Importance of Standardizing Analytical Characterization Methodology for Improved Reliability of the Nanomedicine Literature
Corresponding Author: Morteza Mahmoudi
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 172
Abstract
Understanding the interaction between biological structures and nanoscale technologies, dubbed the nano-bio interface, is required for successful development of safe and efficient nanomedicine products. The lack of a universal reporting system and decentralized methodologies for nanomaterial characterization have resulted in a low degree of reliability and reproducibility in the nanomedicine literature. As such, there is a strong need to establish a characterization system to support the reproducibility of nanoscience data particularly for studies seeking clinical translation. Here, we discuss the existing key standards for addressing robust characterization of nanomaterials based on their intended use in medical devices or as pharmaceuticals. We also discuss the challenges surrounding implementation of such standard protocols and their implication for translation of nanotechnology into clinical practice. We, however, emphasize that practical implementation of standard protocols in experimental laboratories requires long-term planning through integration of stakeholders including institutions and funding agencies.
Highlights:
1 The use of current standard protocols for robust characterization of nanotechnologies can significantly improve the reproducibility of nanoscience data particularly for studies seeking clinical translation.
2 The use of current standard protocols for robust characterization of nanotechnologies can significantly improve the reproducibility of nanoscience data particularly for studies seeking clinical translation.
3 Institutions, funding agencies, and publishing venues have a vital role in the practical implementation of the standard protocols of nanomaterials characterization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Viseu, ana, "Nanomedicine". Encyclopedia britannica, 23 sep. 2020. https://www.Britannica.Com/science/nanomedicine. Accessed 4 Dec 2021.
- J. Joo, Diagnostic and therapeutic nanomedicine. Adv. Exper. Med. Biology 1310, 401–447 (2021). https://doi.org/10.1007/978-981-33-6064-8_15
- C. Jianrong, M. Yuqing, H. Nongyue, W. Xiaohua, L. Sijiao, Nanotechnology and biosensors. Biotechn. Adv. 22(7), 505–518 (2004). https://doi.org/10.1016/j.biotechadv.2004.03.004
- I. Csóka, R. Ismail, O. Jójárt-Laczkovich, E. Pallagi, Regulatory considerations, challenges and risk-based approach in nanomedicine development. Curr. Med. Chem. 28(36), 7461–7476 (2021). https://doi.org/10.2174/0929867328666210406115529
- J. Paradise, Regulating nanomedicine at the food and drug administration. AMA J. Ethics 21(4), E347-355 (2019). https://doi.org/10.1001/amajethics.2019.347
- N. Hinge, M.M. Pandey, G. Singhvi, G. Gupta, M. Mehta et al., in Nanomedicine Advances in Cancer Therapy. ed. by L.C.D. Toit, P. Kumar, Y.E. Choonara et al. (Elsevier, Amstredam, 2020), pp.219–253
- S. Hejmady, R. Pradhan, A. Alexander, M. Agrawal, G. Singhvi et al., Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Disc. Today 25(12), 2227–2244 (2020). https://doi.org/10.1016/j.drudis.2020.09.031
- J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
- B. Brembs, Prestigious science journals struggle to reach even average reliability. Front. Human Neurosci. (2018). https://doi.org/10.3389/fnhum.2018.00037
- H.S. Leong, K.S. Butler, C.J. Brinker, M. Azzawi, S. Conlan et al., On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechn. 14(7), 629–635 (2019). https://doi.org/10.1038/s41565-019-0496-9
- M. Mahmoudi, The need for robust characterization of nanomaterials for nanomedicine applications. Nat. Commun. 12, 5246 (2021). https://doi.org/10.1038/s41467-021-25584-6
- M. Mahmoudi, The need for improved methodology in protein corona analysis. Nat. Commun. 13, 49 (2022). https://doi.org/10.1038/s41467-021-27643-4
- F. Ledesma, B. Ozcan, X. Sun, S.M. Medina, M.P. Landry, Nanomaterial strategies for delivery of therapeutic cargoes. Adv. Funct. Mater. 32(4), 2107174 (2022). https://doi.org/10.1002/adfm.202107174
- A.D. Jones 3rd., G. Mi, T.J. Webster, A status report on fda approval of medical devices containing nanostructured materials. Trends Biotechn. 37(2), 117–120 (2019). https://doi.org/10.1016/j.tibtech.2018.06.003
- A. Pallotta, I. Clarot, J. Sobocinski, E. Fattal, A. Boudier, Nanotechnologies for medical devices: Potentialities and risks. ACS Appl. Bio Mater. 2(1), 1–13 (2019). https://doi.org/10.1021/acsabm.8b00612
- H. He, L. Liu, E.E. Morin, M. Liu, A. Schwendeman, Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc. Chem. Res. 52(9), 2445–2461 (2019). https://doi.org/10.1021/acs.accounts.9b00228
- A.C. Anselmo, S. Mitragotri, Nanops in the clinic: An update. Bioeng. Transl. Med. 4(3), e10143–e10143 (2019). https://doi.org/10.1002/btm2.10143
- A.A. Ashkarran, J. Swann, L. Hollis, M. Mahmoudi, The file drawer problem in nanomedicine. Trends Biotechn. 39(5), 425–427 (2021). https://doi.org/10.1016/j.tibtech.2021.01.009
- D. Langevin, O. Lozano, A. Salvati, V. Kestens, M. Monopoli et al., Inter-laboratory comparison of nanop size measurements using dynamic light scattering and differential centrifugal sedimentation. NanoImpact 10, 97–107 (2018). https://doi.org/10.1016/j.impact.2017.12.004
- D.A. Heller, P.V. Jena, M. Pasquali, K. Kostarelos, L.G. Delogu et al., Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechn. 15(3), 164–166 (2020). https://doi.org/10.1038/s41565-020-0656-y
- M. Faria, M. Björnmalm, K.J. Thurecht, S.J. Kent, R.G. Parton et al., Minimum information reporting in bio-nano experimental literature. Nat. Nanotechn. 13(9), 777–785 (2018). https://doi.org/10.1038/s41565-018-0246-4
- C.T. Jackson, J.W. Wang, E. González-Grandío, N.S. Goh, J. Mun et al., Polymer-conjugated carbon nanotubes for biomolecule loading. ACS Nano (2021). https://doi.org/10.1101/2021.07.22.453422
- E. González-Grandío, G.S. Demirer, C.T. Jackson, D. Yang, S. Ebert et al., Carbon nanotube biocompatibility in plants is determined by their surface chemistry. J. Nanobiotechn. 19(1), 1–15 (2021). https://doi.org/10.1186/s12951-021-01178-8
- https://op.Europa.Eu/en/publication-detail/-/publication/e9899821-e4d4-4ceb-aada-0c62ce6cfcd3. 2021(12–4–2021)
- E. Commission, D.-G. f. Health, Consumers. Guidance on the Determination of Potential Health Effects of Nanomaterials Used in Medical Devices. (European Commission; 2015). https://data.europa.eu/doi/10.2772/41391. Accessed 4 Dec 2021.
- H.F. Florindo, A. Madi, R. Satchi-Fainaro, Challenges in the implementation of miribel criteria on nanobiomed manuscripts. Nat. Nanotechn. 14(7), 627–628 (2019). https://doi.org/10.1038/s41565-019-0498-7
- T. Engelhard, E. Feller, Z. Nizri, A comparison of the complimentary and different issues in ISO/IEC 17025 and OECD GLP. Accred. Qual. Assur. 8(5), 208–212 (2003). https://doi.org/10.1007/s00769-003-0589-9
- S. Bornstein-Forst, Establishing good laboratory practice at small colleges and universitie. J. Microbiol. Biol. Educ. 18(1), 18 (2017). https://doi.org/10.1128/jmbe.v18i1.1222
- I.S. Krull, M. Swartz, Analytical method development and validation for the academic researcher. Analyt. Lett. 32(6), 1067–1080 (1999). https://doi.org/10.1080/00032719908542878
- H. Benko. in Iso Technical Committee 229 Nanotechnologies. ed.by (2017), Mansfield, D.L. Kaiser, D.Fujita, M. Van de Voorde, Metrology and Standardization of Nanotechnology), Protocols and Industrial Innovations. pp. 259–268
- L. Gonzalez, R. J. Loza, K. Y. Han, S. Sunoqrot, C. Cunningham, P. Purta, J. Drake, S. Jain, S. Hong, J. H. Chang. Nanotechnology in corneal neovascularization therapy--a review. J Ocul Pharmacol Ther. 29(2), 124–134 (2013). https://doi.org/10.1089/jop.2012.0158
- S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanop delivery to tumours. Nat. Rev. Mater. 1(5), 1–12 (2016). https://doi.org/10.1038/natrevmats.2016.14
- L.S. Lin, J. Song, L. Song, K. Ke, Y. Liu et al., Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed. 57(18), 4902–4906 (2018). https://doi.org/10.1002/anie.201712027
- B. Ma, S. Wang, F. Liu, S. Zhang, J. Duan et al., Self-assembled copper-amino acid nanops for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 141(2), 849–857 (2019). https://doi.org/10.1021/jacs.8b08714
- Y.-S. Chen, Y. Zhao, S.J. Yoon, S.S. Gambhir, S. Emelianov, Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechn. 14(5), 465–472 (2019). https://doi.org/10.1038/s41565-019-0392-3
- M. Lundqvist, J. Stigler, T. Cedervall, T. Berggård, M.B. Flanagan et al., The evolution of the protein corona around nanops: A test study. ACS Nano 5(9), 7503–7509 (2011). https://doi.org/10.1021/nn202458g
- V. Gorshkov, J.A. Bubis, E.M. Solovyeva, M.V. Gorshkov, F. Kjeldsen, Protein corona formed on silver nanops in blood plasma is highly selective and resistant to physicochemical changes of the solution. Environm. Sci. Nano 6(4), 1089–1098 (2019). https://doi.org/10.1039/C8EN01054D
- G.A. Shabir, Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the us food and drug administration, the us pharmacopeia and the international conference on harmonization. J. Chromatography A 987(1), 57–66 (2003). https://doi.org/10.1016/S0021-9673(02)01536-4
- S. Sheibani, K. Basu, A. Farnudi, A. Ashkarran, M. Ichikawa et al., Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation. Nat. Commun. 12(1), 573 (2021). https://doi.org/10.1038/s41467-020-20884-9
- M.P. Monopoli, C. Åberg, A. Salvati, K.A. Dawson, Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechn. 7(12), 779–786 (2012). https://doi.org/10.1038/nnano.2012.207
- I. S. O. (ISO). Biological evaluation of medicaldevices Part 22: Guidance on nanomaterials. (2017)
- L.S. Anthony, V. Perumal, N.M. Mohamed, S.R. Balakrishnan, S.C.B. Gopinath, in 12 - Characterization of Synthesized Nanops for Medical Devices: Current Techniques and Recent Advances. ed. by GOPINATH S C B, GANG F (Elsevier; 2021), pp. 223–245.
- J.C. Doloff, O. Veiseh, R. de Mezerville, M. Sforza, T.A. Perry et al., The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Engin. 5(10), 1115–1130 (2021). https://doi.org/10.1038/s41551-021-00739-4
- https://www.Fda.Gov/news-events/press-announcements/fda-takes-action-protect-patients-risk-certain-textured-breast-implants-requests-allergan. Accessed 4 Dec 2021
- https://www.cancer.gov/nano/research/ncl/protocolscapabilities. Accessed 4 Dec 2021
- F. Caputo, J. Clogston, L. Calzolai, M. Rösslein, A. Prina-Mello, Measuring p size distribution of nanop enabled medicinal products, the joint view of euncl and nci-ncl. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release 299, 31–43 (2019). https://doi.org/10.1016/j.jconrel.2019.02.030
- V. Hackley, J. Clogston. Nist - ncl joint assay protocol, pcc-1. NCI Hub. https://doi.org/10.17917/3F5S-6728 (2020)
- https://www.nature.com/nature-portfolio/editorial-policies
References
Viseu, ana, "Nanomedicine". Encyclopedia britannica, 23 sep. 2020. https://www.Britannica.Com/science/nanomedicine. Accessed 4 Dec 2021.
J. Joo, Diagnostic and therapeutic nanomedicine. Adv. Exper. Med. Biology 1310, 401–447 (2021). https://doi.org/10.1007/978-981-33-6064-8_15
C. Jianrong, M. Yuqing, H. Nongyue, W. Xiaohua, L. Sijiao, Nanotechnology and biosensors. Biotechn. Adv. 22(7), 505–518 (2004). https://doi.org/10.1016/j.biotechadv.2004.03.004
I. Csóka, R. Ismail, O. Jójárt-Laczkovich, E. Pallagi, Regulatory considerations, challenges and risk-based approach in nanomedicine development. Curr. Med. Chem. 28(36), 7461–7476 (2021). https://doi.org/10.2174/0929867328666210406115529
J. Paradise, Regulating nanomedicine at the food and drug administration. AMA J. Ethics 21(4), E347-355 (2019). https://doi.org/10.1001/amajethics.2019.347
N. Hinge, M.M. Pandey, G. Singhvi, G. Gupta, M. Mehta et al., in Nanomedicine Advances in Cancer Therapy. ed. by L.C.D. Toit, P. Kumar, Y.E. Choonara et al. (Elsevier, Amstredam, 2020), pp.219–253
S. Hejmady, R. Pradhan, A. Alexander, M. Agrawal, G. Singhvi et al., Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Disc. Today 25(12), 2227–2244 (2020). https://doi.org/10.1016/j.drudis.2020.09.031
J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
B. Brembs, Prestigious science journals struggle to reach even average reliability. Front. Human Neurosci. (2018). https://doi.org/10.3389/fnhum.2018.00037
H.S. Leong, K.S. Butler, C.J. Brinker, M. Azzawi, S. Conlan et al., On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechn. 14(7), 629–635 (2019). https://doi.org/10.1038/s41565-019-0496-9
M. Mahmoudi, The need for robust characterization of nanomaterials for nanomedicine applications. Nat. Commun. 12, 5246 (2021). https://doi.org/10.1038/s41467-021-25584-6
M. Mahmoudi, The need for improved methodology in protein corona analysis. Nat. Commun. 13, 49 (2022). https://doi.org/10.1038/s41467-021-27643-4
F. Ledesma, B. Ozcan, X. Sun, S.M. Medina, M.P. Landry, Nanomaterial strategies for delivery of therapeutic cargoes. Adv. Funct. Mater. 32(4), 2107174 (2022). https://doi.org/10.1002/adfm.202107174
A.D. Jones 3rd., G. Mi, T.J. Webster, A status report on fda approval of medical devices containing nanostructured materials. Trends Biotechn. 37(2), 117–120 (2019). https://doi.org/10.1016/j.tibtech.2018.06.003
A. Pallotta, I. Clarot, J. Sobocinski, E. Fattal, A. Boudier, Nanotechnologies for medical devices: Potentialities and risks. ACS Appl. Bio Mater. 2(1), 1–13 (2019). https://doi.org/10.1021/acsabm.8b00612
H. He, L. Liu, E.E. Morin, M. Liu, A. Schwendeman, Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures. Acc. Chem. Res. 52(9), 2445–2461 (2019). https://doi.org/10.1021/acs.accounts.9b00228
A.C. Anselmo, S. Mitragotri, Nanops in the clinic: An update. Bioeng. Transl. Med. 4(3), e10143–e10143 (2019). https://doi.org/10.1002/btm2.10143
A.A. Ashkarran, J. Swann, L. Hollis, M. Mahmoudi, The file drawer problem in nanomedicine. Trends Biotechn. 39(5), 425–427 (2021). https://doi.org/10.1016/j.tibtech.2021.01.009
D. Langevin, O. Lozano, A. Salvati, V. Kestens, M. Monopoli et al., Inter-laboratory comparison of nanop size measurements using dynamic light scattering and differential centrifugal sedimentation. NanoImpact 10, 97–107 (2018). https://doi.org/10.1016/j.impact.2017.12.004
D.A. Heller, P.V. Jena, M. Pasquali, K. Kostarelos, L.G. Delogu et al., Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechn. 15(3), 164–166 (2020). https://doi.org/10.1038/s41565-020-0656-y
M. Faria, M. Björnmalm, K.J. Thurecht, S.J. Kent, R.G. Parton et al., Minimum information reporting in bio-nano experimental literature. Nat. Nanotechn. 13(9), 777–785 (2018). https://doi.org/10.1038/s41565-018-0246-4
C.T. Jackson, J.W. Wang, E. González-Grandío, N.S. Goh, J. Mun et al., Polymer-conjugated carbon nanotubes for biomolecule loading. ACS Nano (2021). https://doi.org/10.1101/2021.07.22.453422
E. González-Grandío, G.S. Demirer, C.T. Jackson, D. Yang, S. Ebert et al., Carbon nanotube biocompatibility in plants is determined by their surface chemistry. J. Nanobiotechn. 19(1), 1–15 (2021). https://doi.org/10.1186/s12951-021-01178-8
https://op.Europa.Eu/en/publication-detail/-/publication/e9899821-e4d4-4ceb-aada-0c62ce6cfcd3. 2021(12–4–2021)
E. Commission, D.-G. f. Health, Consumers. Guidance on the Determination of Potential Health Effects of Nanomaterials Used in Medical Devices. (European Commission; 2015). https://data.europa.eu/doi/10.2772/41391. Accessed 4 Dec 2021.
H.F. Florindo, A. Madi, R. Satchi-Fainaro, Challenges in the implementation of miribel criteria on nanobiomed manuscripts. Nat. Nanotechn. 14(7), 627–628 (2019). https://doi.org/10.1038/s41565-019-0498-7
T. Engelhard, E. Feller, Z. Nizri, A comparison of the complimentary and different issues in ISO/IEC 17025 and OECD GLP. Accred. Qual. Assur. 8(5), 208–212 (2003). https://doi.org/10.1007/s00769-003-0589-9
S. Bornstein-Forst, Establishing good laboratory practice at small colleges and universitie. J. Microbiol. Biol. Educ. 18(1), 18 (2017). https://doi.org/10.1128/jmbe.v18i1.1222
I.S. Krull, M. Swartz, Analytical method development and validation for the academic researcher. Analyt. Lett. 32(6), 1067–1080 (1999). https://doi.org/10.1080/00032719908542878
H. Benko. in Iso Technical Committee 229 Nanotechnologies. ed.by (2017), Mansfield, D.L. Kaiser, D.Fujita, M. Van de Voorde, Metrology and Standardization of Nanotechnology), Protocols and Industrial Innovations. pp. 259–268
L. Gonzalez, R. J. Loza, K. Y. Han, S. Sunoqrot, C. Cunningham, P. Purta, J. Drake, S. Jain, S. Hong, J. H. Chang. Nanotechnology in corneal neovascularization therapy--a review. J Ocul Pharmacol Ther. 29(2), 124–134 (2013). https://doi.org/10.1089/jop.2012.0158
S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet et al., Analysis of nanop delivery to tumours. Nat. Rev. Mater. 1(5), 1–12 (2016). https://doi.org/10.1038/natrevmats.2016.14
L.S. Lin, J. Song, L. Song, K. Ke, Y. Liu et al., Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem. Int. Ed. 57(18), 4902–4906 (2018). https://doi.org/10.1002/anie.201712027
B. Ma, S. Wang, F. Liu, S. Zhang, J. Duan et al., Self-assembled copper-amino acid nanops for in situ glutathione “and” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 141(2), 849–857 (2019). https://doi.org/10.1021/jacs.8b08714
Y.-S. Chen, Y. Zhao, S.J. Yoon, S.S. Gambhir, S. Emelianov, Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window. Nat. Nanotechn. 14(5), 465–472 (2019). https://doi.org/10.1038/s41565-019-0392-3
M. Lundqvist, J. Stigler, T. Cedervall, T. Berggård, M.B. Flanagan et al., The evolution of the protein corona around nanops: A test study. ACS Nano 5(9), 7503–7509 (2011). https://doi.org/10.1021/nn202458g
V. Gorshkov, J.A. Bubis, E.M. Solovyeva, M.V. Gorshkov, F. Kjeldsen, Protein corona formed on silver nanops in blood plasma is highly selective and resistant to physicochemical changes of the solution. Environm. Sci. Nano 6(4), 1089–1098 (2019). https://doi.org/10.1039/C8EN01054D
G.A. Shabir, Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the us food and drug administration, the us pharmacopeia and the international conference on harmonization. J. Chromatography A 987(1), 57–66 (2003). https://doi.org/10.1016/S0021-9673(02)01536-4
S. Sheibani, K. Basu, A. Farnudi, A. Ashkarran, M. Ichikawa et al., Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation. Nat. Commun. 12(1), 573 (2021). https://doi.org/10.1038/s41467-020-20884-9
M.P. Monopoli, C. Åberg, A. Salvati, K.A. Dawson, Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechn. 7(12), 779–786 (2012). https://doi.org/10.1038/nnano.2012.207
I. S. O. (ISO). Biological evaluation of medicaldevices Part 22: Guidance on nanomaterials. (2017)
L.S. Anthony, V. Perumal, N.M. Mohamed, S.R. Balakrishnan, S.C.B. Gopinath, in 12 - Characterization of Synthesized Nanops for Medical Devices: Current Techniques and Recent Advances. ed. by GOPINATH S C B, GANG F (Elsevier; 2021), pp. 223–245.
J.C. Doloff, O. Veiseh, R. de Mezerville, M. Sforza, T.A. Perry et al., The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Engin. 5(10), 1115–1130 (2021). https://doi.org/10.1038/s41551-021-00739-4
https://www.Fda.Gov/news-events/press-announcements/fda-takes-action-protect-patients-risk-certain-textured-breast-implants-requests-allergan. Accessed 4 Dec 2021
https://www.cancer.gov/nano/research/ncl/protocolscapabilities. Accessed 4 Dec 2021
F. Caputo, J. Clogston, L. Calzolai, M. Rösslein, A. Prina-Mello, Measuring p size distribution of nanop enabled medicinal products, the joint view of euncl and nci-ncl. A step by step approach combining orthogonal measurements with increasing complexity. J. Control. Release 299, 31–43 (2019). https://doi.org/10.1016/j.jconrel.2019.02.030
V. Hackley, J. Clogston. Nist - ncl joint assay protocol, pcc-1. NCI Hub. https://doi.org/10.17917/3F5S-6728 (2020)