Vertical Alignment of Anisotropic Fillers Assisted by Expansion Flow in Polymer Composites
Corresponding Author: Shulin Bai
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 153
Abstract
Orientation control of anisotropic one-dimensional (1D) and two-dimensional (2D) materials in solutions is of great importance in many fields ranging from structural materials design, the thermal management, to energy storage. Achieving fine control of vertical alignment of anisotropic fillers (such as graphene, boron nitride (BN), and carbon fiber) remains challenging. This work presents a universal and scalable method for constructing vertically aligned structures of anisotropic fillers in composites assisted by the expansion flow (using 2D BN platelets as a proof-of-concept). BN platelets in the silicone gel strip are oriented in a curved shape that includes vertical alignment in the central area and horizontal alignment close to strip surfaces. Due to the vertical orientation of BN in the central area of strips, a through-plane thermal conductivity as high as 5.65 W m−1 K−1 was obtained, which can be further improved to 6.54 W m−1 K−1 by combining BN and pitch-based carbon fibers. The expansion-flow-assisted alignment can be extended to the manufacture of a variety of polymer composites filled with 1D and 2D materials, which can find wide applications in batteries, electronics, and energy storage devices.
Highlights:
1 The vertically aligned structures of anisotropic fillers (using 2D boron nitride (BN) platelets as a proof-of-concept) in composites are constructed assisted by the expansion flow.
2 BN platelets in composites are aligned in a curved shape that includes vertical alignment in the central area and horizontal alignment close to strip surfaces.
3 The shape of expansion channels affects the vertical orientation order and the through-plane thermal conductivity of composites.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Ma, S. Lin, Y. Jiang, P. Li, H. Zhang et al., Digital programming graphene oxide liquid crystalline hybrid hydrogel by shearing microlithography. ACS Nano 14(2), 2336–2344 (2020). https://doi.org/10.1021/acsnano.9b09503
- C. Lei, Z. Xie, K. Wu, Q. Fu, Controlled vertically aligned structures in polymer composites: natural inspiration, structural processing, and functional application. Adv. Mater. 33(49), 2103495 (2021). https://doi.org/10.1002/adma.202103495
- H.S. Kim, J. Jang, H. Lee, S.Y. Kim, S.H. Kim et al., Thermal management in polymer composites: a review of physical and structural parameters. Adv. Eng. Mater. 20(10), 1800204 (2018). https://doi.org/10.1002/adem.201800204
- S. Naghibi, F. Kargar, D. Wright, C.Y.T. Huang, A. Mohammadzadeh et al., Noncuring graphene thermal interface materials for advanced electronics. Adv. Electron. Mater. 6(4), 1901303 (2020). https://doi.org/10.1002/aelm.201901303
- H.L. Ferrand, F. Bouville, T.P. Niebel, A.R. Studart, Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater. 14(11), 1172–1179 (2015). https://doi.org/10.1038/nmat4419
- S.E. Kim, F. Mujid, A. Rai, F. Eriksson, J. Suh et al., Extremely anisotropic van der Waals thermal conductors. Nature 597(7878), 660–665 (2021). https://doi.org/10.1038/s41586-021-03867-8
- C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
- J.J. Martin, B.E. Fiore, R.M. Erb, Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat. Commun. 6, 8641 (2015). https://doi.org/10.1038/ncomms9641
- S. Zhou, T. Xu, L. Jin, N. Song, P. Ding, Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: design of assembled well-oriented boron nitride nanosheets. Compos. Sci. Technol. 219, 109259 (2022). https://doi.org/10.1016/j.compscitech.2022.109259
- H. Guo, H. Zhao, H. Niu, Y. Ren, H. Fang et al., Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 15(4), 6917–6928 (2021). https://doi.org/10.1021/acsnano.0c10768
- M.K. Hausmann, P.A. Ruhs, G. Siqueira, J. Lauger, R. Libanori et al., Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano 12(7), 6926–6937 (2018). https://doi.org/10.1021/acsnano.8b02366
- K. Wu, Y. Zhang, F. Gong, D. Liu, C. Lei et al., Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables. Chem. Eng. J. 421, 127764 (2020). https://doi.org/10.1016/j.cej.2020.127764
- J. Loomis, H. Ghasemi, X. Huang, N. Thoppey, J. Wang et al., Continuous fabrication platform for highly aligned polymer films. Technology 02(03), 189–199 (2014). https://doi.org/10.1142/s2339547814500216
- R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing. Addit. Manuf. 20, 68–76 (2018). https://doi.org/10.1016/j.addma.2017.12.013
- W. Xu, Y. He, H. Xie, S. Qin, L.C. Tan et al., Ultrafast fabrication of graphene-reinforced nanocomposites via synergy of steam explosion and alternating convergent-divergent flow. Small 17(28), 2100017 (2021). https://doi.org/10.1002/smll.202100017
- J. Liu, Y. Guo, C. Weng, H. Zhang, Z. Zhang, High thermal conductive epoxy based composites fabricated by multi-material direct ink writing. Compos. Part A Appl. Sci. Manuf. 129, 105684 (2020). https://doi.org/10.1016/j.compositesa.2019.105684
- Y. He, W.H. Xu, H. Zhang, J.P. Qu, Constructing bone-mimicking high-performance structured poly(lactic acid) by an elongational flow field and facile annealing process. ACS Appl. Mater. Interfaces 12(11), 13411–13420 (2020). https://doi.org/10.1021/acsami.0c01528
- C.D. Armstrong, N. Todd, A.T. Alsharhan, D.I. Bigio, R.D. Sochol, A 3D printed morphing nozzle to control fiber orientation during composite additive manufacturing. Adv. Mater. Technol. 6(1), 2000829 (2020). https://doi.org/10.1002/admt.202000829
- T. Yamagata, N. Fujisawa, Effect of rotation and revolution on performance of blade-free planetary mixer. J. Flow Control Measur. Visual. 07(01), 1–10 (2019). https://doi.org/10.4236/jfcmv.2019.71001
- D.I. Jeong, A. Jain, D.W. Oh, Increasing perpendicular alignment in extruded filament by an orifice embedded 3D printing nozzle. Virtual. Phys. Prototyp. 17(1), 1–18 (2021). https://doi.org/10.1080/17452759.2021.1980935
- D. Kiriya, R. Kawano, H. Onoe, S. Takeuchi, Microfluidic control of the internal morphology in nanofiber-based macroscopic cables. Angew. Chem. Int. Ed. 51(32), 7942–7947 (2012). https://doi.org/10.1002/anie.201202078
- T.T. Ngo, H.M.K. Nguyen, D.W. Oh, Prediction of fiber rotation in an orifice channel during injection molding process. J. Rheol. 65(6), 1361–1371 (2021). https://doi.org/10.1122/8.0000314
- M. Vincent, J.F. Agassant, Experimental and theoretical study of short fiber orientation in diverging flows. Rheol. Acta 24, 603–610 (1985). https://doi.org/10.1007/BF01332594
- G. Xin, W. Zhu, Y. Deng, J. Cheng, L.T. Zhang et al., Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat. Nanotechnol. 14(2), 168–175 (2019). https://doi.org/10.1038/s41565-018-0330-9
- B. Wang, T. Szkopek, M. Cerruti, Flow rate controls microstructural alignment of extruded graphene oxide structures. Carbon 192, 145–152 (2022). https://doi.org/10.1016/j.carbon.2022.02.029
- M. Trebbin, D. Steinhauser, J. Perlich, A. Buffet, S.V. Roth et al., Anisotropic ps align perpendicular to the flow direction in narrow microchannels. PNAS 110(17), 6706–6711 (2013). https://doi.org/10.1073/pnas.1219340110
- Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang et al., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aav0129
- H. Yu, Y. Feng, C. Chen, Z. Zhang, W. Feng, Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface materials. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
- F. Lv, M. Qin, F. Zhang, H. Yu, L. Gao et al., High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon 149, 281–289 (2019). https://doi.org/10.1016/j.carbon.2019.04.043
- X. Shi, R. Zhang, K. Ruan, T. Ma, Y. Guo et al., Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 82, 239–249 (2021). https://doi.org/10.1016/j.jmst.2021.01.018
- H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang et al., Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53(16), 7161–7170 (2020). https://doi.org/10.1021/acs.macromol.9b02544
- F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
- J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
- Q. Hu, X. Bai, C. Zhang, X. Zeng, Z. Huang et al., Oriented BN/silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility. Compos. Part A Appl. Sci. Manuf. 152, 106681 (2022). https://doi.org/10.1016/j.compositesa.2021.106681
- A. Gurijala, R.B. Zando, J.L. Faust, J.R. Barber, L. Zhang et al., Castable and printable dielectric composites exhibiting high thermal conductivity via percolation-enabled phonon transport. Matter 2(4), 1015–1024 (2020). https://doi.org/10.1016/j.matt.2020.02.001
- Y.F. Zhang, Y.J. Ren, S.L. Bai, Vertically aligned graphene film/epoxy composites as heat dissipating materials. Int. J. Heat Mass Transf. 118, 510–517 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.014
- H. Niu, H. Guo, Y. Ren, L. Ren, R. Lv et al., Spherical aggregated BN /AlN filled silicone composites with enhanced through-plane thermal conductivity assisted by vortex flow. Chem. Eng. J. 430, 133155 (2022). https://doi.org/10.1016/j.cej.2021.133155
- Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
- P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
- D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
- Z. Yin, J. Guo, X. Jiang, Significantly improved thermal conductivity of silicone rubber and aligned boron nitride composites by a novel roll-cutting processing method. Compos. Sci. Technol. 209, 108794 (2021). https://doi.org/10.1016/j.compscitech.2021.108794
- Z. Liang, Y. Pei, C. Chen, B. Jiang, Y. Yao et al., General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 13(11), 12653–12661 (2019). https://doi.org/10.1021/acsnano.9b04202
- S. Yoshihara, T. Ezaki, M. Nakamura, J. Watanabe, K. Matsumoto, Enhanced thermal conductivity of thermoplastics by lamellar crystal alignment of polymer matrices. Macromol. Chem. Phys. 213(21), 2213–2219 (2012). https://doi.org/10.1002/macp.201200317
- J. Zhou, Y. Zheng, G. Shan, Y. Bao, W. Wang et al., Stretch-induced α-to-β crystal transition and lamellae structural evolution of poly(butylene adipate-ran-terephthalate) aliphatic–aromatic copolyester. Macromolecules 52(3), 1334–1347 (2019). https://doi.org/10.1021/acs.macromol.8b02011
- D. Ye, X. Lei, T. Li, Q. Cheng, C. Chang et al., Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 13(4), 4843–4853 (2019). https://doi.org/10.1021/acsnano.9b02081
- S. Gantenbein, K. Masania, W. Woigk, J.P.W. Sesseg, T.A. Tervoort et al., Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561(7722), 226–230 (2018). https://doi.org/10.1038/s41586-018-0474-7
- J.R. Raney, B.G. Compton, J. Mueller, T.J. Ober, K. Shea et al., Rotational 3D printing of damage-tolerant composites with programmable mechanics. PNAS 115(6), 1198–1203 (2018). https://doi.org/10.1073/pnas.1715157115
- W. Xu, S. Jambhulkar, D. Ravichandran, Y. Zhu, M. Kakarla et al., 3D printing-enabled nanop alignment: a review of mechanisms and applications. Small 17(45), 2100817 (2021). https://doi.org/10.1002/smll.202100817
- H. Abdolmaleki, P. Kidmose, S. Agarwala, Droplet-based techniques for printing of functional inks for flexible physical sensors. Adv. Mater. 33(20), 2006792 (2021). https://doi.org/10.1002/adma.202006792
- S. Tagliaferri, A. Panagiotopoulos, C. Mattevi, Direct ink writing of energy materials. Mater. Adv. 2, 540–563 (2021). https://doi.org/10.1039/d0ma00753f
- S. Naficy, R. Jalili, S.H. Aboutalebi, R.A. Gorkin, K. Konstantinov et al., Graphene oxide dispersions: tuning rheology to enable fabrication. Mater. Horiz. 1(3), 326–331 (2014). https://doi.org/10.1039/c3mh00144j
- X. Zhang, J. Zhang, L. Xia, C. Li, J. Wang et al., Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl. Mater. Interfaces 9(27), 22977–22984 (2017). https://doi.org/10.1021/acsami.7b05866
- Y. Guo, K. Ruan, J. Gu, Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys. 20, 100449 (2021). https://doi.org/10.1016/j.mtphys.2021.100449
- Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2022). https://doi.org/10.1007/s40820-021-00767-4
- W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface Materials. ACS Nano 13(10), 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
- D. Zou, X. Huang, Y. Zhu, J. Chen, P. Jiang, Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability. Compos. Sci. Technol. 177, 88–95 (2019). https://doi.org/10.1016/j.compscitech.2019.04.027
References
J. Ma, S. Lin, Y. Jiang, P. Li, H. Zhang et al., Digital programming graphene oxide liquid crystalline hybrid hydrogel by shearing microlithography. ACS Nano 14(2), 2336–2344 (2020). https://doi.org/10.1021/acsnano.9b09503
C. Lei, Z. Xie, K. Wu, Q. Fu, Controlled vertically aligned structures in polymer composites: natural inspiration, structural processing, and functional application. Adv. Mater. 33(49), 2103495 (2021). https://doi.org/10.1002/adma.202103495
H.S. Kim, J. Jang, H. Lee, S.Y. Kim, S.H. Kim et al., Thermal management in polymer composites: a review of physical and structural parameters. Adv. Eng. Mater. 20(10), 1800204 (2018). https://doi.org/10.1002/adem.201800204
S. Naghibi, F. Kargar, D. Wright, C.Y.T. Huang, A. Mohammadzadeh et al., Noncuring graphene thermal interface materials for advanced electronics. Adv. Electron. Mater. 6(4), 1901303 (2020). https://doi.org/10.1002/aelm.201901303
H.L. Ferrand, F. Bouville, T.P. Niebel, A.R. Studart, Magnetically assisted slip casting of bioinspired heterogeneous composites. Nat. Mater. 14(11), 1172–1179 (2015). https://doi.org/10.1038/nmat4419
S.E. Kim, F. Mujid, A. Rai, F. Eriksson, J. Suh et al., Extremely anisotropic van der Waals thermal conductors. Nature 597(7878), 660–665 (2021). https://doi.org/10.1038/s41586-021-03867-8
C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi et al., Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580(7802), 210–215 (2020). https://doi.org/10.1038/s41586-020-2161-8
J.J. Martin, B.E. Fiore, R.M. Erb, Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat. Commun. 6, 8641 (2015). https://doi.org/10.1038/ncomms9641
S. Zhou, T. Xu, L. Jin, N. Song, P. Ding, Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: design of assembled well-oriented boron nitride nanosheets. Compos. Sci. Technol. 219, 109259 (2022). https://doi.org/10.1016/j.compscitech.2022.109259
H. Guo, H. Zhao, H. Niu, Y. Ren, H. Fang et al., Highly thermally conductive 3D printed graphene filled polymer composites for scalable thermal management applications. ACS Nano 15(4), 6917–6928 (2021). https://doi.org/10.1021/acsnano.0c10768
M.K. Hausmann, P.A. Ruhs, G. Siqueira, J. Lauger, R. Libanori et al., Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano 12(7), 6926–6937 (2018). https://doi.org/10.1021/acsnano.8b02366
K. Wu, Y. Zhang, F. Gong, D. Liu, C. Lei et al., Highly thermo-conductive but electrically insulating filament via a volume-confinement self-assembled strategy for thermoelectric wearables. Chem. Eng. J. 421, 127764 (2020). https://doi.org/10.1016/j.cej.2020.127764
J. Loomis, H. Ghasemi, X. Huang, N. Thoppey, J. Wang et al., Continuous fabrication platform for highly aligned polymer films. Technology 02(03), 189–199 (2014). https://doi.org/10.1142/s2339547814500216
R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing. Addit. Manuf. 20, 68–76 (2018). https://doi.org/10.1016/j.addma.2017.12.013
W. Xu, Y. He, H. Xie, S. Qin, L.C. Tan et al., Ultrafast fabrication of graphene-reinforced nanocomposites via synergy of steam explosion and alternating convergent-divergent flow. Small 17(28), 2100017 (2021). https://doi.org/10.1002/smll.202100017
J. Liu, Y. Guo, C. Weng, H. Zhang, Z. Zhang, High thermal conductive epoxy based composites fabricated by multi-material direct ink writing. Compos. Part A Appl. Sci. Manuf. 129, 105684 (2020). https://doi.org/10.1016/j.compositesa.2019.105684
Y. He, W.H. Xu, H. Zhang, J.P. Qu, Constructing bone-mimicking high-performance structured poly(lactic acid) by an elongational flow field and facile annealing process. ACS Appl. Mater. Interfaces 12(11), 13411–13420 (2020). https://doi.org/10.1021/acsami.0c01528
C.D. Armstrong, N. Todd, A.T. Alsharhan, D.I. Bigio, R.D. Sochol, A 3D printed morphing nozzle to control fiber orientation during composite additive manufacturing. Adv. Mater. Technol. 6(1), 2000829 (2020). https://doi.org/10.1002/admt.202000829
T. Yamagata, N. Fujisawa, Effect of rotation and revolution on performance of blade-free planetary mixer. J. Flow Control Measur. Visual. 07(01), 1–10 (2019). https://doi.org/10.4236/jfcmv.2019.71001
D.I. Jeong, A. Jain, D.W. Oh, Increasing perpendicular alignment in extruded filament by an orifice embedded 3D printing nozzle. Virtual. Phys. Prototyp. 17(1), 1–18 (2021). https://doi.org/10.1080/17452759.2021.1980935
D. Kiriya, R. Kawano, H. Onoe, S. Takeuchi, Microfluidic control of the internal morphology in nanofiber-based macroscopic cables. Angew. Chem. Int. Ed. 51(32), 7942–7947 (2012). https://doi.org/10.1002/anie.201202078
T.T. Ngo, H.M.K. Nguyen, D.W. Oh, Prediction of fiber rotation in an orifice channel during injection molding process. J. Rheol. 65(6), 1361–1371 (2021). https://doi.org/10.1122/8.0000314
M. Vincent, J.F. Agassant, Experimental and theoretical study of short fiber orientation in diverging flows. Rheol. Acta 24, 603–610 (1985). https://doi.org/10.1007/BF01332594
G. Xin, W. Zhu, Y. Deng, J. Cheng, L.T. Zhang et al., Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat. Nanotechnol. 14(2), 168–175 (2019). https://doi.org/10.1038/s41565-018-0330-9
B. Wang, T. Szkopek, M. Cerruti, Flow rate controls microstructural alignment of extruded graphene oxide structures. Carbon 192, 145–152 (2022). https://doi.org/10.1016/j.carbon.2022.02.029
M. Trebbin, D. Steinhauser, J. Perlich, A. Buffet, S.V. Roth et al., Anisotropic ps align perpendicular to the flow direction in narrow microchannels. PNAS 110(17), 6706–6711 (2013). https://doi.org/10.1073/pnas.1219340110
Q. Cai, D. Scullion, W. Gan, A. Falin, S. Zhang et al., High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aav0129
H. Yu, Y. Feng, C. Chen, Z. Zhang, W. Feng, Thermally conductive, self-healing, and elastic polyimide@vertically aligned carbon nanotubes composite as smart thermal interface materials. Carbon 179, 348–357 (2021). https://doi.org/10.1016/j.carbon.2021.04.055
F. Lv, M. Qin, F. Zhang, H. Yu, L. Gao et al., High cross-plane thermally conductive hierarchical composite using graphene-coated vertically aligned carbon nanotubes/graphite. Carbon 149, 281–289 (2019). https://doi.org/10.1016/j.carbon.2019.04.043
X. Shi, R. Zhang, K. Ruan, T. Ma, Y. Guo et al., Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 82, 239–249 (2021). https://doi.org/10.1016/j.jmst.2021.01.018
H. Yu, Y. Feng, L. Gao, C. Chen, Z. Zhang et al., Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53(16), 7161–7170 (2020). https://doi.org/10.1021/acs.macromol.9b02544
F. Zhang, Y. Feng, W. Feng, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms. Mater. Sci. Eng. R Rep. 142, 100580 (2020). https://doi.org/10.1016/j.mser.2020.100580
J. Gu, K. Ruan, Breaking through bottlenecks for thermally conductive polymer composites: a perspective for intrinsic thermal conductivity, interfacial thermal resistance and theoretics. Nano-Micro Lett. 13, 110 (2021). https://doi.org/10.1007/s40820-021-00640-4
Q. Hu, X. Bai, C. Zhang, X. Zeng, Z. Huang et al., Oriented BN/silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility. Compos. Part A Appl. Sci. Manuf. 152, 106681 (2022). https://doi.org/10.1016/j.compositesa.2021.106681
A. Gurijala, R.B. Zando, J.L. Faust, J.R. Barber, L. Zhang et al., Castable and printable dielectric composites exhibiting high thermal conductivity via percolation-enabled phonon transport. Matter 2(4), 1015–1024 (2020). https://doi.org/10.1016/j.matt.2020.02.001
Y.F. Zhang, Y.J. Ren, S.L. Bai, Vertically aligned graphene film/epoxy composites as heat dissipating materials. Int. J. Heat Mass Transf. 118, 510–517 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.014
H. Niu, H. Guo, Y. Ren, L. Ren, R. Lv et al., Spherical aggregated BN /AlN filled silicone composites with enhanced through-plane thermal conductivity assisted by vortex flow. Chem. Eng. J. 430, 133155 (2022). https://doi.org/10.1016/j.cej.2021.133155
Y. Lin, Q. Kang, H. Wei, H. Bao, P. Jiang et al., Spider web-inspired graphene skeleton-based high thermal conductivity phase change nanocomposites for battery thermal management. Nano-Micro Lett. 13, 180 (2021). https://doi.org/10.1007/s40820-021-00702-7
P. Liu, X. Li, P. Min, X. Chang, C. Shu et al., 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 13, 22 (2020). https://doi.org/10.1007/s40820-020-00548-5
D. Pan, G. Yang, H.M. Abo-Dief, J. Dong, F. Su et al., Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites. Nano-Micro Lett. 14, 118 (2022). https://doi.org/10.1007/s40820-022-00863-z
Z. Yin, J. Guo, X. Jiang, Significantly improved thermal conductivity of silicone rubber and aligned boron nitride composites by a novel roll-cutting processing method. Compos. Sci. Technol. 209, 108794 (2021). https://doi.org/10.1016/j.compscitech.2021.108794
Z. Liang, Y. Pei, C. Chen, B. Jiang, Y. Yao et al., General, vertical, three-dimensional printing of two-dimensional materials with multiscale alignment. ACS Nano 13(11), 12653–12661 (2019). https://doi.org/10.1021/acsnano.9b04202
S. Yoshihara, T. Ezaki, M. Nakamura, J. Watanabe, K. Matsumoto, Enhanced thermal conductivity of thermoplastics by lamellar crystal alignment of polymer matrices. Macromol. Chem. Phys. 213(21), 2213–2219 (2012). https://doi.org/10.1002/macp.201200317
J. Zhou, Y. Zheng, G. Shan, Y. Bao, W. Wang et al., Stretch-induced α-to-β crystal transition and lamellae structural evolution of poly(butylene adipate-ran-terephthalate) aliphatic–aromatic copolyester. Macromolecules 52(3), 1334–1347 (2019). https://doi.org/10.1021/acs.macromol.8b02011
D. Ye, X. Lei, T. Li, Q. Cheng, C. Chang et al., Ultrahigh tough, super clear, and highly anisotropic nanofiber-structured regenerated cellulose films. ACS Nano 13(4), 4843–4853 (2019). https://doi.org/10.1021/acsnano.9b02081
S. Gantenbein, K. Masania, W. Woigk, J.P.W. Sesseg, T.A. Tervoort et al., Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561(7722), 226–230 (2018). https://doi.org/10.1038/s41586-018-0474-7
J.R. Raney, B.G. Compton, J. Mueller, T.J. Ober, K. Shea et al., Rotational 3D printing of damage-tolerant composites with programmable mechanics. PNAS 115(6), 1198–1203 (2018). https://doi.org/10.1073/pnas.1715157115
W. Xu, S. Jambhulkar, D. Ravichandran, Y. Zhu, M. Kakarla et al., 3D printing-enabled nanop alignment: a review of mechanisms and applications. Small 17(45), 2100817 (2021). https://doi.org/10.1002/smll.202100817
H. Abdolmaleki, P. Kidmose, S. Agarwala, Droplet-based techniques for printing of functional inks for flexible physical sensors. Adv. Mater. 33(20), 2006792 (2021). https://doi.org/10.1002/adma.202006792
S. Tagliaferri, A. Panagiotopoulos, C. Mattevi, Direct ink writing of energy materials. Mater. Adv. 2, 540–563 (2021). https://doi.org/10.1039/d0ma00753f
S. Naficy, R. Jalili, S.H. Aboutalebi, R.A. Gorkin, K. Konstantinov et al., Graphene oxide dispersions: tuning rheology to enable fabrication. Mater. Horiz. 1(3), 326–331 (2014). https://doi.org/10.1039/c3mh00144j
X. Zhang, J. Zhang, L. Xia, C. Li, J. Wang et al., Simple and consecutive melt extrusion method to fabricate thermally conductive composites with highly oriented boron nitrides. ACS Appl. Mater. Interfaces 9(27), 22977–22984 (2017). https://doi.org/10.1021/acsami.7b05866
Y. Guo, K. Ruan, J. Gu, Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys. 20, 100449 (2021). https://doi.org/10.1016/j.mtphys.2021.100449
Y. Guo, H. Qiu, K. Ruan, Y. Zhang, J. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2022). https://doi.org/10.1007/s40820-021-00767-4
W. Dai, T. Ma, Q. Yan, J. Gao, X. Tan et al., Metal-level thermally conductive yet soft graphene thermal interface Materials. ACS Nano 13(10), 11561–11571 (2019). https://doi.org/10.1021/acsnano.9b05163
D. Zou, X. Huang, Y. Zhu, J. Chen, P. Jiang, Boron nitride nanosheets endow the traditional dielectric polymer composites with advanced thermal management capability. Compos. Sci. Technol. 177, 88–95 (2019). https://doi.org/10.1016/j.compscitech.2019.04.027