Low-energy electronic states of carbon nanocones in an electric field
Corresponding Author: Chi-Chuan Hwang
Nano-Micro Letters,
Vol. 2 No. 2 (2010), Article Number: 121-125
Abstract
The low-energy electronic states and energy gaps of carbon nanocones in an electric field are studied using a single-π-band tight-binding model. The analysis considers five perfect carbon nanocones with disclination angles of 60°, 120°, 180°, 240° and 300°, respectively. The numerical results reveal that the low-energy electronic states and energy gaps of a carbon nanocones are highly sensitive to its geometric shape (i.e. the disclination angle and height), and to the direction and magnitude of an electric field. The electric field causes a strong modulation of the state energies and energy gaps of the nanocones, changes their Fermi levels, and induces zero-gap transitions. The energy-gap modulation effect becomes particularly pronounced at higher strength of the applied electric field, and is strongly related to the geometric structure of the nanocone.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Iijima, Nature 354, 56 (1991). doi:10.1038/354056a0.
- J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans and C. Dekker, Nature 385, 780 (1997). doi:10.1038/385780b0.
- S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi, Chem. Phys. Lett. 309, 165 (1999). doi:10.1016/S0009-2614(99)00642-9.
- M. Ge and K. Sattler, Chem. Phys. Lett. 220, 192 (1994). doi:10.1016/0009-2614(94)00167-7.
- J. C. Charlier and G. M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001). doi:10.1103/PhysRevLett.86.5970.
- S. P. Jordan and V. H. Crespi, Chem. Phys. Lett. 93, 255504 (2004).
- M. Muñoz Navia, J. Dorantes-Dávila, M. Terrones and H. Terrones, Phys. Rev. B. 72, 235403 (2005). doi:10.1103/PhysRevB.72.235403.
- P. E. Lammert and V. H. Crespi, Phys. Rev. B 69, 035406 (2004). doi:10.1103/PhysRevB.69.035406.
- P. Kim, T. W. Odom, J. L. Huang and C. M. Lieber, Phys. Rev. Lett. 82, 1225 (1999). doi:10.1103/PhysRevLett.82.1225.
- T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, J. Phys. Chem. B 2794, 104 (2000).
- N. G. Shang and X. Jiang, Appl. Phys. Lett. 87, 163102 (2005). doi:10.1063/1.2093919.
- J. A. Jaszczak, G. W. Robinson, S. Dimovski and Y. Gogotsi, Carbon 41, 2085 (2003). doi:10.1016/S0008-6223(03)00214-8
- G. Zhang, X. Jiang and E. Wang, Science 300, 472 (2003). doi:10.1126/science.1082264.
- N. Muradov and A. Schwitter, Nano Lett. 2, 673 (2002). doi:10.1021/nl0255909.
- X. Zhou, H. Chen and O. Y. Zhong-can, J. Phys. Condensed Matter 13, 635 (2001). doi:10.1088/0953-8984/13/27/104.
- Y. H. Kim and K. J. Chang, Phys. Rev. B 64, 153404 (2001). doi:10.1103/PhysRevB.64.153404.
- J. O’Keeffe, C. Y. Wei and K. J. Cho, Appl. Phys. Lett. 80, 676 (2002). doi:10.1063/1.1432441.
- Y. Li, S. V. Rotkin and U. Ravaioli, Nano Lett. 3, 183 (2003). doi:10.1021/nl0259030.
- K. H. Khoo, M. S. C. Mazzoni and S. G. Louie, Phys. Rev. B 69, 201401 (2004). doi:10.1103/PhysRevB.69.201401.
- S. G. Kim, Y. H. Lee, P. Nordlander and D. Tománek, Chem. Phys. Lett. 264, 345 (1997). doi:10.1016/S0009-2614(96)01328-0.
- Y. H. Lee, S. G. Kim and D, Tománek, Chem. Phys. Lett. 265, 667 (1997). doi:10.1016/S0009-2614(96)01486-8.
- F. L. Shyu, C. C. Tsai, M. F. Lin and C. C. Hwang, J. Phys. Soc. Jpn. 75, 104710 (2006). doi:10.1143/JPSJ.75.104710.
- C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen and M. L. Lin, Phys. Rev. B 73, 144427 (2006). doi:10.1103/PhysRevB.73.144427.
- C. C. Tsai, F. L. Shyu, C. W. Chiu, C. P. Chang, R. B. Chen and M. F. Lin, Phys. Rev. B 70, 075411 (2004). doi:10.1103/PhysRevB.70.075411.
- C. Kittle, Quantum Theory of Solid, John Wiley & Sons, New York, 1987.
- R. Saito, G. Dresselhaus, M. S. Dresshaus, Physical Properties of Carbon Nanotubes, Imperical College Press, London, 1998. doi:10.1142/9781860943799.
- M. Springborg and Method of Electronic-Structure Calculations, John Wiley & Sons, New York, 2000.
- A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). doi:10.1103/RevModPhys.81.109.
- C. Chen, C. C. Tsai, J. M. Lu and C. C. Hwang, J. Phys. Chem. B 110, 12384 (2006). doi:10.1021/jp056724k.
References
S. Iijima, Nature 354, 56 (1991). doi:10.1038/354056a0.
J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans and C. Dekker, Nature 385, 780 (1997). doi:10.1038/385780b0.
S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai and K. Takahashi, Chem. Phys. Lett. 309, 165 (1999). doi:10.1016/S0009-2614(99)00642-9.
M. Ge and K. Sattler, Chem. Phys. Lett. 220, 192 (1994). doi:10.1016/0009-2614(94)00167-7.
J. C. Charlier and G. M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001). doi:10.1103/PhysRevLett.86.5970.
S. P. Jordan and V. H. Crespi, Chem. Phys. Lett. 93, 255504 (2004).
M. Muñoz Navia, J. Dorantes-Dávila, M. Terrones and H. Terrones, Phys. Rev. B. 72, 235403 (2005). doi:10.1103/PhysRevB.72.235403.
P. E. Lammert and V. H. Crespi, Phys. Rev. B 69, 035406 (2004). doi:10.1103/PhysRevB.69.035406.
P. Kim, T. W. Odom, J. L. Huang and C. M. Lieber, Phys. Rev. Lett. 82, 1225 (1999). doi:10.1103/PhysRevLett.82.1225.
T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, J. Phys. Chem. B 2794, 104 (2000).
N. G. Shang and X. Jiang, Appl. Phys. Lett. 87, 163102 (2005). doi:10.1063/1.2093919.
J. A. Jaszczak, G. W. Robinson, S. Dimovski and Y. Gogotsi, Carbon 41, 2085 (2003). doi:10.1016/S0008-6223(03)00214-8
G. Zhang, X. Jiang and E. Wang, Science 300, 472 (2003). doi:10.1126/science.1082264.
N. Muradov and A. Schwitter, Nano Lett. 2, 673 (2002). doi:10.1021/nl0255909.
X. Zhou, H. Chen and O. Y. Zhong-can, J. Phys. Condensed Matter 13, 635 (2001). doi:10.1088/0953-8984/13/27/104.
Y. H. Kim and K. J. Chang, Phys. Rev. B 64, 153404 (2001). doi:10.1103/PhysRevB.64.153404.
J. O’Keeffe, C. Y. Wei and K. J. Cho, Appl. Phys. Lett. 80, 676 (2002). doi:10.1063/1.1432441.
Y. Li, S. V. Rotkin and U. Ravaioli, Nano Lett. 3, 183 (2003). doi:10.1021/nl0259030.
K. H. Khoo, M. S. C. Mazzoni and S. G. Louie, Phys. Rev. B 69, 201401 (2004). doi:10.1103/PhysRevB.69.201401.
S. G. Kim, Y. H. Lee, P. Nordlander and D. Tománek, Chem. Phys. Lett. 264, 345 (1997). doi:10.1016/S0009-2614(96)01328-0.
Y. H. Lee, S. G. Kim and D, Tománek, Chem. Phys. Lett. 265, 667 (1997). doi:10.1016/S0009-2614(96)01486-8.
F. L. Shyu, C. C. Tsai, M. F. Lin and C. C. Hwang, J. Phys. Soc. Jpn. 75, 104710 (2006). doi:10.1143/JPSJ.75.104710.
C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen and M. L. Lin, Phys. Rev. B 73, 144427 (2006). doi:10.1103/PhysRevB.73.144427.
C. C. Tsai, F. L. Shyu, C. W. Chiu, C. P. Chang, R. B. Chen and M. F. Lin, Phys. Rev. B 70, 075411 (2004). doi:10.1103/PhysRevB.70.075411.
C. Kittle, Quantum Theory of Solid, John Wiley & Sons, New York, 1987.
R. Saito, G. Dresselhaus, M. S. Dresshaus, Physical Properties of Carbon Nanotubes, Imperical College Press, London, 1998. doi:10.1142/9781860943799.
M. Springborg and Method of Electronic-Structure Calculations, John Wiley & Sons, New York, 2000.
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). doi:10.1103/RevModPhys.81.109.
C. Chen, C. C. Tsai, J. M. Lu and C. C. Hwang, J. Phys. Chem. B 110, 12384 (2006). doi:10.1021/jp056724k.