchable organic electrochemical transistor arrays and near hysteresis-free soft tactile sensors. Adv. Mater. 34(19), 2200682 (2022). https://doi.org/10.1002/adma.202200682
P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13, 358 (2022). https://doi.org/10.1038/s41467-022-28027-y
Y. Jiang, Z. Zhang, Y.X. Wang, D. Li, C.T. Coen et al., Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375(6587), 1411–1417 (2022). https://doi.org/10.1126/science.abj7564
S.M. Zhang, E. Hubis, G. Tomasello, G. Soliveri, P. Kumar et al., Patterning of stretchable organic electrochemical transistors. Chem. Mater. 29, 3126 (2017). https://doi.org/10.1021/acs.chemmater.7b00181
W. Lee, S. Kobayashi, M. Nagase, Y. Jimbo, I. Saito et al., Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018). https://doi.org/10.1126/sciadv.aau2426
N. Matsuhisa, Y. Jiang, Z. Liu, G. Chen, C. Wan et al., High-transconductance stretchable transistors achieved by controlled gold microcrack morphology. Adv. Electron. Mater. 5(8), 1900347 (2019). https://doi.org/10.1002/aelm.201900347
Y. Lee, J.Y. Oh, W. Xu, O. Kim, T.R. Kim et al., Stretchable organic optoelectronic sensorimotor synapse. Sci. Adv. 4(11), eaat7387 (2018). https://doi.org/10.1126/sciadv.aat7387
J.T. Kim, J. Pyo, J. Rho, J.H. Ahn, J.H. Je et al., Three-dimensional writing of highly stretchable organic nanowires. ACS Macro Lett. 1(3), 375–379 (2012). https://doi.org/10.1021/mz200249c
A. Yang, Y. Li, C. Yang, Y. Fu, N. Wang et al., Fabric organic electrochemical transistors for biosensors. Adv. Mater. 30(23), 1800051 (2018). https://doi.org/10.1002/adma.201800051
Y. Li, N. Wang, A. Yang, H. Ling, F. Yan, Biomimicking stretchable organic electrochemical transistor. Adv. Electron. Mater. 5(10), 1900566 (2019). https://doi.org/10.1002/aelm.201900566
L. Teng, S.C. Ye, S. Handschuh-Wang, X.H. Zhou, T.S. Gan et al., Liquid metal-based transient circuits for flexible and recyclable electronics. Adv. Funct. Mater. 29(11), 1808739 (2019). https://doi.org/10.1002/adfm.201808739
X. Tao, S. Liao, Y. Wang, Polymer-assisted fully recyclable flexible sensors. EcoMat 3, e12083 (2021). https://doi.org/10.1002/eom2.12083
L. Lan, J. Chen, Y. Wang, P. Li, Y. Yu et al., Facilely accessible porous conjugated polymers toward high-performance and flexible organic electrochemical transistors. Chem. Mater. 34(4), 1666–1676 (2022). https://doi.org/10.1021/acs.chemmater.1c03797
D. Zhou, F. Chen, J. Wang, T. Li, B. Li et al., Tough protein organohydrogels. J. Mater. Chem. B 6(45), 7366–7372 (2018). https://doi.org/10.1039/C8TB02236D
Z. Qin, D. Dong, M. Yao, Q. Yu, X. Sun et al., Freezing-tolerant supramolecular organohydrogel with high toughness, thermoplasticity, and healable and adhesive properties. ACS Appl. Mater. Interfaces 11(23), 21184–21193 (2019). https://doi.org/10.1021/acsami.9b05652
H. Park, H.W. Park, J.W. Chung, K. Nam, S. Choi et al., Highly stretchable, high-mobility, free-standing all-organic transistors modulated by solid-state elastomer electrolytes. Adv. Funct. Mater. 29(18), 1808909 (2019). https://doi.org/10.1002/adfm.201808909
Z. Rao, A. Thukral, P. Yang, Y. Lu, H. Shim et al., All-polymer based stretchable rubbery electronics and sensors. Adv. Funct. Mater. 32(15), 2111232 (2021). https://doi.org/10.1002/adfm.202111232
M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl et al., Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nat. Mater. 19, 1102 (2020). https://doi.org/10.1038/s41563-020-0699-3
L. Fang, J. Zhang, W. Wang, Y. Zhang, F. Chen et al., Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes. ACS Appl. Mater. Interfaces 12(50), 56393–56402 (2020). https://doi.org/10.1021/acsami.0c14472
X. Li, Z. Liu, Z. Zhou, H. Gao, G. Liang et al., Effects of cationic species in salts on the electrical conductivity of doped PEDOT:PSS films. ACS Appl. Polym. Mater. 3(1), 98–103 (2020). https://doi.org/10.1021/acsapm.0c01084
Q. Li, M. Deng, S. Zhang, D. Zhao, Q. Jiang et al., Synergistic enhancement of thermoelectric and mechanical performances of ionic liquid LiTFSI modulated PEDOT flexible films. J. Mater. Chem. C 7(15), 4374–4381 (2019). https://doi.org/10.1039/C9TC00310J
J. Yan, Y. Qin, W.T. Fan, W.T. Wu, S.W. Lv et al., Plasticizer and catalyst co-functionalized PEDOT:PSS enables stretchable electrochemical sensing of living cells. Chem. Sci. 12(43), 14432–14440 (2021). https://doi.org/10.1039/D1SC04138J
J. Wang, Q. Li, K. Li, X. Sun, Y. Wang et al., Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 34(12), 2109904 (2022). https://doi.org/10.1002/adma.202109904
J. Rivnay, P. Leleux, M. Ferro, M. Sessolo, A. Williamson et al., High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1(4), e1400251 (2015). https://doi.org/10.1126/sciadv.1400251
X. Wu, A. Surendran, J. Ko, O. Filonik, E.M. Herzig et al., Ionic-liquid doping enables high transconductance, fast response time, and high ion sensitivity in organic electrochemical transistors. Adv. Mater. 31(2), 1805544 (2019). https://doi.org/10.1002/adma.201805544
W. Wang, F. Chen, L. Fang, Z. Li, Z. Xie, Reversibly stretchable organohydrogel-based soft electronics with robust and redox-active interfaces enabled by polyphenol-incorporated double networks. ACS Appl. Mater. Interfaces 14(10), 12583–12595 (2022). https://doi.org/10.1021/acsami.1c21273
S. Kang, B.Y. Lee, S.H. Lee, S.D. Lee, High resolution micro-patterning of stretchable polymer electrodes through directed wetting localization. Sci. Rep. 9, 13066 (2019). https://doi.org/10.1038/s41598-019-49322-7
S. Zhang, H. Ling, Y. Chen, Q. Cui, J. Ni et al., Hydrogel-enabled transfer-printing of conducting polymer films for soft organic bioelectronics. Adv. Funct. Mater. 30(6), 1906016 (2019). https://doi.org/10.1002/adfm.201906016
Y.J. Jo, K.Y. Kwon, Z.U. Khan, X. Crispin, T.I. Kim, Gelatin hydrogel-based organic electrochemical transistors and their integrated logic circuits. ACS Appl. Mater. Interfaces 10(45), 39083–39090 (2018). https://doi.org/10.1021/acsami.8b11362
T. Nguyen-Dang, K. Harrison, A. Lill, A. Dixon, E. Lewis et al., Biomaterial-based solid-electrolyte organic electrochemical transistors for electronic and neuromorphic applications. Adv. Electron. Mater. 7(12), 2100519 (2021). https://doi.org/10.1002/aelm.202100519
J. Ko, X. Wu, A. Surendran, B.T. Muhammad, W.L. Leong, Self-healable organic electrochemical transistor with high transconductance, fast response, and long-term stability. ACS Appl. Mater. Interfaces 12(30), 33979–33988 (2020). https://doi.org/10.1021/acsami.0c07913
L. Fang, Z. Cai, Z. Ding, T. Chen, J. Zhang et al., Skin-inspired surface-microstructured tough hydrogel electrolytes for stretchable supercapacitors. ACS Appl. Mater. Interfaces 11(24), 21895–21903 (2019). https://doi.org/10.1021/acsami.9b03410
R. Guo, Y. Yu, J. Zeng, X. Liu, X. Zhou et al., Biomimicking topographic elastomeric petals (E-petals) for omnidirectional stretchable and printable electronics. Adv. Sci. 2(3), 1400021 (2015). https://doi.org/10.1002/advs.201400021
A. Corletto, J.G. Shapter, High-resolution and scalable printing of highly conductive PEDOT:PSS for printable electronics. J. Mater. Chem. C 9(40), 14161–14174 (2021). https://doi.org/10.1039/D1TC03761G
Z. Qin, X. Sun, H. Zhang, Q. Yu, X. Wang et al., A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature. J. Mater. Chem. A 8(8), 4447–4456 (2020). https://doi.org/10.1039/C9TA13196E
H. Shen, A. Abtahi, B. Lussem, B.W. Boudouris, J. Mei, Device engineering in organic electrochemical transistors toward multifunctional applications. ACS Appl. Electron. Mater. 3(6), 2434–2448 (2021). https://doi.org/10.1021/acsaelm.1c00312
Y. Dai, S. Dai, N. Li, Y. Li, M. Moser et al., Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater. 34(23), 2201178 (2022). https://doi.org/10.1002/adma.202201178
C. Sun, X. Wang, M.A. Auwalu, S. Cheng, W. Hu, Organic thin film transistors-based biosensors. EcoMat 3(2), e12094 (2021). https://doi.org/10.1002/eom2.12094