Resolving Mixed Intermediate Phases in Methylammonium-Free Sn–Pb Alloyed Perovskites for High-Performance Solar Cells
Corresponding Author: Chun‑Chao Chen
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 165
Abstract
The complete elimination of methylammonium (MA) cations in Sn–Pb composites can extend their light and thermal stabilities. Unfortunately, MA-free Sn–Pb alloyed perovskite thin films suffer from wrinkled surfaces and poor crystallization, due to the coexistence of mixed intermediate phases. Here, we report an additive strategy for finely regulating the impurities in the intermediate phase of Cs0.25FA0.75Pb0.6Sn0.4I3 and, thereby, obtaining high-performance solar cells. We introduced d-homoserine lactone hydrochloride (D-HLH) to form hydrogen bonds and strong Pb–O/Sn–O bonds with perovskite precursors, thereby weakening the incomplete complexation effect between polar aprotic solvents (e.g., DMSO) and organic (FAI) or inorganic (CsI, PbI2, and SnI2) components, and balancing their nucleation processes. This treatment completely transformed mixed intermediate phases into pure preformed perovskite nuclei prior to thermal annealing. Besides, this D-HLH substantially inhibited the oxidation of Sn2+ species. This strategy generated a record efficiency of 21.61%, with a Voc of 0.88 V for an MA-free Sn–Pb device, and an efficiency of 23.82% for its tandem device. The unencapsulated devices displayed impressive thermal stability at 85 °C for 300 h and much improved continuous operation stability at MPP for 120 h.
Highlights:
1 The first study dedicated to solving the problem of mixed intermediate phases in methylammonium (MA)-free (FA-Cs) Sn–Pb alloyed perovskite systems, new performance records of 21.61% and 23.82% realized for its single-junction and tandem devices.
2 d-Homoserine lactone hydrochloride (D-HLH), employed as an additive, accelerates the transition from mixed intermediate phases into preformed perovskite nuclei.
3 The presence of D-HLH eliminated the negative effect of mixed intermediate phases and regulated the crystallization kinetics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/S41586-021-03964-8
- S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M.A. Truong et al., Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. (2022). https://doi.org/10.1039/D2EE00288D
- Y. Takahashi, R. Obara, Z.Z. Lin, Y. Takahashi, T. Naito et al., Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalt. Trans. 40(20), 5563–5568 (2021). https://doi.org/10.1039/c0dt01601b
- N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k
- F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu et al., Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification. Sol. RRL 2(10), 1800136 (2018). https://doi.org/10.1002/solr.201800136
- Q. Tai, X. Guo, G. Tang, P. You, T.W. Ng et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58(3), 806–810 (2019). https://doi.org/10.1002/anie.201811539
- S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn et al., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 138(12), 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142
- W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016). https://doi.org/10.1002/adma.201602992
- L. Ma, F. Hao, C.C. Stoumpos, B.T. Phelan, M.R. Wasielewski et al., Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138(44), 14750–14755 (2016). https://doi.org/10.1021/jacs.6b09257
- Z. Song, C. Wang, A.B. Phillips, C.R. Grice, D. Zhao et al., Probing the origins of photodegradation in organic-inorganic metal halide perovskites with time-resolved mass spectrometry. Sustain. Energy Fuels 2(11), 2460–2467 (2018). https://doi.org/10.1039/c8se00358k
- E.J. Juarez-Perez, L.K. Ono, Y. Qi, Thermal degradation of formamidinium based lead halide perovskites into: sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J. Mater. Chem. A 7(28), 16912–16919 (2019). https://doi.org/10.1039/c9ta06058h
- E.J. Juarez-Perez, L.K. Ono, M. Maeda, Y. Jiang, Z. Hawash et al., Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6(20), 9604–9612 (2018). https://doi.org/10.1039/c8ta03501f
- S.H. Turren-Cruz, A. Hagfeldt, M. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362(6413), 449–453 (2018). https://doi.org/10.1126/science.aat3583
- F. Lang, O. Shargaieva, V.V. Brus, H.C. Neitzert, J. Rappich et al., Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 30(3), 1702905 (2018). https://doi.org/10.1002/adma.201702905
- W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire et al., Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138(38), 12360–12363 (2016). https://doi.org/10.1021/jacs.6b08337
- C. Wang, Z. Song, C. Li, D. Zhao, Y. Yan, Low-bandgap mixed tin-lead perovskites and their applications in all-perovskite tandem solar cells. Adv. Funct. Mater. 29(47), 1808801 (2019). https://doi.org/10.1002/adfm.201808801
- G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang et al., Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv. Funct. Mater. 28(42), 1804427 (2018). https://doi.org/10.1002/adfm.201804427
- R. Prasanna, T. Leijtens, S.P. Dunfield, J.A. Raiford, E.J. Wolf et al., Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy 4(11), 939–947 (2019). https://doi.org/10.1038/s41560-019-0471-6
- J.W. Lee, D.H. Kim, H.S. Kim, S.W. Seo, S.M. Cho et al., Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015). https://doi.org/10.1002/AENM.201501310
- Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
- C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani et al., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9(2), 656–662 (2016). https://doi.org/10.1039/C5EE03255E
- Z. Zhang, J. Liang, Y. Zheng, X. Wu, J. Wang et al., Balancing crystallization rate in a mixed Sn–Pb perovskite film for efficient and stable perovskite solar cells of more than 20% efficiency. J. Mater. Chem. A 9(33), 17830–17840 (2021). https://doi.org/10.1039/D1TA04922D
- W. Xiang, J. Zhang, S. Liu, S. Albrecht, A. Hagfeldt et al., Intermediate phase engineering of halide perovskites for photovoltaics. Joule 6(2), 315–339 (2022). https://doi.org/10.1016/j.joule.2021.11.013
- J. Werner, T. Moot, T.A. Gossett, I.E. Gould, A.F. Palmstrom et al., Improving low-bandgap tin-lead perovskite solar cells via contact engineering and gas quench processing. ACS Energy Lett. 5(4), 1215–1223 (2020). https://doi.org/10.1021/acsenergylett.0c00255
- J.W. Lee, H.S. Kim, N.G. Park, Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49(2), 311–319 (2016). https://doi.org/10.1021/acs.accounts.5b00440
- W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
- M. Jung, S.G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48(7), 2011–2038 (2019). https://doi.org/10.1039/c8cs00656c
- H. Miyamae, Y. Numahata, M. Nagata, The crystal structure of lead (II) iodide-dimethylsulphoxide (1/2), PbI2 (DMSO)2. Chem. Lett. 9(6), 663–664 (1980). https://doi.org/10.1246/cl.1980.663
- A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi et al., Reproducible fabrication of efficient perovskite-based solar cells: x-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chem. Lett. 43(5), 711–713 (2014). https://doi.org/10.1246/cl.140074
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- B. Park, N. Kedem, M. Kulbak, D.Y. Lee, W.S. Yang et al., Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 9, 3301 (2018). https://doi.org/10.1038/s41467-018-05583-w
- Z. Chen, H. Zhang, F. Yao, C. Tao, G. Fang et al., Room temperature formation of semiconductor grade α-FAPbI3 films for efficient perovskite solar cells. Cell Rep. Phys. Sci. 1(9), 100205 (2020). https://doi.org/10.1016/J.XCRP.2020.100205
- Y. Ren, N. Zhang, Q. Wang, J. Zhu, C. Li, Restricting δ-phase transformation of HC(NH2)2PbI3 via iodine-vacancy filling for efficient perovskite solar cells. Sci. China Mater. 63(6), 1015–1023 (2020). https://doi.org/10.1007/s40843-019-1273-x
- G. Zhou, J. Wu, Y. Zhao, Y. Li, J. Shi et al., Application of cesium on the restriction of precursor crystallization for highly reproducible perovskite solar cells exceeding 20% efficiency. ACS Appl. Mater. Interfaces 10(11), 9503–9513 (2018). https://doi.org/10.1021/acsami.8b01054
- M. Qin, K. Tse, T.K. Lau, Y. Li, C.J. Su et al., Manipulating the mixed-perovskite crystallization pathway unveiled by in situ GIWAXS. Adv. Mater. 31(25), 1901284 (2019). https://doi.org/10.1002/adma.201901284
- T. Moot, A.R. Marshall, L.M. Wheeler, S.N. Habisreutinger, T.H. Schloemer et al., CsI-antisolvent adduct formation in all-inorganic metal halide perovskites. Adv. Energy Mater. 10(9), 1903365 (2020). https://doi.org/10.1002/aenm.201903365
- X. Jiang, H. Li, Q. Zhou, Q. Wei, M. We et al., One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143(29), 10970–10976 (2021). https://doi.org/10.1021/jacs.1c03032
- M. Yin, F. Xie, H. Chen, X. Yang, F. Ye et al., Annealing-free perovskite films by instant crystallization for efficient solar cells. J. Mater. Chem. A 4(22), 8548–8553 (2016). https://doi.org/10.1039/c6ta02490d
- X. Fang, Y. Wu, Y. Lu, Y. Sun, S. Zhang et al., Annealing-free perovskite films based on solvent engineering for efficient solar cells. J. Mater. Chem. C 5(4), 842–847 (2017). https://doi.org/10.1039/c6tc04944c
- Y. Yun, D. Vidyasagar, M. Lee, O.Y. Gong, J. Jung et al., Intermediate phase-free process for methylammonium lead iodide thin film for high-efficiency perovskite solar cells. Adv. Sci. 8(21), 2102492 (2021). https://doi.org/10.1002/advs.202102492
- S.A. Fateev, A.A. Petrov, V.N. Khrustalev, P.V. Dorovatovskii, Y.V. Zubavichus et al., Solution processing of methylammonium lead iodide perovskite from γ-butyrolactone: crystallization mediated by solvation equilibrium. Chem. Mater. 30(15), 5237–5244 (2018). https://doi.org/10.1021/acs.chemmater.8b01906
- L. Zhang, K. Cao, J. Qian, Y. Huang, X. Wang et al., Crystallization control and multisite passivation of perovskites with amino acid to boost the efficiency and stability of perovskite solar cells. J. Mater. Chem. C 8(48), 17482–17490 (2020). https://doi.org/10.1039/d0tc04186f
- K. Xiao, Y.H. Lin, M. Zhang, R.D.J. Oliver, X. Wang et al., Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376(6594), 762–767 (2022). https://doi.org/10.1126/science.abn7696
- X. Guo, C. McCleese, C. Kolodziej, A.C.S. Samia, Y. Zhao et al., Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. Dalt. Trans. 45(9), 3806–3813 (2016). https://doi.org/10.1039/c5dt04420k
- Y. Rong, S. Venkatesan, R. Guo, Y. Wang, J. Bao et al., Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. Nanoscale 8(26), 12892–12899 (2016). https://doi.org/10.1039/c6nr00488a
- L. Wang, X. Wang, L.L. Deng, S. Leng, X. Guo et al., The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Mater. Horizons 7(3), 934–942 (2020). https://doi.org/10.1039/c9mh01679a
- X. Meng, Y. Li, Y. Qu, H. Chen, N. Jiang et al., Crystallization kinetics modulation of FASnI3 films with pre-nucleation clusters for efficient lead-free perovskite solar cells. Angew. Chem. Int. Ed. 60(7), 3693–3698 (2021). https://doi.org/10.1002/anie.202012280
- Y. Su, J. Yang, G. Liu, W. Sheng, J. Zhang et al., Acetic acid-assisted synergistic modulation of crystallization kinetics and inhibition of Sn2+ oxidation in tin-based perovskite solar cells. Adv. Funct. Mater. 32(12), 2109631 (2021). https://doi.org/10.1002/adfm.202109631
- K. Zhang, Z. Wang, G. Wang, J. Wang, Y. Li et al., A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nat. Commun. 11, 1006 (2020). https://doi.org/10.1038/s41467-020-14715-0
- D. Gebauer, M. Kellermeier, J.D. Gale, L. Bergström, H. Cölfen, Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43(7), 2348–2371 (2014). https://doi.org/10.1039/c3cs60451a
- A. Johansson, P. Kollman, S. Rothenberg, J. McKelvey, Hydrogen bonding ability of the amide group. J. Am. Chem. Soc. 96(12), 3794–3800 (1974). https://doi.org/10.1021/ja00819a013
- R.J. Ouellette, J.D. Rawn, Structure and bonding in organic compounds. in Organic Chemistry, (2018) pp.1–30 doi: https://doi.org/10.1016/b978-0-12-812838-1.50001-3
- J.P.M. Lommerse, S.L. Price, R. Taylor, Hydrogen bonding of carbonyl, ether, and ester oxygen atoms with alkanol hydroxyl groups. J. Comput. Chem. 18(6), 757–774 (1997). https://doi.org/10.1002/(SICI)1096-987X(19970430)18:6%3c757::AID-JCC3%3e3.0.CO;2-R
- Y. Zhan, F. Yang, W. Chen, H. Chen, Y. Shen et al., Elastic lattice and excess charge carrier manipulation in 1D–3D perovskite solar cells for exceptionally long-term operational stability. Adv. Mater. 33(48), 2105170 (2021). https://doi.org/10.1002/ADMA.202105170
- H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D ruddlesden–popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32(33), 2001470 (2020). https://doi.org/10.1002/ADMA.202001470
- Y. Lin, B. Chen, F. Zhao, X. Zheng, Y. Deng et al., Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater. 29(26), 1700607 (2017). https://doi.org/10.1002/adma.201700607
- Y. Zheng, X. Wu, J. Liang, Z. Zhang, J. Jiang et al., Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32(29), 2200431 (2022). https://doi.org/10.1002/ADFM.202200431
- Y. Wang, H. Ju, T. Mahmoudi, C. Liu, C. Zhang et al., Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 219% efficiency. Nano Energy 88, 106285 (2021). https://doi.org/10.1016/j.nanoen.2021.106285
- H. Kim, J.W. Lee, G.R. Han, S.K. Kim, J.H. Oh et al., Synergistic effects of cation and anion in an ionic imidazolium tetrafluoroborate additive for improving the efficiency and stability of half-mixed Pb-Sn perovskite solar cells. Adv. Funct. Mater. 31(11), 2008801 (2021). https://doi.org/10.1002/ADFM.202008801
- J.S. Yun, A. Ho-Baillie, S. Huang, S.H. Woo, Y. Heo et al., Benefit of grain boundaries in organic-inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6(5), 875–880 (2015). https://doi.org/10.1021/acs.jpclett.5b00182
- Y. Qiu, J. Liang, Z. Zhang, Z. Deng, H. Xu et al., Tuning the interfacial dipole moment of spacer cations for charge extraction in efficient and ultrastable perovskite solar cells. J. Phys. Chem. C 125(2), 1256–1268 (2021). https://doi.org/10.1021/acs.jpcc.0c09606
- C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019). https://doi.org/10.1038/s41467-019-08507-4
- M.T. Klug, R.L. Milot, R.L. Milot, J.B. Patel, T. Green et al., Metal composition influences optoelectronic quality in mixed-metal lead–tin triiodide perovskite solar absorbers. Energy Environ. Sci. 13(6), 1776–1787 (2022). https://doi.org/10.1039/D0EE00132E
- J. Liang, Z. Zhang, Q. Xue, Y. Zheng, X. Wu et al., A finely regulated quantum well structure in quasi-2D Ruddlesden-Popper perovskite solar cells with efficiency exceeding 20%. Energy Environ. Sci. 15, 296–310 (2022). https://doi.org/10.1039/D1EE01695D
- E.H. Kim, J.H. Lee, S.H. Kim, J.H. Gu, D. Lee, A-Site effect on the oxidation process of Sn-halide perovskite: first-principles calculations. J. Phys. Chem. Lett. 12(39), 9691–9696 (2021). https://doi.org/10.1021/acs.jpclett.1c03033
- J. Cameron, P.J. Skabara, The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horizons 7(7), 1759–1772 (2022). https://doi.org/10.1039/c9mh01978b
- Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14, 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
- T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong et al., Heterogeneous FASnI3 absorber with enhanced electric field for high-performance lead-free perovskite solar cells. Nano-Micro Lett. 14, 99 (2022). https://doi.org/10.1007/s40820-022-00842-4
References
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/S41586-021-03964-8
S. Hu, K. Otsuka, R. Murdey, T. Nakamura, M.A. Truong et al., Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. (2022). https://doi.org/10.1039/D2EE00288D
Y. Takahashi, R. Obara, Z.Z. Lin, Y. Takahashi, T. Naito et al., Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalt. Trans. 40(20), 5563–5568 (2021). https://doi.org/10.1039/c0dt01601b
N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera et al., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014). https://doi.org/10.1039/c4ee01076k
F. Gu, S. Ye, Z. Zhao, H. Rao, Z. Liu et al., Improving performance of lead-free formamidinium tin triiodide perovskite solar cells by tin source purification. Sol. RRL 2(10), 1800136 (2018). https://doi.org/10.1002/solr.201800136
Q. Tai, X. Guo, G. Tang, P. You, T.W. Ng et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58(3), 806–810 (2019). https://doi.org/10.1002/anie.201811539
S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn et al., Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex. J. Am. Chem. Soc. 138(12), 3974–3977 (2016). https://doi.org/10.1021/jacs.6b00142
W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28(42), 9333–9340 (2016). https://doi.org/10.1002/adma.201602992
L. Ma, F. Hao, C.C. Stoumpos, B.T. Phelan, M.R. Wasielewski et al., Carrier diffusion lengths of over 500 nm in lead-free perovskite CH3NH3SnI3 films. J. Am. Chem. Soc. 138(44), 14750–14755 (2016). https://doi.org/10.1021/jacs.6b09257
Z. Song, C. Wang, A.B. Phillips, C.R. Grice, D. Zhao et al., Probing the origins of photodegradation in organic-inorganic metal halide perovskites with time-resolved mass spectrometry. Sustain. Energy Fuels 2(11), 2460–2467 (2018). https://doi.org/10.1039/c8se00358k
E.J. Juarez-Perez, L.K. Ono, Y. Qi, Thermal degradation of formamidinium based lead halide perovskites into: sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. J. Mater. Chem. A 7(28), 16912–16919 (2019). https://doi.org/10.1039/c9ta06058h
E.J. Juarez-Perez, L.K. Ono, M. Maeda, Y. Jiang, Z. Hawash et al., Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6(20), 9604–9612 (2018). https://doi.org/10.1039/c8ta03501f
S.H. Turren-Cruz, A. Hagfeldt, M. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science 362(6413), 449–453 (2018). https://doi.org/10.1126/science.aat3583
F. Lang, O. Shargaieva, V.V. Brus, H.C. Neitzert, J. Rappich et al., Influence of radiation on the properties and the stability of hybrid perovskites. Adv. Mater. 30(3), 1702905 (2018). https://doi.org/10.1002/adma.201702905
W. Liao, D. Zhao, Y. Yu, N. Shrestha, K. Ghimire et al., Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide. J. Am. Chem. Soc. 138(38), 12360–12363 (2016). https://doi.org/10.1021/jacs.6b08337
C. Wang, Z. Song, C. Li, D. Zhao, Y. Yan, Low-bandgap mixed tin-lead perovskites and their applications in all-perovskite tandem solar cells. Adv. Funct. Mater. 29(47), 1808801 (2019). https://doi.org/10.1002/adfm.201808801
G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang et al., Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv. Funct. Mater. 28(42), 1804427 (2018). https://doi.org/10.1002/adfm.201804427
R. Prasanna, T. Leijtens, S.P. Dunfield, J.A. Raiford, E.J. Wolf et al., Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy 4(11), 939–947 (2019). https://doi.org/10.1038/s41560-019-0471-6
J.W. Lee, D.H. Kim, H.S. Kim, S.W. Seo, S.M. Cho et al., Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Adv. Energy Mater. 5(20), 1501310 (2015). https://doi.org/10.1002/AENM.201501310
Z. Li, M. Yang, J.S. Park, S.H. Wei, J.J. Berry et al., Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28(1), 284–292 (2016). https://doi.org/10.1021/acs.chemmater.5b04107
C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani et al., Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy Environ. Sci. 9(2), 656–662 (2016). https://doi.org/10.1039/C5EE03255E
Z. Zhang, J. Liang, Y. Zheng, X. Wu, J. Wang et al., Balancing crystallization rate in a mixed Sn–Pb perovskite film for efficient and stable perovskite solar cells of more than 20% efficiency. J. Mater. Chem. A 9(33), 17830–17840 (2021). https://doi.org/10.1039/D1TA04922D
W. Xiang, J. Zhang, S. Liu, S. Albrecht, A. Hagfeldt et al., Intermediate phase engineering of halide perovskites for photovoltaics. Joule 6(2), 315–339 (2022). https://doi.org/10.1016/j.joule.2021.11.013
J. Werner, T. Moot, T.A. Gossett, I.E. Gould, A.F. Palmstrom et al., Improving low-bandgap tin-lead perovskite solar cells via contact engineering and gas quench processing. ACS Energy Lett. 5(4), 1215–1223 (2020). https://doi.org/10.1021/acsenergylett.0c00255
J.W. Lee, H.S. Kim, N.G. Park, Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49(2), 311–319 (2016). https://doi.org/10.1021/acs.accounts.5b00440
W.A. Dunlap-Shohl, Y. Zhou, N.P. Padture, D.B. Mitzi, Synthetic approaches for halide perovskite thin films. Chem. Rev. 119(5), 3193–3295 (2019). https://doi.org/10.1021/acs.chemrev.8b00318
M. Jung, S.G. Ji, G. Kim, S.I. Seok, Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chem. Soc. Rev. 48(7), 2011–2038 (2019). https://doi.org/10.1039/c8cs00656c
H. Miyamae, Y. Numahata, M. Nagata, The crystal structure of lead (II) iodide-dimethylsulphoxide (1/2), PbI2 (DMSO)2. Chem. Lett. 9(6), 663–664 (1980). https://doi.org/10.1246/cl.1980.663
A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi et al., Reproducible fabrication of efficient perovskite-based solar cells: x-ray crystallographic studies on the formation of CH3NH3PbI3 layers. Chem. Lett. 43(5), 711–713 (2014). https://doi.org/10.1246/cl.140074
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
B. Park, N. Kedem, M. Kulbak, D.Y. Lee, W.S. Yang et al., Understanding how excess lead iodide precursor improves halide perovskite solar cell performance. Nat. Commun. 9, 3301 (2018). https://doi.org/10.1038/s41467-018-05583-w
Z. Chen, H. Zhang, F. Yao, C. Tao, G. Fang et al., Room temperature formation of semiconductor grade α-FAPbI3 films for efficient perovskite solar cells. Cell Rep. Phys. Sci. 1(9), 100205 (2020). https://doi.org/10.1016/J.XCRP.2020.100205
Y. Ren, N. Zhang, Q. Wang, J. Zhu, C. Li, Restricting δ-phase transformation of HC(NH2)2PbI3 via iodine-vacancy filling for efficient perovskite solar cells. Sci. China Mater. 63(6), 1015–1023 (2020). https://doi.org/10.1007/s40843-019-1273-x
G. Zhou, J. Wu, Y. Zhao, Y. Li, J. Shi et al., Application of cesium on the restriction of precursor crystallization for highly reproducible perovskite solar cells exceeding 20% efficiency. ACS Appl. Mater. Interfaces 10(11), 9503–9513 (2018). https://doi.org/10.1021/acsami.8b01054
M. Qin, K. Tse, T.K. Lau, Y. Li, C.J. Su et al., Manipulating the mixed-perovskite crystallization pathway unveiled by in situ GIWAXS. Adv. Mater. 31(25), 1901284 (2019). https://doi.org/10.1002/adma.201901284
T. Moot, A.R. Marshall, L.M. Wheeler, S.N. Habisreutinger, T.H. Schloemer et al., CsI-antisolvent adduct formation in all-inorganic metal halide perovskites. Adv. Energy Mater. 10(9), 1903365 (2020). https://doi.org/10.1002/aenm.201903365
X. Jiang, H. Li, Q. Zhou, Q. Wei, M. We et al., One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. J. Am. Chem. Soc. 143(29), 10970–10976 (2021). https://doi.org/10.1021/jacs.1c03032
M. Yin, F. Xie, H. Chen, X. Yang, F. Ye et al., Annealing-free perovskite films by instant crystallization for efficient solar cells. J. Mater. Chem. A 4(22), 8548–8553 (2016). https://doi.org/10.1039/c6ta02490d
X. Fang, Y. Wu, Y. Lu, Y. Sun, S. Zhang et al., Annealing-free perovskite films based on solvent engineering for efficient solar cells. J. Mater. Chem. C 5(4), 842–847 (2017). https://doi.org/10.1039/c6tc04944c
Y. Yun, D. Vidyasagar, M. Lee, O.Y. Gong, J. Jung et al., Intermediate phase-free process for methylammonium lead iodide thin film for high-efficiency perovskite solar cells. Adv. Sci. 8(21), 2102492 (2021). https://doi.org/10.1002/advs.202102492
S.A. Fateev, A.A. Petrov, V.N. Khrustalev, P.V. Dorovatovskii, Y.V. Zubavichus et al., Solution processing of methylammonium lead iodide perovskite from γ-butyrolactone: crystallization mediated by solvation equilibrium. Chem. Mater. 30(15), 5237–5244 (2018). https://doi.org/10.1021/acs.chemmater.8b01906
L. Zhang, K. Cao, J. Qian, Y. Huang, X. Wang et al., Crystallization control and multisite passivation of perovskites with amino acid to boost the efficiency and stability of perovskite solar cells. J. Mater. Chem. C 8(48), 17482–17490 (2020). https://doi.org/10.1039/d0tc04186f
K. Xiao, Y.H. Lin, M. Zhang, R.D.J. Oliver, X. Wang et al., Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376(6594), 762–767 (2022). https://doi.org/10.1126/science.abn7696
X. Guo, C. McCleese, C. Kolodziej, A.C.S. Samia, Y. Zhao et al., Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite. Dalt. Trans. 45(9), 3806–3813 (2016). https://doi.org/10.1039/c5dt04420k
Y. Rong, S. Venkatesan, R. Guo, Y. Wang, J. Bao et al., Critical kinetic control of non-stoichiometric intermediate phase transformation for efficient perovskite solar cells. Nanoscale 8(26), 12892–12899 (2016). https://doi.org/10.1039/c6nr00488a
L. Wang, X. Wang, L.L. Deng, S. Leng, X. Guo et al., The mechanism of universal green antisolvents for intermediate phase controlled high-efficiency formamidinium-based perovskite solar cells. Mater. Horizons 7(3), 934–942 (2020). https://doi.org/10.1039/c9mh01679a
X. Meng, Y. Li, Y. Qu, H. Chen, N. Jiang et al., Crystallization kinetics modulation of FASnI3 films with pre-nucleation clusters for efficient lead-free perovskite solar cells. Angew. Chem. Int. Ed. 60(7), 3693–3698 (2021). https://doi.org/10.1002/anie.202012280
Y. Su, J. Yang, G. Liu, W. Sheng, J. Zhang et al., Acetic acid-assisted synergistic modulation of crystallization kinetics and inhibition of Sn2+ oxidation in tin-based perovskite solar cells. Adv. Funct. Mater. 32(12), 2109631 (2021). https://doi.org/10.1002/adfm.202109631
K. Zhang, Z. Wang, G. Wang, J. Wang, Y. Li et al., A prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformity. Nat. Commun. 11, 1006 (2020). https://doi.org/10.1038/s41467-020-14715-0
D. Gebauer, M. Kellermeier, J.D. Gale, L. Bergström, H. Cölfen, Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43(7), 2348–2371 (2014). https://doi.org/10.1039/c3cs60451a
A. Johansson, P. Kollman, S. Rothenberg, J. McKelvey, Hydrogen bonding ability of the amide group. J. Am. Chem. Soc. 96(12), 3794–3800 (1974). https://doi.org/10.1021/ja00819a013
R.J. Ouellette, J.D. Rawn, Structure and bonding in organic compounds. in Organic Chemistry, (2018) pp.1–30 doi: https://doi.org/10.1016/b978-0-12-812838-1.50001-3
J.P.M. Lommerse, S.L. Price, R. Taylor, Hydrogen bonding of carbonyl, ether, and ester oxygen atoms with alkanol hydroxyl groups. J. Comput. Chem. 18(6), 757–774 (1997). https://doi.org/10.1002/(SICI)1096-987X(19970430)18:6%3c757::AID-JCC3%3e3.0.CO;2-R
Y. Zhan, F. Yang, W. Chen, H. Chen, Y. Shen et al., Elastic lattice and excess charge carrier manipulation in 1D–3D perovskite solar cells for exceptionally long-term operational stability. Adv. Mater. 33(48), 2105170 (2021). https://doi.org/10.1002/ADMA.202105170
H. Lai, D. Lu, Z. Xu, N. Zheng, Z. Xie et al., Organic-salt-assisted crystal growth and orientation of quasi-2D ruddlesden–popper perovskites for solar cells with efficiency over 19%. Adv. Mater. 32(33), 2001470 (2020). https://doi.org/10.1002/ADMA.202001470
Y. Lin, B. Chen, F. Zhao, X. Zheng, Y. Deng et al., Matching charge extraction contact for wide-bandgap perovskite solar cells. Adv. Mater. 29(26), 1700607 (2017). https://doi.org/10.1002/adma.201700607
Y. Zheng, X. Wu, J. Liang, Z. Zhang, J. Jiang et al., Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32(29), 2200431 (2022). https://doi.org/10.1002/ADFM.202200431
Y. Wang, H. Ju, T. Mahmoudi, C. Liu, C. Zhang et al., Cation-size mismatch and interface stabilization for efficient NiOx-based inverted perovskite solar cells with 219% efficiency. Nano Energy 88, 106285 (2021). https://doi.org/10.1016/j.nanoen.2021.106285
H. Kim, J.W. Lee, G.R. Han, S.K. Kim, J.H. Oh et al., Synergistic effects of cation and anion in an ionic imidazolium tetrafluoroborate additive for improving the efficiency and stability of half-mixed Pb-Sn perovskite solar cells. Adv. Funct. Mater. 31(11), 2008801 (2021). https://doi.org/10.1002/ADFM.202008801
J.S. Yun, A. Ho-Baillie, S. Huang, S.H. Woo, Y. Heo et al., Benefit of grain boundaries in organic-inorganic halide planar perovskite solar cells. J. Phys. Chem. Lett. 6(5), 875–880 (2015). https://doi.org/10.1021/acs.jpclett.5b00182
Y. Qiu, J. Liang, Z. Zhang, Z. Deng, H. Xu et al., Tuning the interfacial dipole moment of spacer cations for charge extraction in efficient and ultrastable perovskite solar cells. J. Phys. Chem. C 125(2), 1256–1268 (2021). https://doi.org/10.1021/acs.jpcc.0c09606
C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10, 815 (2019). https://doi.org/10.1038/s41467-019-08507-4
M.T. Klug, R.L. Milot, R.L. Milot, J.B. Patel, T. Green et al., Metal composition influences optoelectronic quality in mixed-metal lead–tin triiodide perovskite solar absorbers. Energy Environ. Sci. 13(6), 1776–1787 (2022). https://doi.org/10.1039/D0EE00132E
J. Liang, Z. Zhang, Q. Xue, Y. Zheng, X. Wu et al., A finely regulated quantum well structure in quasi-2D Ruddlesden-Popper perovskite solar cells with efficiency exceeding 20%. Energy Environ. Sci. 15, 296–310 (2022). https://doi.org/10.1039/D1EE01695D
E.H. Kim, J.H. Lee, S.H. Kim, J.H. Gu, D. Lee, A-Site effect on the oxidation process of Sn-halide perovskite: first-principles calculations. J. Phys. Chem. Lett. 12(39), 9691–9696 (2021). https://doi.org/10.1021/acs.jpclett.1c03033
J. Cameron, P.J. Skabara, The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horizons 7(7), 1759–1772 (2022). https://doi.org/10.1039/c9mh01978b
Y. Xu, Z. Lin, W. Wei, Y. Hao, S. Liu et al., Recent progress of electrode materials for flexible perovskite solar cells. Nano-Micro Lett. 14, 117 (2022). https://doi.org/10.1007/s40820-022-00859-9
T. Wu, X. Liu, X. Luo, H. Segawa, G. Tong et al., Heterogeneous FASnI3 absorber with enhanced electric field for high-performance lead-free perovskite solar cells. Nano-Micro Lett. 14, 99 (2022). https://doi.org/10.1007/s40820-022-00842-4