Electric-Field-Treated Ni/Co3O4 Film as High-Performance Bifunctional Electrocatalysts for Efficient Overall Water Splitting
Corresponding Author: Dunhui Wang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 148
Abstract
Rational design of bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with excellent activity and stability is of great significance, since overall water splitting is a promising technology for sustainable conversion of clean energy. However, most electrocatalysts do not simultaneously possess optimal HER/OER activities and their electrical conductivities are intrinsically low, which limit the development of overall water splitting. In this paper, a strategy of electric field treatment is proposed and applied to Ni/Co3O4 film to develop a novel bifunctional electrocatalyst. After treated by electric field, the conductive channels consisting of oxygen vacancies are formed in the Co3O4 film, which remarkably reduces the resistance of the system by almost 2 × 104 times. Meanwhile, the surface Ni metal electrode is partially oxidized to nickel oxide, which enhances the catalytic activity. The electric-field-treated Ni/Co3O4 material exhibits super outstanding performance of HER, OER, and overall water splitting, and the catalytic activity is significantly superior to the state-of-the-art noble metal catalysts (Pt/C, RuO2, and RuO2 ǁ Pt/C couple). This work provides an effective and feasible method for the development of novel and efficient bifunctional electrocatalyst, which is also promising for wide use in the field of catalysis.
Highlights:
1 A novel physical approach is proposed to enhance the electrocatalytic performance by electric field.
2 Under the action of electric field, some stable conductive filaments consisting of oxygen vacancies are formed in the Ni/Co3O4 film, which remarkably reduces the system resistivity.
3 The electric-field-treated Ni/Co3O4 material exhibits significantly superior activity and stability as a bifunctional electrocatalyst for overall water splitting, and its performance exceeds the state-of-the-art electrocatalysts.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Chow, R.J. Kopp, P.R. Portney, Energy resources and global development. Science 302(5650), 1528–1531 (2003). https://doi.org/10.1126/science.1091939
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004). https://doi.org/10.1126/science.1103197
- B. Xia, T. Wang, X. Jiang, T. Zhang, J. Li et al., Ar2+ beam irradiation-induced multivancancies in MoSe2 nanosheet for enhanced electrochemical hydrogen evolution. ACS Energy Lett. 3(9), 2167–2172 (2018). https://doi.org/10.1021/acsenergylett.8b01209
- X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
- N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang et al., Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5(2), 1700464 (2018). https://doi.org/10.1002/advs.201700464
- C. Hu, L. Zhang, J. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 12(9), 2620–2645 (2019). https://doi.org/10.1039/c9ee01202h
- Z. Xiao, Y. Wang, Y. Huang, Z. Wei, C. Dong et al., Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 10(12), 2563–2569 (2017). https://doi.org/10.1039/c7ee01917c
- C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on Nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 54(32), 9351–9355 (2015). https://doi.org/10.1002/anie.201503407
- B. Xiong, L. Chen, J. Shi, Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 8(4), 3688–3707 (2018). https://doi.org/10.1021/acscatal.7b04286
- J. Lai, S. Li, F. Wu, M. Saqib, R. Luque et al., Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting. Energy Environ. Sci. 9(4), 1210–1214 (2016). https://doi.org/10.1039/c5ee02996a
- A. Muthurasu, V. Maruthapandian, H.Y. Kim, Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. Appl. Catal. B 248, 202–210 (2019). https://doi.org/10.1016/j.apcatb.2019.02.014
- H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng et al., Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32(3), e1806326 (2020). https://doi.org/10.1002/adma.201806326
- N. Jiang, B. You, M. Sheng, Y. Sun, Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54(21), 6251–6524 (2015). https://doi.org/10.1002/anie.201501616
- Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan et al., MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 7(4), 2357–2366 (2017). https://doi.org/10.1021/acscatal.6b03192
- J. Liu, J. Wang, B. Zhang, Y. Ruan, H. Wan et al., Mutually beneficial Co3O4@MoS2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. J. Mater. Chem. A 6(5), 2067–2072 (2018). https://doi.org/10.1039/c7ta10048e
- Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren et al., Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 8(3), 2236–2241 (2018). https://doi.org/10.1021/acscatal.7b03594
- Q. Xiong, Y. Wang, P.F. Liu, L.R. Zheng, G. Wang et al., Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 30, 1801450 (2018). https://doi.org/10.1002/adma.201801450
- Y. Zhao, C. Chang, F. Teng, Y. Zhao, G. Chen et al., Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater. 7(18), 1700005 (2017). https://doi.org/10.1002/aenm.201700005
- H. Yuan, S. Wang, Z. Ma, M. Kundu, B. Tang et al., Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng. J. 404, 126474 (2021). https://doi.org/10.1016/j.cej.2020.126474
- Y. Jin, H. Wang, J. Li, X. Yue, Y. Han et al., Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 28(19), 3785–3790 (2016). https://doi.org/10.1002/adma.201506314
- X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong et al., Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. Int. Ed. 55(21), 6290–6294 (2016). https://doi.org/10.1002/anie.201600525
- Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324–1328 (2017). https://doi.org/10.1002/anie.201610413
- A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). https://doi.org/10.1002/adfm.201600566
- C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on Nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 127, 9483–9487 (2015). https://doi.org/10.1002/anie.201503407
- M. Ledendecker, S. Krick Calderon, C. Papp, H.P. Steinruck, M. Antonietti et al., The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. Int. Ed. 54(42), 12361–12365 (2015). https://doi.org/10.1002/anie.201502438
- Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang et al., A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29(17), 1700017 (2017). https://doi.org/10.1002/adma.201700017
- J.H. Wen, X.Y. Zhao, Q. Li, Y.Q. Xiong, D.H. Wang et al., Nonvolatile control of magnetocaloric operating temperature by low voltage. ACS Appl. Mater. Interfaces 10(17), 15298–15303 (2018). https://doi.org/10.1021/acsami.8b03088
- F. Guo, M.T. Zhao, K. Xu, Y. Huan, S.P. Ge et al., Evidence for the dynamic relaxation behavior of oxygen vacancies in aurivillius Bi2MoO6 from dielectric spectroscopy during resistance switching. J. Mater. Chem. C 7, 8915–8922 (2019). https://doi.org/10.1039/C9TC02693B
- D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotech. 5(2), 148–153 (2010). https://doi.org/10.1038/nnano.2009.456
- L. Wei, Z. Hu, G. Du, Y. Yuan, J. Wang et al., Full electric control of exchange bias at room temperature by resistive switching. Adv. Mater. 30(30), 1801885 (2018). https://doi.org/10.1002/adma.201801885
- J.M. Li, W.X. Su, J. Li, L. Wang, J. Ren et al., Orientational alignment of oxygen vacancies: electric-field-inducing conductive channels in TiO2 film to boost photocatalytic conversion of CO2 into CO. Nano Lett. 21(12), 5060–5067 (2021). https://doi.org/10.1021/acs.nanolett.1c00897
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang et al., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
- T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136(39), 13925–13931 (2014). https://doi.org/10.1021/ja5082553
- R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
- T. Zhang, M. Wu, D. Yan, J. Mao, H. Liu et al., Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 43, 103–109 (2018). https://doi.org/10.1016/j.nanoen.2017.11.015
- K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai et al., Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett. 10(4), 1359–1363 (2010). https://doi.org/10.1021/nl9042906
- C. Yao, M. Ismail, A. Hao, S.K. Thatikonda, W. Huang et al., Au nanops introduced to spinel Co3O4 thin films: switching enhancement and magnetization modulation. J. Magn. Magn. Mater. 493, 165702 (2020). https://doi.org/10.1016/j.jmmm.2019.165702
- J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5(11), 909–913 (2006). https://doi.org/10.1038/nmat1752
- W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6(5), 1509 (2013). https://doi.org/10.1039/c3ee00045a
- P.Z. Chen, K. Xu, Z.W. Fang, Y. Tong, J.C. Wu et al., Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 127, 14923–14927 (2015). https://doi.org/10.1002/anie.201506480
- C. Yao, W. Hu, M. Ismail, S.K. Thatikonda, A. Hao et al., Coexistence of resistive switching and magnetism modulation in sol-gel derived nanocrystalline spinel Co3O4 thin films. Curr. Appl. Phys. 19(11), 1286–1295 (2019). https://doi.org/10.1016/j.cap.2019.08.016
- G. Chen, C. Song, C. Chen, S. Gao, F. Zeng et al., Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv. Mater. 24(26), 3515–3520 (2012). https://doi.org/10.1002/adma.201201595
- H. Wan, Y. Liu, H. Zhang, W. Zhang, N. Jiang et al., Improved lithium storage properties of Co3O4 nanops via laser irradiation treatment. Electrochim. Acta 281, 31–38 (2018). https://doi.org/10.1016/j.electacta.2018.05.156
- C. Yao, J. Li, S.K. Thatikonda, Y. Ke, N. Qin et al., Introducing a thin MnO2 layer in Co3O4-based memory to enhance resistive switching and magnetization modulation behaviors. J. Alloys Compd. 823, 153731 (2020). https://doi.org/10.1016/j.jallcom.2020.153731
- L. Xu, Q.Q. Jiang, Z.H. Xiao, X.Y. Li, J. Huo et al., Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 55(17), 5277–5281 (2016). https://doi.org/10.1002/anie.201600687
- Y. Xiao, P. Zhang, X. Zhang, X. Dai, Y. Ma et al., Bimetallic thin film NiCo-NiCoO2@NC as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. J. Mater. Chem. 5(30), 15901–15912 (2017). https://doi.org/10.1039/c7ta03629a
- L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia et al., Ultrathin Iron-Cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 29(17), 1606793 (2017). https://doi.org/10.1002/adma.201606793
- W. Hu, N. Qin, G.S. Wu, Y.T. Lin, S.W. Li et al., Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134(36), 14658–14661 (2012). https://doi.org/10.1021/ja305681n
- S. Yang, Y. Liu, Y. Hao, X. Yang, W. Goddard et al., Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5(4), 1700659 (2018). https://doi.org/10.1002/advs.201700659
- D. Ji, L. Fan, L. Tao, Y. Sun, M. Li et al., The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanops toward high-performance portable Zinc-Air batteries. Angew. Chem. Int. Ed. 58(39), 13840–13844 (2019). https://doi.org/10.1002/anie.201908736
- Y. Zeng, J. Zhong, H. Wang, M. Fu, D. Ye et al., Synergistic effect of tunable oxygen-vacancy defects and graphene on accelerating the photothermal degradation of methanol over Co3O4/rGO nanocomposites. Chem. Eng. J. 425, 131658 (2021). https://doi.org/10.1016/j.cej.2021.131658
- L. Bao, S. Zhu, Y. Chen, Y. Wang, W. Meng et al., Anionic defects engineering of Co3O4 catalyst for toluene oxidation. Fuel 314, 122774 (2022). https://doi.org/10.1016/j.fuel.2021.122774
- Y. Wang, H. Arandiyan, J. Scott, H. Dai, R. Amal, Hierarchically porous network-like Ni/Co3O4: noble metal-free catalysts for carbon dioxide methanation. Adv. Sustain. Syst. 2(3), 1700119 (2018). https://doi.org/10.1002/adsu.201700119
- J. Zhou, M. Wu, K. Tao, Y. Li, Q. Li et al., Tanghulu-like NiO microcubes on Co3O4 nanowires arrays anchored on Ni foam with improved electrochemical performances for supercapacitors. J. Alloys Compd. 748, 496–503 (2018). https://doi.org/10.1016/j.jallcom.2018.03.196
- M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
- L. Zhao, Y. Zhang, Z. Zhao, Q. Zhang, L. Huang et al., Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev. 7(1), 27–36 (2020). https://doi.org/10.1093/nsr/nwz145
- J. Bao, X.D. Zhang, B. Fan, J.J. Zhang, M. Zhou et al., Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. 127, 7507–7512 (2015). https://doi.org/10.1002/anie.201502226
- J.F. Xie, X.D. Zhang, H. Zhang, J.J. Zhang, S. Li et al., Intralayered ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 29(10), 1604765 (2017). https://doi.org/10.1002/adma.201604765
- C. McCrory, S. Jung, J. Peters, T. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013). https://doi.org/10.1021/ja407115p
- L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo et al., Heterogeneous bimetallic phosphide Ni2P–Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31(1), 2006484 (2021). https://doi.org/10.1002/adfm.202006484
- Y. Ha, L.X. Shi, Z.L. Chen, R.B. Wu, Phase-transited lysozyme-driven formation of self-supported Co3O4@C nanomeshes for overall water splitting. Adv. Sci. 6(11), 1900272 (2019). https://doi.org/10.1002/advs.201900272
- K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol et al., Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction. Adv. Funct. Mater. 29(18), 1900315 (2019). https://doi.org/10.1002/adfm.201900315
- M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
- M. Yu, E. Budiyanto, H. Tüysüz, Principles of water electrolysis and recent progress in Cobalt-, Nickel-, and Iron-based oxides for the oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 2–26 (2021). https://doi.org/10.1002/anie.202103824
- J. Wang, R. Gao, D. Zhou, Z. Chen, Z. Wu et al., Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li-O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio. ACS Catal. 7(10), 6533–6541 (2017). https://doi.org/10.1021/acscatal.7b02313
- M. Yang, W. Lu, R. Jin, X.C. Liu, S. Song et al., Superior oxygen evolution reaction performance of Co3O4/NiCo2O4/Ni foam composite with hierarchical structure. ACS Sustain. Chem. Eng. 7(14), 12214–12221 (2019). https://doi.org/10.1021/acssuschemeng.9b01535
- J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi et al., Bimetallic Nickel Cobalt Sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett. 11(1), 1–13 (2019). https://doi.org/10.1007/s40820-018-0232-2
References
J. Chow, R.J. Kopp, P.R. Portney, Energy resources and global development. Science 302(5650), 1528–1531 (2003). https://doi.org/10.1126/science.1091939
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004). https://doi.org/10.1126/science.1103197
B. Xia, T. Wang, X. Jiang, T. Zhang, J. Li et al., Ar2+ beam irradiation-induced multivancancies in MoSe2 nanosheet for enhanced electrochemical hydrogen evolution. ACS Energy Lett. 3(9), 2167–2172 (2018). https://doi.org/10.1021/acsenergylett.8b01209
X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 44(15), 5148–5180 (2015). https://doi.org/10.1039/c4cs00448e
N. Mahmood, Y. Yao, J.W. Zhang, L. Pan, X. Zhang et al., Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv. Sci. 5(2), 1700464 (2018). https://doi.org/10.1002/advs.201700464
C. Hu, L. Zhang, J. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 12(9), 2620–2645 (2019). https://doi.org/10.1039/c9ee01202h
Z. Xiao, Y. Wang, Y. Huang, Z. Wei, C. Dong et al., Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 10(12), 2563–2569 (2017). https://doi.org/10.1039/c7ee01917c
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on Nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 54(32), 9351–9355 (2015). https://doi.org/10.1002/anie.201503407
B. Xiong, L. Chen, J. Shi, Anion-containing noble-metal-free bifunctional electrocatalysts for overall water splitting. ACS Catal. 8(4), 3688–3707 (2018). https://doi.org/10.1021/acscatal.7b04286
J. Lai, S. Li, F. Wu, M. Saqib, R. Luque et al., Unprecedented metal-free 3D porous carbonaceous electrodes for full water splitting. Energy Environ. Sci. 9(4), 1210–1214 (2016). https://doi.org/10.1039/c5ee02996a
A. Muthurasu, V. Maruthapandian, H.Y. Kim, Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. Appl. Catal. B 248, 202–210 (2019). https://doi.org/10.1016/j.apcatb.2019.02.014
H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng et al., Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 32(3), e1806326 (2020). https://doi.org/10.1002/adma.201806326
N. Jiang, B. You, M. Sheng, Y. Sun, Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew. Chem. Int. Ed. 54(21), 6251–6524 (2015). https://doi.org/10.1002/anie.201501616
Y. Yang, K. Zhang, H. Lin, X. Li, H.C. Chan et al., MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catal. 7(4), 2357–2366 (2017). https://doi.org/10.1021/acscatal.6b03192
J. Liu, J. Wang, B. Zhang, Y. Ruan, H. Wan et al., Mutually beneficial Co3O4@MoS2 heterostructures as a highly efficient bifunctional catalyst for electrochemical overall water splitting. J. Mater. Chem. A 6(5), 2067–2072 (2018). https://doi.org/10.1039/c7ta10048e
Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren et al., Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Catal. 8(3), 2236–2241 (2018). https://doi.org/10.1021/acscatal.7b03594
Q. Xiong, Y. Wang, P.F. Liu, L.R. Zheng, G. Wang et al., Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting. Adv. Mater. 30, 1801450 (2018). https://doi.org/10.1002/adma.201801450
Y. Zhao, C. Chang, F. Teng, Y. Zhao, G. Chen et al., Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv. Energy Mater. 7(18), 1700005 (2017). https://doi.org/10.1002/aenm.201700005
H. Yuan, S. Wang, Z. Ma, M. Kundu, B. Tang et al., Oxygen vacancies engineered self-supported B doped Co3O4 nanowires as an efficient multifunctional catalyst for electrochemical water splitting and hydrolysis of sodium borohydride. Chem. Eng. J. 404, 126474 (2021). https://doi.org/10.1016/j.cej.2020.126474
Y. Jin, H. Wang, J. Li, X. Yue, Y. Han et al., Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv. Mater. 28(19), 3785–3790 (2016). https://doi.org/10.1002/adma.201506314
X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong et al., Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem. Int. Ed. 55(21), 6290–6294 (2016). https://doi.org/10.1002/anie.201600525
Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324–1328 (2017). https://doi.org/10.1002/anie.201610413
A. Sivanantham, P. Ganesan, S. Shanmugam, Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: an efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 26(26), 4661–4672 (2016). https://doi.org/10.1002/adfm.201600566
C. Tang, N. Cheng, Z. Pu, W. Xing, X. Sun, NiSe nanowire film supported on Nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew. Chem. Int. Ed. 127, 9483–9487 (2015). https://doi.org/10.1002/anie.201503407
M. Ledendecker, S. Krick Calderon, C. Papp, H.P. Steinruck, M. Antonietti et al., The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. Int. Ed. 54(42), 12361–12365 (2015). https://doi.org/10.1002/anie.201502438
Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang et al., A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29(17), 1700017 (2017). https://doi.org/10.1002/adma.201700017
J.H. Wen, X.Y. Zhao, Q. Li, Y.Q. Xiong, D.H. Wang et al., Nonvolatile control of magnetocaloric operating temperature by low voltage. ACS Appl. Mater. Interfaces 10(17), 15298–15303 (2018). https://doi.org/10.1021/acsami.8b03088
F. Guo, M.T. Zhao, K. Xu, Y. Huan, S.P. Ge et al., Evidence for the dynamic relaxation behavior of oxygen vacancies in aurivillius Bi2MoO6 from dielectric spectroscopy during resistance switching. J. Mater. Chem. C 7, 8915–8922 (2019). https://doi.org/10.1039/C9TC02693B
D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotech. 5(2), 148–153 (2010). https://doi.org/10.1038/nnano.2009.456
L. Wei, Z. Hu, G. Du, Y. Yuan, J. Wang et al., Full electric control of exchange bias at room temperature by resistive switching. Adv. Mater. 30(30), 1801885 (2018). https://doi.org/10.1002/adma.201801885
J.M. Li, W.X. Su, J. Li, L. Wang, J. Ren et al., Orientational alignment of oxygen vacancies: electric-field-inducing conductive channels in TiO2 film to boost photocatalytic conversion of CO2 into CO. Nano Lett. 21(12), 5060–5067 (2021). https://doi.org/10.1021/acs.nanolett.1c00897
Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang et al., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10(10), 780–786 (2011). https://doi.org/10.1038/nmat3087
T.Y. Ma, S. Dai, M. Jaroniec, S.Z. Qiao, Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136(39), 13925–13931 (2014). https://doi.org/10.1021/ja5082553
R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas et al., Trends in activity for the water electrolyser reactions on 3d M(Ni Co, Fe, Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11(6), 550–557 (2012). https://doi.org/10.1038/nmat3313
T. Zhang, M. Wu, D. Yan, J. Mao, H. Liu et al., Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 43, 103–109 (2018). https://doi.org/10.1016/j.nanoen.2017.11.015
K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai et al., Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett. 10(4), 1359–1363 (2010). https://doi.org/10.1021/nl9042906
C. Yao, M. Ismail, A. Hao, S.K. Thatikonda, W. Huang et al., Au nanops introduced to spinel Co3O4 thin films: switching enhancement and magnetization modulation. J. Magn. Magn. Mater. 493, 165702 (2020). https://doi.org/10.1016/j.jmmm.2019.165702
J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5(11), 909–913 (2006). https://doi.org/10.1038/nmat1752
W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6(5), 1509 (2013). https://doi.org/10.1039/c3ee00045a
P.Z. Chen, K. Xu, Z.W. Fang, Y. Tong, J.C. Wu et al., Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 127, 14923–14927 (2015). https://doi.org/10.1002/anie.201506480
C. Yao, W. Hu, M. Ismail, S.K. Thatikonda, A. Hao et al., Coexistence of resistive switching and magnetism modulation in sol-gel derived nanocrystalline spinel Co3O4 thin films. Curr. Appl. Phys. 19(11), 1286–1295 (2019). https://doi.org/10.1016/j.cap.2019.08.016
G. Chen, C. Song, C. Chen, S. Gao, F. Zeng et al., Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv. Mater. 24(26), 3515–3520 (2012). https://doi.org/10.1002/adma.201201595
H. Wan, Y. Liu, H. Zhang, W. Zhang, N. Jiang et al., Improved lithium storage properties of Co3O4 nanops via laser irradiation treatment. Electrochim. Acta 281, 31–38 (2018). https://doi.org/10.1016/j.electacta.2018.05.156
C. Yao, J. Li, S.K. Thatikonda, Y. Ke, N. Qin et al., Introducing a thin MnO2 layer in Co3O4-based memory to enhance resistive switching and magnetization modulation behaviors. J. Alloys Compd. 823, 153731 (2020). https://doi.org/10.1016/j.jallcom.2020.153731
L. Xu, Q.Q. Jiang, Z.H. Xiao, X.Y. Li, J. Huo et al., Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 55(17), 5277–5281 (2016). https://doi.org/10.1002/anie.201600687
Y. Xiao, P. Zhang, X. Zhang, X. Dai, Y. Ma et al., Bimetallic thin film NiCo-NiCoO2@NC as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. J. Mater. Chem. 5(30), 15901–15912 (2017). https://doi.org/10.1039/c7ta03629a
L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia et al., Ultrathin Iron-Cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 29(17), 1606793 (2017). https://doi.org/10.1002/adma.201606793
W. Hu, N. Qin, G.S. Wu, Y.T. Lin, S.W. Li et al., Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J. Am. Chem. Soc. 134(36), 14658–14661 (2012). https://doi.org/10.1021/ja305681n
S. Yang, Y. Liu, Y. Hao, X. Yang, W. Goddard et al., Oxygen-vacancy abundant ultrafine Co3O4/graphene composites for high-rate supercapacitor electrodes. Adv. Sci. 5(4), 1700659 (2018). https://doi.org/10.1002/advs.201700659
D. Ji, L. Fan, L. Tao, Y. Sun, M. Li et al., The kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanops toward high-performance portable Zinc-Air batteries. Angew. Chem. Int. Ed. 58(39), 13840–13844 (2019). https://doi.org/10.1002/anie.201908736
Y. Zeng, J. Zhong, H. Wang, M. Fu, D. Ye et al., Synergistic effect of tunable oxygen-vacancy defects and graphene on accelerating the photothermal degradation of methanol over Co3O4/rGO nanocomposites. Chem. Eng. J. 425, 131658 (2021). https://doi.org/10.1016/j.cej.2021.131658
L. Bao, S. Zhu, Y. Chen, Y. Wang, W. Meng et al., Anionic defects engineering of Co3O4 catalyst for toluene oxidation. Fuel 314, 122774 (2022). https://doi.org/10.1016/j.fuel.2021.122774
Y. Wang, H. Arandiyan, J. Scott, H. Dai, R. Amal, Hierarchically porous network-like Ni/Co3O4: noble metal-free catalysts for carbon dioxide methanation. Adv. Sustain. Syst. 2(3), 1700119 (2018). https://doi.org/10.1002/adsu.201700119
J. Zhou, M. Wu, K. Tao, Y. Li, Q. Li et al., Tanghulu-like NiO microcubes on Co3O4 nanowires arrays anchored on Ni foam with improved electrochemical performances for supercapacitors. J. Alloys Compd. 748, 496–503 (2018). https://doi.org/10.1016/j.jallcom.2018.03.196
M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
L. Zhao, Y. Zhang, Z. Zhao, Q. Zhang, L. Huang et al., Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces. Natl. Sci. Rev. 7(1), 27–36 (2020). https://doi.org/10.1093/nsr/nwz145
J. Bao, X.D. Zhang, B. Fan, J.J. Zhang, M. Zhou et al., Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem. Int. Ed. 127, 7507–7512 (2015). https://doi.org/10.1002/anie.201502226
J.F. Xie, X.D. Zhang, H. Zhang, J.J. Zhang, S. Li et al., Intralayered ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 29(10), 1604765 (2017). https://doi.org/10.1002/adma.201604765
C. McCrory, S. Jung, J. Peters, T. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135(45), 16977–16987 (2013). https://doi.org/10.1021/ja407115p
L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo et al., Heterogeneous bimetallic phosphide Ni2P–Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Adv. Funct. Mater. 31(1), 2006484 (2021). https://doi.org/10.1002/adfm.202006484
Y. Ha, L.X. Shi, Z.L. Chen, R.B. Wu, Phase-transited lysozyme-driven formation of self-supported Co3O4@C nanomeshes for overall water splitting. Adv. Sci. 6(11), 1900272 (2019). https://doi.org/10.1002/advs.201900272
K. Wan, J. Luo, C. Zhou, T. Zhang, J. Arbiol et al., Hierarchical porous Ni3S4 with enriched high-valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction. Adv. Funct. Mater. 29(18), 1900315 (2019). https://doi.org/10.1002/adfm.201900315
M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37, 136–157 (2017). https://doi.org/10.1016/j.nanoen.2017.05.022
M. Yu, E. Budiyanto, H. Tüysüz, Principles of water electrolysis and recent progress in Cobalt-, Nickel-, and Iron-based oxides for the oxygen evolution reaction. Angew. Chem. Int. Ed. 60, 2–26 (2021). https://doi.org/10.1002/anie.202103824
J. Wang, R. Gao, D. Zhou, Z. Chen, Z. Wu et al., Boosting the electrocatalytic activity of Co3O4 nanosheets for a Li-O2 battery through modulating inner oxygen vacancy and exterior Co3+/Co2+ ratio. ACS Catal. 7(10), 6533–6541 (2017). https://doi.org/10.1021/acscatal.7b02313
M. Yang, W. Lu, R. Jin, X.C. Liu, S. Song et al., Superior oxygen evolution reaction performance of Co3O4/NiCo2O4/Ni foam composite with hierarchical structure. ACS Sustain. Chem. Eng. 7(14), 12214–12221 (2019). https://doi.org/10.1021/acssuschemeng.9b01535
J. Zhang, X. Bai, T. Wang, W. Xiao, P. Xi et al., Bimetallic Nickel Cobalt Sulfide as efficient electrocatalyst for Zn-air battery and water splitting. Nano-Micro Lett. 11(1), 1–13 (2019). https://doi.org/10.1007/s40820-018-0232-2