Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications
Corresponding Author: Shuiren Liu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 141
Abstract
As an indispensable branch of wearable electronics, flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring, human –machine interaction, artificial intelligence, the internet of things, and other fields. In recent years, highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms. Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance. This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors. We discuss different architectures and morphological designs of sensing materials to achieve high performance, including high sensitivity, broad working range, stable sensing, low hysteresis, high transparency, and directional or selective sensing. Additionally, the general fabrication techniques are summarized, including self-assembly, patterning, and auxiliary synthesis methods. Furthermore, we present the emerging applications of high-performing microengineered pressure sensors in healthcare, smart homes, digital sports, security monitoring, and machine learning-enabled computational sensing platform. Finally, the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.
Highlights:
1 Various morphological structures in pressure sensors with the resulting advanced sensing properties are reviewed comprehensively.
2 Relevant manufacturing techniques and intelligent applications of pressure sensors are summarized in a complete and interesting way.
3 Future challenges and perspectives of flexible pressure sensors are critically discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
- Y. Chu, J. Zhong, H. Liu, Y. Ma, N. Liu et al., Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 28(40), 1803413 (2018). https://doi.org/10.1002/adfm.201803413
- L. Guan, A. Nilghaz, B. Su, L. Jiang, W. Cheng et al., Stretchable-fiber-confined wetting conductive liquids as wearable human health monitors. Adv. Funct. Mater. 26(25), 4511–4517 (2016). https://doi.org/10.1002/adfm.201600443
- J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
- K. Kim, H.J. Kim, H. Zhang, W. Park, D. Meyer et al., All-printed stretchable corneal sensor on soft contact lenses for noninvasive and painless ocular electrodiagnosis. Nat. Commun. 12, 1544 (2021). https://doi.org/10.1038/s41467-021-21916-8
- H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu et al., Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 29(40), 1703456 (2017). https://doi.org/10.1002/adma.201703456
- X. Qu, X. Ma, B. Shi, H. Li, L. Zheng et al., Refreshable Braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 31(5), 2006612 (2021). https://doi.org/10.1002/adfm.202006612
- A. Chortos, Z. Bao, Skin-inspired electronic devices. Mater. Today 17(7), 321–331 (2014). https://doi.org/10.1016/j.mattod.2014.05.006
- R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010). https://doi.org/10.1109/TRO.2009.2033627
- K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1902549 (2020). https://doi.org/10.1002/adma.201902549
- Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
- L.Q. Tao, H. Tian, Y. Liu, Z.Y. Ju, Y. Pang et al., An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8, 14579 (2017). https://doi.org/10.1038/ncomms14579
- Y. Wan, Y. Wang, C.F. Guo, Recent progresses on flexible tactile sensors. Mater. Today Phys. 1, 61–73 (2017). https://doi.org/10.1016/j.mtphys.2017.06.002
- X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015). https://doi.org/10.1002/advs.201500169
- W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340(6135), 952–957 (2013). https://doi.org/10.1126/science.1234855
- Z. Zhang, Q. Shi, T. He, X. Guo, B. Dong et al., Artificial intelligence of toilet (AI-toilet) for an integrated health monitoring system (IHMS) using smart triboelectric pressure sensors and image sensor. Nano Energy 90, 106517 (2021). https://doi.org/10.1016/j.nanoen.2021.106517
- X. Guo, T. He, Z. Zhang, A. Luo, F. Wang et al., Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 15(12), 19054–19069 (2021). https://doi.org/10.1021/acsnano.1c04464
- Y.C. Huang, Y. Liu, C. Ma, H.C. Cheng, Q. He et al., Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 3, 59–69 (2020). https://doi.org/10.1038/s41928-019-0356-5
- H. Li, S. Lv, Y. Fang, Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 13, 1244–1252 (2020). https://doi.org/10.1007/s12274-020-2628-9
- J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), 2004178 (2021). https://doi.org/10.1002/adma.202004178
- J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han et al., Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10, 5147 (2019). https://doi.org/10.1038/s41467-019-13166-6
- Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu et al., Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
- L. Zhang, F. Xue, W. Du, C. Han, C. Zhang et al., Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 7, 1215–1223 (2014). https://doi.org/10.1007/s12274-014-0484-1
- Z. Zhang, T. He, M. Zhu, Z. Sun, Q. Shi et al., Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. Npj Flex. Electron. 4, 29 (2020). https://doi.org/10.1038/s41528-020-00092-7
- M. Ha, S. Lim, J. Park, D.S. Um, Y. Lee et al., Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater. 25(19), 2841–2849 (2015). https://doi.org/10.1002/adfm.201500453
- S. Jung, J.H. Kim, J. Kim, S. Choi, J. Lee et al., Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014). https://doi.org/10.1002/adma.201401364
- L. Lv, P. Zhang, T. Xu, L. Qu, Ultrasensitive pressure sensor based on an ultralight sparkling graphene block. ACS Appl. Mater. Interfaces 9(27), 22885–22892 (2017). https://doi.org/10.1021/acsami.7b07153
- L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
- H. Cheng, B. Wang, K. Yang, C. Wang, A low-cost piezoresistive pressure sensor with a wide strain range – featuring polyurethane sponge@poly(vinyl alcohol)/sulfuric gel electrolyte. J. Mater. Chem. C 9(3), 1014–1024 (2021). https://doi.org/10.1039/D0TC01584A
- L. Li, J. Zheng, J. Chen, Z. Luo, Y. Su et al., Flexible pressure sensors for biomedical applications: from ex vivo to in vivo. Adv. Mater. Interfaces 7(17), 2000743 (2020). https://doi.org/10.1002/admi.202000743
- W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou et al., Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Adv Sci (2020). https://doi.org/10.1126/sciadv.aay2840
- S. Chen, N. Wu, L. Ma, S. Lin, F. Yuan et al., Noncontact heartbeat and respiration monitoring based on a hollow microstructured self-powered pressure sensor. ACS Appl. Mater. Interfaces 10(4), 3660–3667 (2018). https://doi.org/10.1021/acsami.7b17723
- L. Giancardo, A. Sánchez-Ferro, T. Arroyo-Gallego, I. Butterworth, C.S. Mendoza et al., Computer keyboard interaction as an indicator of early Parkinson’s disease. Sci. Rep. 6, 34468 (2016). https://doi.org/10.1038/srep34468
- Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett. 19(2), 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
- Y. Guo, Z. Guo, M. Zhong, P. Wan, W. Zhang et al., A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing. Small 14(44), 1803018 (2018). https://doi.org/10.1002/smll.201803018
- M. Amit, L. Chukoskie, A.J. Skalsky, H. Garudadri, T.N. Ng, Flexible pressure sensors for objective assessment of motor disorders. Adv. Funct. Mater. 30(20), 1905241 (2020). https://doi.org/10.1002/adfm.201905241
- Y. Ding, J. Yang, C.R. Tolle, Z. Zhu, Flexible and compressible PEDOT:PSS@melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl. Mater. Interfaces 10(18), 16077–16086 (2018). https://doi.org/10.1021/acsami.8b00457
- M. Ha, S. Lim, H. Ko, Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B 6(24), 4043–4064 (2018). https://doi.org/10.1039/C8TB01063C
- T. Yang, W. Deng, X. Chu, X. Wang, Y. Hu et al., Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 15(7), 11555–11563 (2021). https://doi.org/10.1021/acsnano.1c01606
- C. Bartolozzi, L. Natale, F. Nori, G. Metta, Robots with a sense of touch. Nat. Mater. 15, 921–925 (2016). https://doi.org/10.1038/nmat4731
- X. Wang, K.H. Chan, Y. Cheng, T. Ding, T. Li et al., Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32(21), 2000351 (2020). https://doi.org/10.1002/adma.202000351
- J. Zhang, D. Sun, B. Zhang, Q. Sun, Y. Zhang et al., Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics. Mater. Horiz. 9(3), 1045–1056 (2022). https://doi.org/10.1039/D1MH01810H
- W. Yang, J. Chen, X. Wen, Q. Jing, J. Yang et al., Triboelectrification based motion sensor for human-machine interfacing. ACS Appl. Mater. Interfaces 6(10), 7479–7484 (2014). https://doi.org/10.1021/am500864t
- J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai et al., Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano 9(1), 105–116 (2015). https://doi.org/10.1021/nn506832w
- F.M. Kadhim, S.F. Awad, M.S.A. Tahir, Design and manufacturing of portable pressure sensor for measuring the interface pressure between the body and (orthosis or socket prosthesis). J. Biomim. Biomater. Biomed. Eng. 45, 12–21 (2020). https://doi.org/10.4028/www.scientific.net/JBBBE.45.12
- D. Sengupta, J. Romano, A.G.P. Kottapalli, Electrospun bundled carbon nanofibers for skin-inspired tactile sensing, proprioception and gesture tracking applications. Npj Flex. Electron. 5, 29 (2021). https://doi.org/10.1038/s41528-021-00126-8
- A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
- B.W. An, S. Heo, S. Ji, F. Bien, J.U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018). https://doi.org/10.1038/s41467-018-04906-1
- K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl. Polym. Mater. 2(2), 862–878 (2020). https://doi.org/10.1021/acsapm.9b00846
- S. Pyo, J. Lee, W. Kim, E. Jo, J. Kim, Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv. Funct. Mater. 29(35), 1902484 (2019). https://doi.org/10.1002/adfm.201902484
- F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji et al., Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy 65, 104068 (2019). https://doi.org/10.1016/j.nanoen.2019.104068
- F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261
- Q. Liu, X.X. Wang, W.Z. Song, H.J. Qiu, J. Zhang et al., Wireless single-electrode self-powered piezoelectric sensor for monitoring. ACS Appl. Mater. Interfaces 12(7), 8288–8295 (2020). https://doi.org/10.1021/acsami.9b21392
- K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
- Z. Ballard, C. Brown, A.M. Madni, A. Ozcan, Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 3, 556–565 (2021). https://doi.org/10.1038/s42256-021-00360-9
- H. Yang, J. Li, K.Z. Lim, C. Pan, T.V. Truong et al., Automatic strain sensor design via active learning and data augmentation for soft machines. Nat. Mach. Intell. 4, 84–94 (2022). https://doi.org/10.1038/s42256-021-00434-8
- S. Sundaram, P. Kellnhofer, Y. Li, J.Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
- Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4, 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
- Y. Lu, H. Tian, J. Cheng, F. Zhu, B. Liu et al., Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 13, 1401 (2022). https://doi.org/10.1038/s41467-022-29083-0
- C. Krittanawong, A.J. Rogers, K.W. Johnson, Z. Wang, M.P. Turakhia et al., Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat. Rev. Cardiol. 18, 75–91 (2021). https://doi.org/10.1038/s41569-020-00445-9
- Y. Huang, Y. Chen, X. Fan, N. Luo, S. Zhou et al., Wood derived composites for high sensitivity and wide linear-range pressure sensing. Small 14(31), 1801520 (2018). https://doi.org/10.1002/smll.201801520
- Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
- Y. Zhang, T.H. Chang, L. Jing, K. Li, H. Yang et al., Heterogeneous, 3D architecturing of 2D titanium carbide (MXene) for microdroplet manipulation and voice recognition. ACS Appl. Mater. Interfaces 12(7), 8392–8402 (2020). https://doi.org/10.1021/acsami.9b18879
- H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong et al., Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci. Rep. 9, 3916 (2019). https://doi.org/10.1038/s41598-019-40828-8
- J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo et al., Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27(15), 2433–2439 (2015). https://doi.org/10.1002/adma.201500009
- X. Shuai, P. Zhu, W. Zeng, Y. Hu, X. Liang et al., Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl. Mater. Interfaces 9(31), 26314–26324 (2017). https://doi.org/10.1021/acsami.7b05753
- S. Liu, L. Wang, Z. Wang, Y. Cai, X. Feng et al., Double-channel piezotronic transistors for highly sensitive pressure sensing. ACS Nano 12(2), 1732–1738 (2018). https://doi.org/10.1021/acsnano.7b08447
- S.H. Shin, S. Ji, S. Choi, K.H. Pyo, B.W. An et al., Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nat. Commun. 8, 14950 (2017). https://doi.org/10.1038/ncomms14950
- J. Chun, K.Y. Lee, C.Y. Kang, M.W. Kim, S.W. Kim et al., Embossed hollow hemisphere-based piezoelectric nanogenerator and highly responsive pressure sensor. Adv. Funct. Mater. 24(14), 2038–2043 (2014). https://doi.org/10.1002/adfm.201302962
- H. Chen, Z. Su, Y. Song, X. Cheng, X. Chen et al., Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv. Funct. Mater. 27(3), 1604434 (2017). https://doi.org/10.1002/adfm.201604434
- C.K. Jeong, K.M. Baek, S. Niu, T.W. Nam, Y.H. Hur et al., Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 14(12), 7031–7038 (2014). https://doi.org/10.1021/nl503402c
- Y. Tang, H. Zhou, X. Sun, N. Diao, J. Wang et al., Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 30(5), 1907893 (2020). https://doi.org/10.1002/adfm.201907893
- K. Venugopal, P. Panchatcharam, A. Chandrasekhar, V. Shanmugasundaram, Comprehensive review on triboelectric nanogenerator based wrist pulse measurement: sensor fabrication and diagnosis of arterial pressure. ACS Sens. 6(5), 1681–1694 (2021). https://doi.org/10.1021/acssensors.0c02324
- B. Yin, X. Liu, H. Gao, T. Fu, J. Yao, Bioinspired and bristled microps for ultrasensitive pressure and strain sensors. Nat. Commun. 9, 5161 (2018). https://doi.org/10.1038/s41467-018-07672-2
- N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 209 (2020). https://doi.org/10.1038/s41467-019-14054-9
- S. Yu, L. Li, J. Wang, E. Liu, J. Zhao et al., Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures. Adv. Funct. Mater. 30(16), 1907091 (2020). https://doi.org/10.1002/adfm.201907091
- X. Shi, Y. Zhu, X. Fan, H.A. Wu, P. Wu et al., An auxetic cellular structure as a universal design for enhanced piezoresistive sensitivity. Matter 5(5), 1547–1562 (2022). https://doi.org/10.1016/j.matt.2022.02.022
- X. Wang, L. Tao, M. Yuan, Z. Wang, J. Yu et al., Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat. Commun. 12, 1776 (2021). https://doi.org/10.1038/s41467-021-21958-y
- Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz et al., Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14(8), 10104–10114 (2020). https://doi.org/10.1021/acsnano.0c03294
- J.J. Lee, S. Gandla, B. Lim, S. Kang, S. Kim et al., Alcohol-based highly conductive polymer for conformal nanocoatings on hydrophobic surfaces toward a highly sensitive and stable pressure sensor. NPG Asia Mater. 12, 65 (2020). https://doi.org/10.1038/s41427-020-00238-z
- Y. Zhang, J. Yang, X. Hou, G. Li, L. Wang et al., Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 13, 1317 (2022). https://doi.org/10.1038/s41467-022-29093-y
- L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson et al., An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014). https://doi.org/10.1038/ncomms4002
- L. Shi, Z. Li, M. Chen, Y. Qin, Y. Jiang et al., Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun. 11, 3529 (2020). https://doi.org/10.1038/s41467-020-17298-y
- J. Oh, J. Kim, Y. Kim, H.B. Choi, J.C. Yang et al., Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small 15(33), 1901744 (2019). https://doi.org/10.1002/smll.201901744
- M. Cao, M. Wang, L. Li, H. Qiu, M.A. Padhiar et al., Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy 50, 528–535 (2018). https://doi.org/10.1016/j.nanoen.2018.05.038
- J. Xiao, Y. Tan, Y. Song, Q. Zheng, A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J. Mater. Chem. A 6(19), 9074–9080 (2018). https://doi.org/10.1039/C7TA11348J
- H.B. Yao, J. Ge, C.F. Wang, X. Wang, W. Hu et al., A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25(46), 6692–6698 (2013). https://doi.org/10.1002/adma.201303041
- F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109–3114 (2012). https://doi.org/10.1021/nl300988z
- H. Guo, Y.J. Tan, G. Chen, Z. Wang, G.J. Susanto et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 11, 5747 (2020). https://doi.org/10.1038/s41467-020-19531-0
- P. Lu, L. Wang, P. Zhu, J. Huang, Y. Wang et al., Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes. Sci. Bull. 66(11), 1091–1100 (2021). https://doi.org/10.1016/j.scib.2021.02.019
- Y. Xiong, Y. Shen, L. Tian, Y. Hu, P. Zhu et al., Ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 70, 104436 (2020). https://doi.org/10.1016/j.nanoen.2019.104436
- L. Yuan, Z. Wang, H. Li, Y. Huang, S. Wang et al., Synergistic resistance modulation toward ultrahighly sensitive piezoresistive pressure sensors. Adv. Mater. Technol. 5(4), 1901084 (2020). https://doi.org/10.1002/admt.201901084
- K.K. Kim, I. Ha, P. Won, D.G. Seo, K.J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. 10, 2582 (2019). https://doi.org/10.1038/s41467-019-10736-6
- Ü.Ö. Akkuş, E. Balcı, S. Berber, Mo2TiC2O2 MXene-based nanoscale pressure sensor. Phys. E Low Dimens. Syst. Nanostruct. 116, 113762 (2020). https://doi.org/10.1016/j.physe.2019.113762
- Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
- C.B. Huang, S. Witomska, A. Aliprandi, M.A. Stoeckel, M. Bonini et al., Molecule-graphene hybrid materials with tunable mechanoresponse: highly sensitive pressure sensors for health monitoring. Adv. Mater. 31(1), 1804600 (2019). https://doi.org/10.1002/adma.201804600
- Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian et al., Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 30(11), 1909603 (2020). https://doi.org/10.1002/adfm.201909603
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
- Y.W. Choi, D. Kang, P.V. Pikhitsa, T. Lee, S.M. Kim et al., Ultra-sensitive pressure sensor based on guided straight mechanical cracks. Sci. Rep. 7, 40116 (2017). https://doi.org/10.1038/srep40116
- X. Shi, S. Liu, Y. Sun, J. Liang, Y. Chen, Lowering internal friction of 0D–1D-2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Funct. Mater. 28(22), 1800850 (2018). https://doi.org/10.1002/adfm.201800850
- T.S.D. Le, J. An, Y. Huang, Q. Vo, J. Boonruangkan et al., Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 13(11), 13293–13303 (2019). https://doi.org/10.1021/acsnano.9b06354
- Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
- X. Tang, W. Yang, S. Yin, G. Tai, M. Su et al., Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 13(17), 20448–20458 (2021). https://doi.org/10.1021/acsami.0c22784
- X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu et al., Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 13, 1119 (2022). https://doi.org/10.1038/s41467-022-28760-4
- C. Wang, Y. Ding, Y. Yuan, A. Cao, X. He et al., Multifunctional, highly flexible, free-standing 3D polypyrrole foam. Small 12(30), 4070–4076 (2016). https://doi.org/10.1002/smll.201601905
- H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32(11), 1908214 (2020). https://doi.org/10.1002/adma.201908214
- Y. Lee, J. Park, S. Cho, Y.E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12(4), 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
- Q. Sun, X. Zhao, Y. Zhou, C. Yeung, W. Wu et al., Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29(18), 1808829 (2019). https://doi.org/10.1002/adfm.201808829
- M. Wang, Y. Qiu, J. Jia, C. Wang, J. Deng et al., Wavelength-gradient graphene films for pressure-sensitive sensors. Adv. Mater. Technol. 4(1), 1800363 (2019). https://doi.org/10.1002/admt.201800363
- S. Chen, Y. Song, F. Xu, Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Appl. Mater. Interfaces 10(40), 34646–34654 (2018). https://doi.org/10.1021/acsami.8b13535
- J. Huang, H. Wang, Z. Li, X. Wu, J. Wang et al., Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. J. Mater. Chem. C 7(24), 7386–7394 (2019). https://doi.org/10.1039/C9TC01659G
- R. Qin, Y. Liu, F. Tao, C. Li, W. Cao et al., Protein-bound freestanding 2D metal film for stealth information transmission. Adv. Mater. 31(5), 1803377 (2018). https://doi.org/10.1002/adma.201803377
- M. Zhu, Y. Yue, Y. Cheng, Y. Zhang, J. Su et al., Hollow MXene sphere/reduced graphene aerogel composites for piezoresistive sensor with ultra-high sensitivity. Adv. Electron. Mater. 6(2), 1901064 (2020). https://doi.org/10.1002/aelm.201901064
- Y. Si, X. Wang, C. Yan, L. Yang, J. Yu et al., Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28(43), 9512–9518 (2016). https://doi.org/10.1002/adma.201603143
- H. Liu, H. Xiang, Z. Li, Q. Meng, P. Li et al., Flexible and degradable multimodal sensor fabricated by transferring laser-induced porous carbon on starch film. ACS Sustain. Chem. Eng. 8(1), 527–533 (2020). https://doi.org/10.1021/acssuschemeng.9b05968
- S.Z. Guo, K. Qiu, F. Meng, S.H. Park, M.C. McAlpine, 3D printed stretchable tactile sensors. Adv. Mater. 29(27), 1701218 (2017). https://doi.org/10.1002/adma.201701218
- M. Yin, Y. Zhang, Z. Yin, Q. Zheng, A.P. Zhang, Micropatterned elastic gold-nanowire/polyacrylamide composite hydrogels for wearable pressure sensors. Adv. Mater. Technol. 3(7), 1800051 (2018). https://doi.org/10.1002/admt.201800051
- C. Hou, Z. Xu, W. Qiu, R. Wu, Y. Wang et al., A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 15(11), 1805084 (2019). https://doi.org/10.1002/smll.201805084
- W. Asghar, F. Li, Y. Zhou, Y. Wu, Z. Yu et al., Piezocapacitive flexible e-skin pressure sensors having magnetically grown microstructures. Adv. Mater. Technol. 5(2), 1900934 (2020). https://doi.org/10.1002/admt.201900934
- K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Adv Sci (2020). https://doi.org/10.1126/sciadv.abd4045
- J.C. Yang, J.O. Kim, J. Oh, S.Y. Kwon, J.Y. Sim et al., Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces 11(21), 19472–19480 (2019). https://doi.org/10.1021/acsami.9b03261
- M.S. Rasel, P. Maharjan, M. Salauddin, M.T. Rahman, H.O. Cho et al., An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49, 603–613 (2018). https://doi.org/10.1016/j.nanoen.2018.04.060
- M. Cao, J. Su, S. Fan, H. Qiu, D. Su et al., Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 406, 126777 (2021). https://doi.org/10.1016/j.cej.2020.126777
- P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng et al., Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11, 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
- H. Pan, T. Lee, Recent progress in development of wearable pressure sensors derived from biological materials. Adv. Healthc. Mater. 10(17), 2100460 (2021). https://doi.org/10.1002/adhm.202100460
- Y. Ding, T. Xu, O. Onyilagha, H. Fong, Z. Zhu, Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl. Mater. Interfaces 11(7), 6685–6704 (2019). https://doi.org/10.1021/acsami.8b20929
- J. He, Y. Zhang, R. Zhou, L. Meng, T. Chen et al., Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. J. Materiom. 6(1), 86–101 (2020). https://doi.org/10.1016/j.jmat.2020.01.009
- F. He, X. You, W. Wang, T. Bai, G. Xue et al., Recent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applications. Small Methods 5, 2001041 (2021). https://doi.org/10.1002/smtd.202001041
- S.R.A. Ruth, V.R. Feig, H. Tran, Z. Bao, Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 30(39), 2003491 (2020). https://doi.org/10.1002/adfm.202003491
- T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang et al., A flexible pressure sensor based on an MXene–textile network structure. J. Mater. Chem. C 7(4), 1022–1027 (2019). https://doi.org/10.1039/C8TC04893B
- H.M. So, J.W. Sim, J. Kwon, J. Yun, S. Baik et al., Carbon nanotube based pressure sensor for flexible electronics. Mater. Res. Bull. 48(12), 5036–5026 (2013). https://doi.org/10.1016/j.materresbull.2013.07.022
- H. Tian, Y. Shu, X.F. Wang, M.A. Mohammad, Z. Bie et al., A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 5, 8603 (2015). https://doi.org/10.1038/srep08603
- H. Liu, H. Xiang, Y. Wang, Z. Li, L. Qian et al., A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 11(43), 40613–40619 (2019). https://doi.org/10.1021/acsami.9b13349
- Q. Wang, M. Jian, C. Wang, Y. Zhang, Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27(9), 1605657 (2017). https://doi.org/10.1002/adfm.201605657
- H. Jeong, Y. Noh, S.H. Ko, D. Lee, Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap. Compos. Sci. Technol. 174, 50–57 (2019). https://doi.org/10.1016/j.compscitech.2019.01.028
- D. Kim, J. Bang, P. Won, Y. Kim, J. Jung et al., Biocompatible cost-effective electrophysiological monitoring with oxidation-free Cu–Au core–shell nanowire. Adv. Mater. Technol. 5(12), 2000661 (2020). https://doi.org/10.1002/admt.202000661
- K. McLellan, Y. Yoon, S.N. Leung, S.H. Ko, Recent progress in transparent conductors based on nanomaterials: advancements and challenges. Adv. Mater. Technol. 5(4), 1900939 (2020). https://doi.org/10.1002/admt.201900939
- S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). https://doi.org/10.1038/ncomms4132
- M. Chen, W. Luo, Z. Xu, X. Zhang, B. Xie et al., An ultrahigh resolution pressure sensor based on percolative metal nanop arrays. Nat. Commun. 10, 4024 (2019). https://doi.org/10.1038/s41467-019-12030-x
- C. Pang, G.Y. Lee, T. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012). https://doi.org/10.1038/nmat3380
- L. Bi, Z. Yang, L. Chen, Z. Wu, C. Ye, Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins. J. Mater. Chem. A 8(38), 20030–20036 (2020). https://doi.org/10.1039/D0TA07044K
- X. Xu, R. Wang, P. Nie, Y. Cheng, X. Lu et al., Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl. Mater. Interfaces 9(16), 14273–14280 (2017). https://doi.org/10.1021/acsami.7b02087
- Y. Yoon, P.L. Truong, D. Lee, S.H. Ko, Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanosci. Au 2(2), 64–92 (2022). https://doi.org/10.1021/acsnanoscienceau.1c00029
- P. Won, S. Jeong, C. Majidi, S.H. Ko, Recent advances in liquid-metal-based wearable electronics and materials. IScience 24(7), 102698 (2021). https://doi.org/10.1016/j.isci.2021.102698
- J. Oh, S. Kim, S. Lee, S. Jeong, S.H. Ko et al., A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv. Funct. Mater. 31(39), 2007772 (2021). https://doi.org/10.1002/adfm.202007772
- K. Zhou, C. Zhang, Z. Xiong, H. Chen, T. Li et al., Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor. Adv. Funct. Mater. 30(38), 2001296 (2020). https://doi.org/10.1002/adfm.202001296
- M. Chen, X. Hu, K. Li, J. Sun, Z. Liu et al., Self-assembly of dendritic-lamellar MXene/carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon 164, 111–120 (2020). https://doi.org/10.1016/j.carbon.2020.03.042
- J. Park, J. Kim, J. Hong, H. Lee, Y. Lee et al., Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins. NPG Asia Mater. 10, 163–176 (2018). https://doi.org/10.1038/s41427-018-0031-8
- L. Sheng, Y. Liang, L. Jiang, Q. Wang, T. Wei et al., Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25(41), 6545–6551 (2015). https://doi.org/10.1002/adfm.201502960
- Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
- J. He, P. Xiao, W. Lu, J. Shi, L. Zhang et al., A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy 59, 422–433 (2019). https://doi.org/10.1016/j.nanoen.2019.02.036
- B.U. Hwang, A. Zabeeb, T.Q. Trung, L. Wen, J.D. Lee et al., A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction. NPG Asia Mater. 11, 23 (2019). https://doi.org/10.1038/s41427-019-0126-x
- Y. Luo, J. Shao, S. Chen, X. Chen, H. Tian et al., Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Appl. Mater. Interfaces 11(19), 17796–17803 (2019). https://doi.org/10.1021/acsami.9b03718
- Y. Cheng, R. Wang, H. Zhai, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9(11), 3834–3842 (2017). https://doi.org/10.1039/C7NR00121E
- A. Chhetry, J. Kim, H. Yoon, J.Y. Park, Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS Appl. Mater. Interfaces 11(3), 3438–3449 (2019). https://doi.org/10.1021/acsami.8b17765
- G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30(43), 1803388 (2018). https://doi.org/10.1002/adma.201803388
- L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13, 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
- S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12(19), 22212–22224 (2020). https://doi.org/10.1021/acsami.0c05819
- M.S. Sarwar, Y. Dobashi, C. Preston, J.K.M. Wyss, S. Mirabbasi et al., Bend, stretch, and touch: locating a finger on an actively deformed transparent sensor array. Sci. Adv. 3(3), e1602200 (2017). https://doi.org/10.1126/sciadv.1602200
- H. Jin, S. Jung, J. Kim, S. Heo, J. Lim et al., Stretchable dual-capacitor multi-sensor for touch-curvature-pressure-strain sensing. Sci. Rep. 7, 10854 (2017). https://doi.org/10.1038/s41598-017-11217-w
- W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
- J. Kim, T.N. Ng, W.S. Kim, Highly sensitive tactile sensors integrated with organic transistors. Appl. Phys. Lett. 101, 103308 (2012). https://doi.org/10.1063/1.4751354
- S.C.B. Mannsfeld, B.C.K. Tee, R.M. Stoltenberg, C.V.H.H. Chen, S. Barman et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010). https://doi.org/10.1038/nmat2834
- G. Schwartz, B.C.K. Tee, J. Mei, A.L. Appleton, D.H. Kim et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832
- Z.W. Yang, Y. Pang, L. Zhang, C. Lu, J. Chen et al., Tribotronic transistor array as an active tactile sensing system. ACS Nano 10(12), 10912–10920 (2016). https://doi.org/10.1021/acsnano.6b05507
- D. Thuau, M. Abbas, G. Wantz, L. Hirsch, I. Dufour et al., Piezoelectric polymer gated OFET: cutting-edge electro-mechanical transducer for organic MEMS-based sensors. Sci. Rep. 6, 38672 (2016). https://doi.org/10.1038/srep38672
- F. Xue, L. Chen, L. Wang, Y. Pang, J. Chen et al., MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 26(13), 2104–2109 (2016). https://doi.org/10.1002/adfm.201504485
- L. Nela, J. Tang, Q. Cao, G. Tulevski, S.J. Han, Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 18(3), 2054–2059 (2018). https://doi.org/10.1021/acs.nanolett.8b00063
- L. Dileena, S.D.B. Sreeja, C.O. Sreekala, A comparative study on piezoelectric and piezoresistive pressure sensor using COMSOL simulation. Mater. Today Proc. 46, 3121–3126 (2021). https://doi.org/10.1016/j.matpr.2021.02.688
- Y. Qi, M.C. McAlpine, Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3(9), 1275–1285 (2010). https://doi.org/10.1039/c0ee00137f
- A.E. Kacimi, E. Pauliac-Vaujour, J. Eymery, Flexible capacitive piezoelectric sensor with vertically aligned ultralong GaN wires. ACS Appl. Mater. Interfaces 10(5), 4794–4800 (2018). https://doi.org/10.1021/acsami.7b15649
- P. Zhu, Y. Chen, J. Shi, Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3 -mediated piezoelectricity. Adv. Mater. 32(29), 2001976 (2020). https://doi.org/10.1002/adma.202001976
- T. Sun, F. Tasnim, R.T. McIntosh, N. Amiri, D. Solav et al., Decoding of facial strains via conformable piezoelectric interfaces. Nat. Biomed. Eng. 4, 954–972 (2020). https://doi.org/10.1038/s41551-020-00612-w
- T. Huang, S. Yang, P. He, J. Sun, S. Zhang et al., Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces 10(36), 30732–30740 (2018). https://doi.org/10.1021/acsami.8b10552
- J.H. Lee, H.J. Yoon, T.Y. Kim, M.K. Gupta, J.H. Lee et al., Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv. Funct. Mater. 25(21), 3203–3209 (2015). https://doi.org/10.1002/adfm.201500856
- J. Zhu, Y. Zhang, G. Zheng, Y. Ji, K. Dai et al., Microribbon structured polyvinylidene fluoride with high-performance piezoelectricity for sensing application. ACS Appl. Polym. Mater. 3(5), 2411–2419 (2021). https://doi.org/10.1021/acsapm.1c00012
- Q. Zhong, J. Zhong, X. Cheng, X. Yao, B. Wang et al., Paper-based active tactile sensor array. Adv. Mater. 27(44), 7130–7136 (2015). https://doi.org/10.1002/adma.201502470
- X. Mo, H. Zhou, W. Li, Z. Xu, J. Duan et al., Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 65, 104033 (2019). https://doi.org/10.1016/j.nanoen.2019.104033
- S. Maiti, S.K. Karan, J. Lee, A.K. Mishra, B.B. Khatua et al., Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 42, 282–293 (2017). https://doi.org/10.1016/j.nanoen.2017.10.041
- S.K. Karan, S. Maiti, O. Kwon, S. Paria, A. Maitra et al., Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator. Nano Energy 49, 655–666 (2018). https://doi.org/10.1016/j.nanoen.2018.05.014
- S.K. Karan, S. Maiti, S. Paria, A. Maitra, S.K. Si et al., A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Mater. Today Energy 9, 114–125 (2018). https://doi.org/10.1016/j.mtener.2018.05.006
- H. Yuan, P. Han, K. Tao, S. Liu, E. Gazit et al., Piezoelectric peptide and metabolite materials. Research. (2019). https://doi.org/10.34133/2019/9025939
- V. Nguyen, R. Zhu, K. Jenkins, R. Yang, Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 7, 13566 (2016). https://doi.org/10.1038/ncomms13566
- S. Guerin, A. Stapleton, D. Chovan, R. Mouras, M. Gleeson et al., Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 17, 180–186 (2018). https://doi.org/10.1038/nmat5045
- K. Tao, W. Hu, B. Xue, D. Chovan, N. Brown et al., Bioinspired stable and photoluminescent assemblies for power generation. Adv. Mater. 31(12), 1807481 (2019). https://doi.org/10.1002/adma.201807481
- Y. Qiu, Y. Tian, S. Sun, J. Hu, Y. Wang et al., Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 78, 105337 (2020). https://doi.org/10.1016/j.nanoen.2020.105337
- F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
- S. Wang, L. Lin, Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11, 436–462 (2015). https://doi.org/10.1016/j.nanoen.2014.10.034
- Z. Zhang, W. Gong, Z. Bai, D. Wang, Y. Xu et al., Oxygen-rich polymers as highly effective positive tribomaterials for mechanical energy harvesting. ACS Nano 13(11), 12787–12797 (2019). https://doi.org/10.1021/acsnano.9b04911
- T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
- K. Shi, H. Zou, B. Sun, P. Jiang, J. He et al., Dielectric modulated cellulose paper/PDMS-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv. Funct. Mater. 30(4), 1904536 (2020). https://doi.org/10.1002/adfm.201904536
- K. Dong, Z. Wu, J. Deng, A.C. Wang, H. Zou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
- P. Zhang, W. Zhang, H. Zhang, A triboelectric nanogenerator based on waste polyvinyl chloride for morse code generator. Sens. Actuators A Phys. 322, 112633 (2021). https://doi.org/10.1016/j.sna.2021.112633
- T. Charoonsuk, R. Muanghlua, S. Sriphan, S. Pongampai, N. Vittayakorn, Utilization of commodity thermoplastic polyethylene (PE) by enhanced sensing performance with liquid phase electrolyte for a flexible and transparent triboelectric tactile sensor. Sustain. Mater. Technol. 27, e00239 (2021). https://doi.org/10.1016/j.susmat.2020.e00239
- A.P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu et al., Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5, 3731 (2014). https://doi.org/10.1038/ncomms4731
- C. Luo, J. Jia, Y. Gong, Z. Wang, Q. Fu et al., Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl. Mater. Interfaces 9(23), 19955–19962 (2017). https://doi.org/10.1021/acsami.7b02988
- P.S. Ghosh, J. Doherty, S. Lisenkov, I. Ponomareva, Tunability of structure, polarization, and band gap of high TC organic–inorganic ferroelectrics by hydrostatic pressure: first-principles study. J. Phys. Chem. C 125(29), 16296–16303 (2021). https://doi.org/10.1021/acs.jpcc.1c03980
- A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, D. Krauße et al., Spin defects in HBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021). https://doi.org/10.1038/s41467-021-24725-1
- Y. Lv, Q. Huang, S. Chang, H. Wang, J. He, Highly sensitive bilayer phosphorene nanoribbon pressure sensor based on the energy gap modulation mechanism: a theoretical study. IEEE Electron. Dev. Lett. 38(9), 1313–1316 (2017). https://doi.org/10.1109/LED.2017.2734909
- M. Runowski, P. Woźny, N. Stopikowska, Q. Guo, S. Lis, Optical pressure sensor based on the emission and excitation band width (fwhm) and luminescence shift of Ce3+-doped fluorapatite—high-pressure sensing. ACS Appl. Mater. Interfaces 11(4), 4131–4138 (2019). https://doi.org/10.1021/acsami.8b19500
- B. Szentpéteri, P. Rickhaus, F.K. Vries, A. Márffy, B. Fülöp et al., Tailoring the band structure of twisted double bilayer graphene with pressure. Nano Lett. 21(20), 8777–8784 (2021). https://doi.org/10.1021/acs.nanolett.1c03066
- J.A. Talla, S.A. Salman, H. Sabbah, E. Yasin, A.A. Zir, Modeling single-walled boron nitride nanotube pressure sensor: density functional study. Nanosci. Nanotechnol. Lett. 7(6), 500–506 (2015). https://doi.org/10.1166/nnl.2015.1994
- B. Zhu, Y. Ling, L.W. Yap, M. Yang, F. Lin et al., Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl. Mater. Interfaces 11(32), 29014–29021 (2019). https://doi.org/10.1021/acsami.9b06260
- J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1(9), e1500661 (2015). https://doi.org/10.1126/sciadv.1500661
- J. Wang, M. Tenjimbayashi, Y. Tokura, J.Y. Park, K. Kawase et al., Bionic fish-scale surface structures fabricated via air/water interface for flexible and ultrasensitive pressure sensors. ACS Appl. Mater. Interfaces 10(36), 30689–30697 (2018). https://doi.org/10.1021/acsami.8b08933
- M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang et al., Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27(9), 1606066 (2017). https://doi.org/10.1002/adfm.201606066
- X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26(9), 1336–1342 (2014). https://doi.org/10.1002/adma.201304248
- J.O. Kim, S.Y. Kwon, Y. Kim, H.B. Choi, J.C. Yang et al., Highly ordered 3D microstructure-based electronic skin capable of differentiating pressure, temperature, and proximity. ACS Appl. Mater. Interfaces 11(1), 1503–1511 (2019). https://doi.org/10.1021/acsami.8b19214
- Y. Xiang, L. Fang, F. Wu, S. Zhang, H. Ruan et al., 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range. Adv. Mater. Technol. 6(6), 2001157 (2021). https://doi.org/10.1002/admt.202001157
- Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
- P. Xue, S. Liu, X. Shi, C. Sun, C. Lai et al., A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 30(44), 1804165 (2018). https://doi.org/10.1002/adma.201804165
- S. Jang, J.H. Oh, Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci. Rep. 8, 14287 (2018). https://doi.org/10.1038/s41598-018-32609-6
- Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu et al., Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30(17), 1910292 (2020). https://doi.org/10.1002/adfm.201910292
- Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang et al., Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9(9), 8933–8941 (2015). https://doi.org/10.1021/acsnano.5b02781
- D.H. Ho, S. Cheon, P. Hong, J.H. Park, J.W. Suk et al., Multifunctional smart textronics with blow-spun nonwoven fabrics. Adv. Funct. Mater. 29(24), 1900025 (2019). https://doi.org/10.1002/adfm.201900025
- A. Tewari, S. Gandla, S. Bohm, C.R. McNeill, D. Gupta, Highly exfoliated MWNT–rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications. ACS Appl. Mater. Interfaces 10(6), 5185–5195 (2018). https://doi.org/10.1021/acsami.7b15252
- Y. Wu, H. Liu, S. Chen, X. Dong, P. Wang et al., Channel crack-designed gold@PU sponge for highly elastic piezoresistive sensor with excellent detectability. ACS Appl. Mater. Interfaces 9(23), 20098–20105 (2017). https://doi.org/10.1021/acsami.7b04605
- J. Lee, J. Kim, Y. Shin, I. Jung, Ultra-robust wide-range pressure sensor with fast response based on polyurethane foam doubly coated with conformal silicone rubber and CNT/TPU nanocomposites islands. Compos. Part B Eng. 177, 107364 (2019). https://doi.org/10.1016/j.compositesb.2019.107364
- S. Zhao, R. Zhu, High sensitivity and broad range flexible pressure sensor using multilayered porous PDMS/AgNP sponge. Adv. Mater. Technol. 4(9), 1900414 (2019). https://doi.org/10.1002/admt.201900414
- S. Liang, Y. Li, J. Yang, J. Zhang, C. He et al., 3D stretchable, compressible, and highly conductive metal-coated polydimethylsiloxane sponges. Adv. Mater. Technol. 1(7), 1600117 (2016). https://doi.org/10.1002/admt.201600117
- L. Miao, J. Wan, Y. Song, H. Guo, H. Chen et al., Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure. ACS Appl. Mater. Interfaces 11(42), 39219–39227 (2019). https://doi.org/10.1021/acsami.9b13383
- X. Wu, Y. Han, X. Zhang, Z. Zhou, C. Lu, Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 26(34), 6246–6256 (2016). https://doi.org/10.1002/adfm.201601995
- S. Uzun, S. Seyedin, A.L. Stoltzfus, A.S. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29(45), 1905015 (2019). https://doi.org/10.1002/adfm.201905015
- L. Wang, J.A. Jackman, E.L. Tan, J.H. Park, M.G. Potroz et al., High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 36, 38–45 (2017). https://doi.org/10.1016/j.nanoen.2017.04.015
- S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
- J.Y. Yoo, M.H. Seo, J.S. Lee, K.W. Choi, M.S. Jo et al., Industrial grade, bending-insensitive, transparent nanoforce touch sensor via enhanced percolation effect in a hierarchical nanocomposite film. Adv. Funct. Mater. 28(42), 1804721 (2018). https://doi.org/10.1002/adfm.201804721
- Z. Shen, X. Zhu, C. Majidi, G. Gu, Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses. Adv. Mater. 33(38), 2102069 (2021). https://doi.org/10.1002/adma.202102069
- Y.R. Kim, M.P. Kim, J. Park, Y. Lee, S.K. Ghosh et al., Binary spiky/spherical nanop films with hierarchical micro/nanostructures for high-performance flexible pressure sensors. ACS Appl. Mater. Interfaces 12(53), 58403–58411 (2020). https://doi.org/10.1021/acsami.0c18543
- J. Wen, Z. Song, J. Ding, F. Wang, H. Li et al., MXene-derived TiO2 nanosheets decorated with Ag nanops for highly sensitive detection of ammonia at room temperature. J. Mater. Sci. Technol. 114, 233–239 (2022). https://doi.org/10.1016/j.jmst.2021.12.005
- T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
- W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang et al., Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires. IEEE Electron. Dev. Lett. 39(7), 1069–1072 (2018). https://doi.org/10.1109/LED.2018.2835467
- Z. Lou, S. Chen, L. Wang, K. Jiang, G. Shen, An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23, 7–14 (2016). https://doi.org/10.1016/j.nanoen.2016.02.053
- H. Li, K. Wu, Z. Xu, Z. Wang, Y. Meng et al., Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure. ACS Appl. Mater. Interfaces 10(24), 20826–20834 (2018). https://doi.org/10.1021/acsami.8b03639
- Q. Liu, Z. Liu, C. Li, K. Xie, P. Zhu et al., Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv. Sci. 7(10), 2000348 (2020). https://doi.org/10.1002/advs.202000348
- H. Ren, L. Zheng, G. Wang, X. Gao, Z. Tan et al., Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 13(5), 5541–5548 (2019). https://doi.org/10.1021/acsnano.9b00395
- P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2021). https://doi.org/10.1002/adma.202002397
- F. Gao, X. Zhao, Z. Zhang, L. An, L. Xu et al., A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy 91, 106695 (2022). https://doi.org/10.1016/j.nanoen.2021.106695
- E. Roh, H.B. Lee, D.I. Kim, N.E. Lee, A solution-processable, omnidirectionally stretchable, and high-pressure-sensitive piezoresistive device. Adv. Mater. 29(42), 1703004 (2017). https://doi.org/10.1002/adma.201703004
- K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh et al., Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15(8), 5240–5247 (2015). https://doi.org/10.1021/acs.nanolett.5b01505
- K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13(8), 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
- K. Xia, C. Wang, M. Jian, Q. Wang, Y. Zhang, CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11, 1124–1134 (2018). https://doi.org/10.1007/s12274-017-1731-z
- L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
- L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
- Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang et al., Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8(40), 26458–26452 (2016). https://doi.org/10.1021/acsami.6b08172
- Y.A. Samad, Y. Li, A. Schiffer, S.M. Alhassan, K. Liao, Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications. Small 11(20), 2380–2385 (2015). https://doi.org/10.1002/smll.201403532
- Q. Guo, X. Zhang, F. Zhao, Q. Song, G. Su et al., Protein-inspired self-healable Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS Nano 14(3), 2788–2797 (2020). https://doi.org/10.1021/acsnano.9b09802
- H. An, T. Habib, S. Shah, H. Gao, M. Radovic et al., Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4(3), eaaq0118 (2018)
- S. Shi, B. Qian, X. Wu, H. Sun, H. Wang et al., Self-assembly of MXene-surfactants at liquid–liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58(50), 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
- H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1(11), e1500849 (2015). https://doi.org/10.1126/sciadv.1500849
- C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12(6), 5816–5852 (2018). https://doi.org/10.1021/acsnano.8b01747
- S. Gonçalves, J. Serrado-Nunes, J. Oliveira, N. Pereira, L. Hilliou et al., Environmentally friendly printable piezoelectric inks and their application in the development of all-printed touch screens. ACS Appl. Electron. Mater. 1(8), 1678–1687 (2019). https://doi.org/10.1021/acsaelm.9b00363
- S.I. Jeong, E.J. Lee, G.R. Hong, Y. Jo, S.M. Jung et al., Three-dimensional multistack-printed, self-powered flexible pressure sensor arrays: piezoelectric composites with chemically anchored heterogeneous interfaces. ACS Omega 5(4), 1956–1965 (2020). https://doi.org/10.1021/acsomega.9b03753
- I. Liashenko, J. Rosell-Llompart, A. Cabot, Ultrafast 3D printing with submicrometer features using electrostatic jet deflection. Nat. Commun. 11, 753 (2020). https://doi.org/10.1038/s41467-020-14557-w
- Y.K. Fuh, B.S. Wang, C.Y. Tsai, Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci. Rep. 7, 6759 (2017). https://doi.org/10.1038/s41598-017-07360-z
- S. Bodkhe, G. Turcot, F.P. Gosselin, D. Therriault, One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 9(24), 20833–20842 (2017). https://doi.org/10.1021/acsami.7b04095
- K. Kim, J. Choi, Y. Jeong, I. Cho, M. Kim et al., Highly sensitive and wearable liquid metal-based pressure sensor for health monitoring applications: integration of a 3D-printed microbump array with the microchannel. Adv. Healthc. Mater. 8(22), 1900978 (2019). https://doi.org/10.1002/adhm.201900978
- H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar et al., Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18, 234–241 (2019). https://doi.org/10.1038/s41563-018-0268-1
- E. MacDonald, R. Wicker, Multiprocess 3D printing for increasing component functionality. Science (2016). https://doi.org/10.1126/science.aaf2093
- T. Xia, R. Yu, J. Yuan, C. Yi, L. Ma et al., Ultrahigh sensitivity flexible pressure sensors based on 3D-printed hollow microstructures for electronic skins. Adv. Mater. Technol. 6(3), 2000984 (2021). https://doi.org/10.1002/admt.202000984
- A.M. Kamat, A.G.P. Kottapalli, 3D printed graphene-coated flexible lattice as piezoresistive pressure senesor. 21st Int. Conf. Solid-State Sens. Actuators Microsyst. Transducers, Orlando, FL, USA, 888–891 (2021). https://doi.org/10.1109/Transducers50396.2021.9495428
- J. Jia, G. Huang, J. Deng, K. Pan, Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale 11(10), 4258–4266 (2019). https://doi.org/10.1039/C8NR08503J
- Y. Song, H. Chen, X. Chen, H. Wu, H. Guo et al., All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy 53, 189–197 (2018). https://doi.org/10.1016/j.nanoen.2018.08.041
- H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30(18), 1706705 (2018). https://doi.org/10.1002/adma.201706705
- B. Wu, W. Zhang, N. Gao, M. Zhou, Y. Liang et al., Poly (ionic liquid)-based breath figure films: a new kind of honeycomb porous films with great extendable capability. Sci. Rep. 7, 13973 (2017). https://doi.org/10.1038/s41598-017-14563-x
- S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
- Z. Wu, B. Zhang, H. Zou, Z. Lin, G. Liu et al., Multifunctional sensor based on translational-rotary triboelectric nanogenerator. Adv. Energy Mater. 9(33), 1901124 (2019). https://doi.org/10.1002/aenm.201901124
- L.Y. Chen, B.C.K. Tee, A.L. Chortos, G. Schwartz, V. Tse et al., Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014). https://doi.org/10.1038/ncomms6028
- Y. Wang, L. Yin, Y. Bai, S. Liu, L. Wang et al., Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.abd0996
- L. Yang, Y. Liu, C.D.M. Filipe, D. Ljubic, Y. Luo et al., Development of a Highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyHIPE foam for pressure sensing. ACS Appl. Mater. Interfaces 11(4), 4318–4327 (2019). https://doi.org/10.1021/acsami.8b17020
- B. Cheng, P. Wu, Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15(5), 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
- C. Zhang, Y. Liu, B. Zhang, O. Yang, W. Yuan et al., Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 6(4), 1490–1499 (2021). https://doi.org/10.1021/acsenergylett.1c00368
- X.S. Meng, H.Y. Li, G. Zhu, Z.L. Wang, Fully enclosed bearing-structured self-powered rotation sensor based on electrification at rolling interfaces for multi-tasking motion measurement. Nano Energy 12, 606–611 (2015). https://doi.org/10.1016/j.nanoen.2015.01.015
- G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.1127647
- A.S. Chandrabhatla, I.J. Pomeraniec, A. Ksendzovsky, Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson’s disease motor symptoms. npj Digit. Med. 5(1), 1–18 (2022)
- J.H. Pu, X.J. Zha, L.S. Tang, L. Bai, R.Y. Bao et al., Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics. ACS Appl. Mater. Interfaces 10(47), 40880–40889 (2018). https://doi.org/10.1021/acsami.8b15809
- Y. Liu, X. Shi, S. Liu, H. Li, H. Zhang et al., Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor. Nano Energy 63, 103898 (2019). https://doi.org/10.1016/j.nanoen.2019.103898
- H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202113082
- C. Ma, D. Xu, P. Wang, Z. Lin, J. Zhou et al., Two-dimensional van der Waals thin film transistors as active matrix for spatially resolved pressure sensing. Nano Res. 14, 3395–3401 (2021). https://doi.org/10.1007/s12274-021-3717-0
- T. Yang, H. Xiang, C. Qin, Y. Liu, X. Zhao et al., Highly sensitive 1T-MoS2 pressure sensor with wide linearity based on hierarchical microstructures of leaf vein as spacer. Adv. Electron. Mater. 6(1), 1900916 (2020). https://doi.org/10.1002/aelm.201900916
References
C.M. Boutry, L. Beker, Y. Kaizawa, C. Vassos, H. Tran et al., Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019). https://doi.org/10.1038/s41551-018-0336-5
Y. Chu, J. Zhong, H. Liu, Y. Ma, N. Liu et al., Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 28(40), 1803413 (2018). https://doi.org/10.1002/adfm.201803413
L. Guan, A. Nilghaz, B. Su, L. Jiang, W. Cheng et al., Stretchable-fiber-confined wetting conductive liquids as wearable human health monitors. Adv. Funct. Mater. 26(25), 4511–4517 (2016). https://doi.org/10.1002/adfm.201600443
J. Kim, M. Lee, H.J. Shim, R. Ghaffari, H.R. Cho et al., Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014). https://doi.org/10.1038/ncomms6747
K. Kim, H.J. Kim, H. Zhang, W. Park, D. Meyer et al., All-printed stretchable corneal sensor on soft contact lenses for noninvasive and painless ocular electrodiagnosis. Nat. Commun. 12, 1544 (2021). https://doi.org/10.1038/s41467-021-21916-8
H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu et al., Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 29(40), 1703456 (2017). https://doi.org/10.1002/adma.201703456
X. Qu, X. Ma, B. Shi, H. Li, L. Zheng et al., Refreshable Braille display system based on triboelectric nanogenerator and dielectric elastomer. Adv. Funct. Mater. 31(5), 2006612 (2021). https://doi.org/10.1002/adfm.202006612
A. Chortos, Z. Bao, Skin-inspired electronic devices. Mater. Today 17(7), 321–331 (2014). https://doi.org/10.1016/j.mattod.2014.05.006
R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to humanoids. IEEE Trans. Robot. 26(1), 1–20 (2010). https://doi.org/10.1109/TRO.2009.2033627
K. Dong, X. Peng, Z.L. Wang, Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv. Mater. 32(5), 1902549 (2020). https://doi.org/10.1002/adma.201902549
Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu et al., Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018). https://doi.org/10.1038/s41467-017-02685-9
L.Q. Tao, H. Tian, Y. Liu, Z.Y. Ju, Y. Pang et al., An intelligent artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 8, 14579 (2017). https://doi.org/10.1038/ncomms14579
Y. Wan, Y. Wang, C.F. Guo, Recent progresses on flexible tactile sensors. Mater. Today Phys. 1, 61–73 (2017). https://doi.org/10.1016/j.mtphys.2017.06.002
X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan et al., Recent progress in electronic skin. Adv. Sci. 2(10), 1500169 (2015). https://doi.org/10.1002/advs.201500169
W. Wu, X. Wen, Z.L. Wang, Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340(6135), 952–957 (2013). https://doi.org/10.1126/science.1234855
Z. Zhang, Q. Shi, T. He, X. Guo, B. Dong et al., Artificial intelligence of toilet (AI-toilet) for an integrated health monitoring system (IHMS) using smart triboelectric pressure sensors and image sensor. Nano Energy 90, 106517 (2021). https://doi.org/10.1016/j.nanoen.2021.106517
X. Guo, T. He, Z. Zhang, A. Luo, F. Wang et al., Artificial intelligence-enabled caregiving walking stick powered by ultra-low-frequency human motion. ACS Nano 15(12), 19054–19069 (2021). https://doi.org/10.1021/acsnano.1c04464
Y.C. Huang, Y. Liu, C. Ma, H.C. Cheng, Q. He et al., Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 3, 59–69 (2020). https://doi.org/10.1038/s41928-019-0356-5
H. Li, S. Lv, Y. Fang, Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 13, 1244–1252 (2020). https://doi.org/10.1007/s12274-020-2628-9
J. Luo, W. Gao, Z.L. Wang, The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv. Mater. 33(17), 2004178 (2021). https://doi.org/10.1002/adma.202004178
J. Luo, Z. Wang, L. Xu, A.C. Wang, K. Han et al., Flexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analytics. Nat. Commun. 10, 5147 (2019). https://doi.org/10.1038/s41467-019-13166-6
Q. Shi, B. Dong, T. He, Z. Sun, J. Zhu et al., Progress in wearable electronics/photonics—moving toward the era of artificial intelligence and internet of things. InfoMat 2(6), 1131–1162 (2020). https://doi.org/10.1002/inf2.12122
L. Zhang, F. Xue, W. Du, C. Han, C. Zhang et al., Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 7, 1215–1223 (2014). https://doi.org/10.1007/s12274-014-0484-1
Z. Zhang, T. He, M. Zhu, Z. Sun, Q. Shi et al., Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications. Npj Flex. Electron. 4, 29 (2020). https://doi.org/10.1038/s41528-020-00092-7
M. Ha, S. Lim, J. Park, D.S. Um, Y. Lee et al., Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins. Adv. Funct. Mater. 25(19), 2841–2849 (2015). https://doi.org/10.1002/adfm.201500453
S. Jung, J.H. Kim, J. Kim, S. Choi, J. Lee et al., Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces. Adv. Mater. 26(28), 4825–4830 (2014). https://doi.org/10.1002/adma.201401364
L. Lv, P. Zhang, T. Xu, L. Qu, Ultrasensitive pressure sensor based on an ultralight sparkling graphene block. ACS Appl. Mater. Interfaces 9(27), 22885–22892 (2017). https://doi.org/10.1021/acsami.7b07153
L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
H. Cheng, B. Wang, K. Yang, C. Wang, A low-cost piezoresistive pressure sensor with a wide strain range – featuring polyurethane sponge@poly(vinyl alcohol)/sulfuric gel electrolyte. J. Mater. Chem. C 9(3), 1014–1024 (2021). https://doi.org/10.1039/D0TC01584A
L. Li, J. Zheng, J. Chen, Z. Luo, Y. Su et al., Flexible pressure sensors for biomedical applications: from ex vivo to in vivo. Adv. Mater. Interfaces 7(17), 2000743 (2020). https://doi.org/10.1002/admi.202000743
W. Fan, Q. He, K. Meng, X. Tan, Z. Zhou et al., Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Adv Sci (2020). https://doi.org/10.1126/sciadv.aay2840
S. Chen, N. Wu, L. Ma, S. Lin, F. Yuan et al., Noncontact heartbeat and respiration monitoring based on a hollow microstructured self-powered pressure sensor. ACS Appl. Mater. Interfaces 10(4), 3660–3667 (2018). https://doi.org/10.1021/acsami.7b17723
L. Giancardo, A. Sánchez-Ferro, T. Arroyo-Gallego, I. Butterworth, C.S. Mendoza et al., Computer keyboard interaction as an indicator of early Parkinson’s disease. Sci. Rep. 6, 34468 (2016). https://doi.org/10.1038/srep34468
Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett. 19(2), 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
Y. Guo, Z. Guo, M. Zhong, P. Wan, W. Zhang et al., A flexible wearable pressure sensor with bioinspired microcrack and interlocking for full-range human-machine interfacing. Small 14(44), 1803018 (2018). https://doi.org/10.1002/smll.201803018
M. Amit, L. Chukoskie, A.J. Skalsky, H. Garudadri, T.N. Ng, Flexible pressure sensors for objective assessment of motor disorders. Adv. Funct. Mater. 30(20), 1905241 (2020). https://doi.org/10.1002/adfm.201905241
Y. Ding, J. Yang, C.R. Tolle, Z. Zhu, Flexible and compressible PEDOT:PSS@melamine conductive sponge prepared via one-step dip coating as piezoresistive pressure sensor for human motion detection. ACS Appl. Mater. Interfaces 10(18), 16077–16086 (2018). https://doi.org/10.1021/acsami.8b00457
M. Ha, S. Lim, H. Ko, Wearable and flexible sensors for user-interactive health-monitoring devices. J. Mater. Chem. B 6(24), 4043–4064 (2018). https://doi.org/10.1039/C8TB01063C
T. Yang, W. Deng, X. Chu, X. Wang, Y. Hu et al., Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics. ACS Nano 15(7), 11555–11563 (2021). https://doi.org/10.1021/acsnano.1c01606
C. Bartolozzi, L. Natale, F. Nori, G. Metta, Robots with a sense of touch. Nat. Mater. 15, 921–925 (2016). https://doi.org/10.1038/nmat4731
X. Wang, K.H. Chan, Y. Cheng, T. Ding, T. Li et al., Somatosensory, light-driven, thin-film robots capable of integrated perception and motility. Adv. Mater. 32(21), 2000351 (2020). https://doi.org/10.1002/adma.202000351
J. Zhang, D. Sun, B. Zhang, Q. Sun, Y. Zhang et al., Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics. Mater. Horiz. 9(3), 1045–1056 (2022). https://doi.org/10.1039/D1MH01810H
W. Yang, J. Chen, X. Wen, Q. Jing, J. Yang et al., Triboelectrification based motion sensor for human-machine interfacing. ACS Appl. Mater. Interfaces 6(10), 7479–7484 (2014). https://doi.org/10.1021/am500864t
J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai et al., Personalized keystroke dynamics for self-powered human–machine interfacing. ACS Nano 9(1), 105–116 (2015). https://doi.org/10.1021/nn506832w
F.M. Kadhim, S.F. Awad, M.S.A. Tahir, Design and manufacturing of portable pressure sensor for measuring the interface pressure between the body and (orthosis or socket prosthesis). J. Biomim. Biomater. Biomed. Eng. 45, 12–21 (2020). https://doi.org/10.4028/www.scientific.net/JBBBE.45.12
D. Sengupta, J. Romano, A.G.P. Kottapalli, Electrospun bundled carbon nanofibers for skin-inspired tactile sensing, proprioception and gesture tracking applications. Npj Flex. Electron. 5, 29 (2021). https://doi.org/10.1038/s41528-021-00126-8
A. Chortos, J. Liu, Z. Bao, Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016). https://doi.org/10.1038/nmat4671
B.W. An, S. Heo, S. Ji, F. Bien, J.U. Park, Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9, 2458 (2018). https://doi.org/10.1038/s41467-018-04906-1
K. Maity, S. Garain, K. Henkel, D. Schmeißer, D. Mandal, Self-powered human-health monitoring through aligned PVDF nanofibers interfaced skin-interactive piezoelectric sensor. ACS Appl. Polym. Mater. 2(2), 862–878 (2020). https://doi.org/10.1021/acsapm.9b00846
S. Pyo, J. Lee, W. Kim, E. Jo, J. Kim, Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv. Funct. Mater. 29(35), 1902484 (2019). https://doi.org/10.1002/adfm.201902484
F. Peng, D. Liu, W. Zhao, G. Zheng, Y. Ji et al., Facile fabrication of triboelectric nanogenerator based on low-cost thermoplastic polymeric fabrics for large-area energy harvesting and self-powered sensing. Nano Energy 65, 104068 (2019). https://doi.org/10.1016/j.nanoen.2019.104068
F. Wen, Z. Sun, T. He, Q. Shi, M. Zhu et al., Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv. Sci. 7(14), 2000261 (2020). https://doi.org/10.1002/advs.202000261
Q. Liu, X.X. Wang, W.Z. Song, H.J. Qiu, J. Zhang et al., Wireless single-electrode self-powered piezoelectric sensor for monitoring. ACS Appl. Mater. Interfaces 12(7), 8288–8295 (2020). https://doi.org/10.1021/acsami.9b21392
K.K. Kim, I. Ha, M. Kim, J. Choi, P. Won et al., A deep-learned skin sensor decoding the epicentral human motions. Nat. Commun. 11, 2149 (2020). https://doi.org/10.1038/s41467-020-16040-y
Z. Ballard, C. Brown, A.M. Madni, A. Ozcan, Machine learning and computation-enabled intelligent sensor design. Nat. Mach. Intell. 3, 556–565 (2021). https://doi.org/10.1038/s42256-021-00360-9
H. Yang, J. Li, K.Z. Lim, C. Pan, T.V. Truong et al., Automatic strain sensor design via active learning and data augmentation for soft machines. Nat. Mach. Intell. 4, 84–94 (2022). https://doi.org/10.1038/s42256-021-00434-8
S. Sundaram, P. Kellnhofer, Y. Li, J.Y. Zhu, A. Torralba et al., Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019). https://doi.org/10.1038/s41586-019-1234-z
Y. Luo, Y. Li, P. Sharma, W. Shou, K. Wu et al., Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4, 193–201 (2021). https://doi.org/10.1038/s41928-021-00558-0
Y. Lu, H. Tian, J. Cheng, F. Zhu, B. Liu et al., Decoding lip language using triboelectric sensors with deep learning. Nat. Commun. 13, 1401 (2022). https://doi.org/10.1038/s41467-022-29083-0
C. Krittanawong, A.J. Rogers, K.W. Johnson, Z. Wang, M.P. Turakhia et al., Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat. Rev. Cardiol. 18, 75–91 (2021). https://doi.org/10.1038/s41569-020-00445-9
Y. Huang, Y. Chen, X. Fan, N. Luo, S. Zhou et al., Wood derived composites for high sensitivity and wide linear-range pressure sensing. Small 14(31), 1801520 (2018). https://doi.org/10.1002/smll.201801520
Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao et al., 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 12(4), 3209–3216 (2018). https://doi.org/10.1021/acsnano.7b06909
Y. Zhang, T.H. Chang, L. Jing, K. Li, H. Yang et al., Heterogeneous, 3D architecturing of 2D titanium carbide (MXene) for microdroplet manipulation and voice recognition. ACS Appl. Mater. Interfaces 12(7), 8392–8402 (2020). https://doi.org/10.1021/acsami.9b18879
H. Kou, L. Zhang, Q. Tan, G. Liu, H. Dong et al., Wireless wide-range pressure sensor based on graphene/PDMS sponge for tactile monitoring. Sci. Rep. 9, 3916 (2019). https://doi.org/10.1038/s41598-019-40828-8
J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo et al., Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27(15), 2433–2439 (2015). https://doi.org/10.1002/adma.201500009
X. Shuai, P. Zhu, W. Zeng, Y. Hu, X. Liang et al., Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl. Mater. Interfaces 9(31), 26314–26324 (2017). https://doi.org/10.1021/acsami.7b05753
S. Liu, L. Wang, Z. Wang, Y. Cai, X. Feng et al., Double-channel piezotronic transistors for highly sensitive pressure sensing. ACS Nano 12(2), 1732–1738 (2018). https://doi.org/10.1021/acsnano.7b08447
S.H. Shin, S. Ji, S. Choi, K.H. Pyo, B.W. An et al., Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges. Nat. Commun. 8, 14950 (2017). https://doi.org/10.1038/ncomms14950
J. Chun, K.Y. Lee, C.Y. Kang, M.W. Kim, S.W. Kim et al., Embossed hollow hemisphere-based piezoelectric nanogenerator and highly responsive pressure sensor. Adv. Funct. Mater. 24(14), 2038–2043 (2014). https://doi.org/10.1002/adfm.201302962
H. Chen, Z. Su, Y. Song, X. Cheng, X. Chen et al., Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv. Funct. Mater. 27(3), 1604434 (2017). https://doi.org/10.1002/adfm.201604434
C.K. Jeong, K.M. Baek, S. Niu, T.W. Nam, Y.H. Hur et al., Topographically-designed triboelectric nanogenerator via block copolymer self-assembly. Nano Lett. 14(12), 7031–7038 (2014). https://doi.org/10.1021/nl503402c
Y. Tang, H. Zhou, X. Sun, N. Diao, J. Wang et al., Triboelectric touch-free screen sensor for noncontact gesture recognizing. Adv. Funct. Mater. 30(5), 1907893 (2020). https://doi.org/10.1002/adfm.201907893
K. Venugopal, P. Panchatcharam, A. Chandrasekhar, V. Shanmugasundaram, Comprehensive review on triboelectric nanogenerator based wrist pulse measurement: sensor fabrication and diagnosis of arterial pressure. ACS Sens. 6(5), 1681–1694 (2021). https://doi.org/10.1021/acssensors.0c02324
B. Yin, X. Liu, H. Gao, T. Fu, J. Yao, Bioinspired and bristled microps for ultrasensitive pressure and strain sensors. Nat. Commun. 9, 5161 (2018). https://doi.org/10.1038/s41467-018-07672-2
N. Bai, L. Wang, Q. Wang, J. Deng, Y. Wang et al., Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 11, 209 (2020). https://doi.org/10.1038/s41467-019-14054-9
S. Yu, L. Li, J. Wang, E. Liu, J. Zhao et al., Light-boosting highly sensitive pressure sensors based on bioinspired multiscale surface structures. Adv. Funct. Mater. 30(16), 1907091 (2020). https://doi.org/10.1002/adfm.201907091
X. Shi, Y. Zhu, X. Fan, H.A. Wu, P. Wu et al., An auxetic cellular structure as a universal design for enhanced piezoresistive sensitivity. Matter 5(5), 1547–1562 (2022). https://doi.org/10.1016/j.matt.2022.02.022
X. Wang, L. Tao, M. Yuan, Z. Wang, J. Yu et al., Sea urchin-like microstructure pressure sensors with an ultra-broad range and high sensitivity. Nat. Commun. 12, 1776 (2021). https://doi.org/10.1038/s41467-021-21958-y
Q. Wu, Y. Qiao, R. Guo, S. Naveed, T. Hirtz et al., Triode-mimicking graphene pressure sensor with positive resistance variation for physiology and motion monitoring. ACS Nano 14(8), 10104–10114 (2020). https://doi.org/10.1021/acsnano.0c03294
J.J. Lee, S. Gandla, B. Lim, S. Kang, S. Kim et al., Alcohol-based highly conductive polymer for conformal nanocoatings on hydrophobic surfaces toward a highly sensitive and stable pressure sensor. NPG Asia Mater. 12, 65 (2020). https://doi.org/10.1038/s41427-020-00238-z
Y. Zhang, J. Yang, X. Hou, G. Li, L. Wang et al., Highly stable flexible pressure sensors with a quasi-homogeneous composition and interlinked interfaces. Nat. Commun. 13, 1317 (2022). https://doi.org/10.1038/s41467-022-29093-y
L. Pan, A. Chortos, G. Yu, Y. Wang, S. Isaacson et al., An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014). https://doi.org/10.1038/ncomms4002
L. Shi, Z. Li, M. Chen, Y. Qin, Y. Jiang et al., Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat. Commun. 11, 3529 (2020). https://doi.org/10.1038/s41467-020-17298-y
J. Oh, J. Kim, Y. Kim, H.B. Choi, J.C. Yang et al., Highly uniform and low hysteresis piezoresistive pressure sensors based on chemical grafting of polypyrrole on elastomer template with uniform pore size. Small 15(33), 1901744 (2019). https://doi.org/10.1002/smll.201901744
M. Cao, M. Wang, L. Li, H. Qiu, M.A. Padhiar et al., Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy 50, 528–535 (2018). https://doi.org/10.1016/j.nanoen.2018.05.038
J. Xiao, Y. Tan, Y. Song, Q. Zheng, A flyweight and superelastic graphene aerogel as a high-capacity adsorbent and highly sensitive pressure sensor. J. Mater. Chem. A 6(19), 9074–9080 (2018). https://doi.org/10.1039/C7TA11348J
H.B. Yao, J. Ge, C.F. Wang, X. Wang, W. Hu et al., A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25(46), 6692–6698 (2013). https://doi.org/10.1002/adma.201303041
F.R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12(6), 3109–3114 (2012). https://doi.org/10.1021/nl300988z
H. Guo, Y.J. Tan, G. Chen, Z. Wang, G.J. Susanto et al., Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins. Nat. Commun. 11, 5747 (2020). https://doi.org/10.1038/s41467-020-19531-0
P. Lu, L. Wang, P. Zhu, J. Huang, Y. Wang et al., Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes. Sci. Bull. 66(11), 1091–1100 (2021). https://doi.org/10.1016/j.scib.2021.02.019
Y. Xiong, Y. Shen, L. Tian, Y. Hu, P. Zhu et al., Ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 70, 104436 (2020). https://doi.org/10.1016/j.nanoen.2019.104436
L. Yuan, Z. Wang, H. Li, Y. Huang, S. Wang et al., Synergistic resistance modulation toward ultrahighly sensitive piezoresistive pressure sensors. Adv. Mater. Technol. 5(4), 1901084 (2020). https://doi.org/10.1002/admt.201901084
K.K. Kim, I. Ha, P. Won, D.G. Seo, K.J. Cho et al., Transparent wearable three-dimensional touch by self-generated multiscale structure. Nat. Commun. 10, 2582 (2019). https://doi.org/10.1038/s41467-019-10736-6
Ü.Ö. Akkuş, E. Balcı, S. Berber, Mo2TiC2O2 MXene-based nanoscale pressure sensor. Phys. E Low Dimens. Syst. Nanostruct. 116, 113762 (2020). https://doi.org/10.1016/j.physe.2019.113762
Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017). https://doi.org/10.1038/s41467-017-01136-9
C.B. Huang, S. Witomska, A. Aliprandi, M.A. Stoeckel, M. Bonini et al., Molecule-graphene hybrid materials with tunable mechanoresponse: highly sensitive pressure sensors for health monitoring. Adv. Mater. 31(1), 1804600 (2019). https://doi.org/10.1002/adma.201804600
Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian et al., Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 30(11), 1909603 (2020). https://doi.org/10.1002/adfm.201909603
D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin et al., Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature 516, 222–226 (2014). https://doi.org/10.1038/nature14002
Y.W. Choi, D. Kang, P.V. Pikhitsa, T. Lee, S.M. Kim et al., Ultra-sensitive pressure sensor based on guided straight mechanical cracks. Sci. Rep. 7, 40116 (2017). https://doi.org/10.1038/srep40116
X. Shi, S. Liu, Y. Sun, J. Liang, Y. Chen, Lowering internal friction of 0D–1D-2D ternary nanocomposite-based strain sensor by fullerene to boost the sensing performance. Adv. Funct. Mater. 28(22), 1800850 (2018). https://doi.org/10.1002/adfm.201800850
T.S.D. Le, J. An, Y. Huang, Q. Vo, J. Boonruangkan et al., Ultrasensitive anti-interference voice recognition by bio-inspired skin-attachable self-cleaning acoustic sensors. ACS Nano 13(11), 13293–13303 (2019). https://doi.org/10.1021/acsnano.9b06354
Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z. Ju et al., Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12(3), 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613
X. Tang, W. Yang, S. Yin, G. Tai, M. Su et al., Controllable graphene wrinkle for a high-performance flexible pressure sensor. ACS Appl. Mater. Interfaces 13(17), 20448–20458 (2021). https://doi.org/10.1021/acsami.0c22784
X. Shi, X. Fan, Y. Zhu, Y. Liu, P. Wu et al., Pushing detectability and sensitivity for subtle force to new limits with shrinkable nanochannel structured aerogel. Nat. Commun. 13, 1119 (2022). https://doi.org/10.1038/s41467-022-28760-4
C. Wang, Y. Ding, Y. Yuan, A. Cao, X. He et al., Multifunctional, highly flexible, free-standing 3D polypyrrole foam. Small 12(30), 4070–4076 (2016). https://doi.org/10.1002/smll.201601905
H. Wang, S. Li, Y. Wang, H. Wang, X. Shen et al., Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 32(11), 1908214 (2020). https://doi.org/10.1002/adma.201908214
Y. Lee, J. Park, S. Cho, Y.E. Shin, H. Lee et al., Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 12(4), 4045–4054 (2018). https://doi.org/10.1021/acsnano.8b01805
Q. Sun, X. Zhao, Y. Zhou, C. Yeung, W. Wu et al., Fingertip-skin-inspired highly sensitive and multifunctional sensor with hierarchically structured conductive graphite/polydimethylsiloxane foams. Adv. Funct. Mater. 29(18), 1808829 (2019). https://doi.org/10.1002/adfm.201808829
M. Wang, Y. Qiu, J. Jia, C. Wang, J. Deng et al., Wavelength-gradient graphene films for pressure-sensitive sensors. Adv. Mater. Technol. 4(1), 1800363 (2019). https://doi.org/10.1002/admt.201800363
S. Chen, Y. Song, F. Xu, Flexible and highly sensitive resistive pressure sensor based on carbonized crepe paper with corrugated structure. ACS Appl. Mater. Interfaces 10(40), 34646–34654 (2018). https://doi.org/10.1021/acsami.8b13535
J. Huang, H. Wang, Z. Li, X. Wu, J. Wang et al., Improvement of piezoresistive sensing behavior of graphene sponge by polyaniline nanoarrays. J. Mater. Chem. C 7(24), 7386–7394 (2019). https://doi.org/10.1039/C9TC01659G
R. Qin, Y. Liu, F. Tao, C. Li, W. Cao et al., Protein-bound freestanding 2D metal film for stealth information transmission. Adv. Mater. 31(5), 1803377 (2018). https://doi.org/10.1002/adma.201803377
M. Zhu, Y. Yue, Y. Cheng, Y. Zhang, J. Su et al., Hollow MXene sphere/reduced graphene aerogel composites for piezoresistive sensor with ultra-high sensitivity. Adv. Electron. Mater. 6(2), 1901064 (2020). https://doi.org/10.1002/aelm.201901064
Y. Si, X. Wang, C. Yan, L. Yang, J. Yu et al., Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28(43), 9512–9518 (2016). https://doi.org/10.1002/adma.201603143
H. Liu, H. Xiang, Z. Li, Q. Meng, P. Li et al., Flexible and degradable multimodal sensor fabricated by transferring laser-induced porous carbon on starch film. ACS Sustain. Chem. Eng. 8(1), 527–533 (2020). https://doi.org/10.1021/acssuschemeng.9b05968
S.Z. Guo, K. Qiu, F. Meng, S.H. Park, M.C. McAlpine, 3D printed stretchable tactile sensors. Adv. Mater. 29(27), 1701218 (2017). https://doi.org/10.1002/adma.201701218
M. Yin, Y. Zhang, Z. Yin, Q. Zheng, A.P. Zhang, Micropatterned elastic gold-nanowire/polyacrylamide composite hydrogels for wearable pressure sensors. Adv. Mater. Technol. 3(7), 1800051 (2018). https://doi.org/10.1002/admt.201800051
C. Hou, Z. Xu, W. Qiu, R. Wu, Y. Wang et al., A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 15(11), 1805084 (2019). https://doi.org/10.1002/smll.201805084
W. Asghar, F. Li, Y. Zhou, Y. Wu, Z. Yu et al., Piezocapacitive flexible e-skin pressure sensors having magnetically grown microstructures. Adv. Mater. Technol. 5(2), 1900934 (2020). https://doi.org/10.1002/admt.201900934
K. Pang, X. Song, Z. Xu, X. Liu, Y. Liu et al., Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors. Adv Sci (2020). https://doi.org/10.1126/sciadv.abd4045
J.C. Yang, J.O. Kim, J. Oh, S.Y. Kwon, J.Y. Sim et al., Microstructured porous pyramid-based ultrahigh sensitive pressure sensor insensitive to strain and temperature. ACS Appl. Mater. Interfaces 11(21), 19472–19480 (2019). https://doi.org/10.1021/acsami.9b03261
M.S. Rasel, P. Maharjan, M. Salauddin, M.T. Rahman, H.O. Cho et al., An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 49, 603–613 (2018). https://doi.org/10.1016/j.nanoen.2018.04.060
M. Cao, J. Su, S. Fan, H. Qiu, D. Su et al., Wearable piezoresistive pressure sensors based on 3D graphene. Chem. Eng. J. 406, 126777 (2021). https://doi.org/10.1016/j.cej.2020.126777
P. Miao, J. Wang, C. Zhang, M. Sun, S. Cheng et al., Graphene nanostructure-based tactile sensors for electronic skin applications. Nano-Micro Lett. 11, 71 (2019). https://doi.org/10.1007/s40820-019-0302-0
H. Pan, T. Lee, Recent progress in development of wearable pressure sensors derived from biological materials. Adv. Healthc. Mater. 10(17), 2100460 (2021). https://doi.org/10.1002/adhm.202100460
Y. Ding, T. Xu, O. Onyilagha, H. Fong, Z. Zhu, Recent advances in flexible and wearable pressure sensors based on piezoresistive 3D monolithic conductive sponges. ACS Appl. Mater. Interfaces 11(7), 6685–6704 (2019). https://doi.org/10.1021/acsami.8b20929
J. He, Y. Zhang, R. Zhou, L. Meng, T. Chen et al., Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. J. Materiom. 6(1), 86–101 (2020). https://doi.org/10.1016/j.jmat.2020.01.009
F. He, X. You, W. Wang, T. Bai, G. Xue et al., Recent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applications. Small Methods 5, 2001041 (2021). https://doi.org/10.1002/smtd.202001041
S.R.A. Ruth, V.R. Feig, H. Tran, Z. Bao, Microengineering pressure sensor active layers for improved performance. Adv. Funct. Mater. 30(39), 2003491 (2020). https://doi.org/10.1002/adfm.202003491
T. Li, L. Chen, X. Yang, X. Chen, Z. Zhang et al., A flexible pressure sensor based on an MXene–textile network structure. J. Mater. Chem. C 7(4), 1022–1027 (2019). https://doi.org/10.1039/C8TC04893B
H.M. So, J.W. Sim, J. Kwon, J. Yun, S. Baik et al., Carbon nanotube based pressure sensor for flexible electronics. Mater. Res. Bull. 48(12), 5036–5026 (2013). https://doi.org/10.1016/j.materresbull.2013.07.022
H. Tian, Y. Shu, X.F. Wang, M.A. Mohammad, Z. Bie et al., A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci. Rep. 5, 8603 (2015). https://doi.org/10.1038/srep08603
H. Liu, H. Xiang, Y. Wang, Z. Li, L. Qian et al., A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper. ACS Appl. Mater. Interfaces 11(43), 40613–40619 (2019). https://doi.org/10.1021/acsami.9b13349
Q. Wang, M. Jian, C. Wang, Y. Zhang, Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 27(9), 1605657 (2017). https://doi.org/10.1002/adfm.201605657
H. Jeong, Y. Noh, S.H. Ko, D. Lee, Flexible resistive pressure sensor with silver nanowire networks embedded in polymer using natural formation of air gap. Compos. Sci. Technol. 174, 50–57 (2019). https://doi.org/10.1016/j.compscitech.2019.01.028
D. Kim, J. Bang, P. Won, Y. Kim, J. Jung et al., Biocompatible cost-effective electrophysiological monitoring with oxidation-free Cu–Au core–shell nanowire. Adv. Mater. Technol. 5(12), 2000661 (2020). https://doi.org/10.1002/admt.202000661
K. McLellan, Y. Yoon, S.N. Leung, S.H. Ko, Recent progress in transparent conductors based on nanomaterials: advancements and challenges. Adv. Mater. Technol. 5(4), 1900939 (2020). https://doi.org/10.1002/admt.201900939
S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang et al., A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). https://doi.org/10.1038/ncomms4132
M. Chen, W. Luo, Z. Xu, X. Zhang, B. Xie et al., An ultrahigh resolution pressure sensor based on percolative metal nanop arrays. Nat. Commun. 10, 4024 (2019). https://doi.org/10.1038/s41467-019-12030-x
C. Pang, G.Y. Lee, T. Kim, S.M. Kim, H.N. Kim et al., A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795–801 (2012). https://doi.org/10.1038/nmat3380
L. Bi, Z. Yang, L. Chen, Z. Wu, C. Ye, Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins. J. Mater. Chem. A 8(38), 20030–20036 (2020). https://doi.org/10.1039/D0TA07044K
X. Xu, R. Wang, P. Nie, Y. Cheng, X. Lu et al., Copper nanowire-based aerogel with tunable pore structure and its application as flexible pressure sensor. ACS Appl. Mater. Interfaces 9(16), 14273–14280 (2017). https://doi.org/10.1021/acsami.7b02087
Y. Yoon, P.L. Truong, D. Lee, S.H. Ko, Metal-oxide nanomaterials synthesis and applications in flexible and wearable sensors. ACS Nanosci. Au 2(2), 64–92 (2022). https://doi.org/10.1021/acsnanoscienceau.1c00029
P. Won, S. Jeong, C. Majidi, S.H. Ko, Recent advances in liquid-metal-based wearable electronics and materials. IScience 24(7), 102698 (2021). https://doi.org/10.1016/j.isci.2021.102698
J. Oh, S. Kim, S. Lee, S. Jeong, S.H. Ko et al., A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv. Funct. Mater. 31(39), 2007772 (2021). https://doi.org/10.1002/adfm.202007772
K. Zhou, C. Zhang, Z. Xiong, H. Chen, T. Li et al., Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor. Adv. Funct. Mater. 30(38), 2001296 (2020). https://doi.org/10.1002/adfm.202001296
M. Chen, X. Hu, K. Li, J. Sun, Z. Liu et al., Self-assembly of dendritic-lamellar MXene/carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon 164, 111–120 (2020). https://doi.org/10.1016/j.carbon.2020.03.042
J. Park, J. Kim, J. Hong, H. Lee, Y. Lee et al., Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins. NPG Asia Mater. 10, 163–176 (2018). https://doi.org/10.1038/s41427-018-0031-8
L. Sheng, Y. Liang, L. Jiang, Q. Wang, T. Wei et al., Bubble-decorated honeycomb-like graphene film as ultrahigh sensitivity pressure sensors. Adv. Funct. Mater. 25(41), 6545–6551 (2015). https://doi.org/10.1002/adfm.201502960
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
J. He, P. Xiao, W. Lu, J. Shi, L. Zhang et al., A universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy 59, 422–433 (2019). https://doi.org/10.1016/j.nanoen.2019.02.036
B.U. Hwang, A. Zabeeb, T.Q. Trung, L. Wen, J.D. Lee et al., A transparent stretchable sensor for distinguishable detection of touch and pressure by capacitive and piezoresistive signal transduction. NPG Asia Mater. 11, 23 (2019). https://doi.org/10.1038/s41427-019-0126-x
Y. Luo, J. Shao, S. Chen, X. Chen, H. Tian et al., Flexible capacitive pressure sensor enhanced by tilted micropillar arrays. ACS Appl. Mater. Interfaces 11(19), 17796–17803 (2019). https://doi.org/10.1021/acsami.9b03718
Y. Cheng, R. Wang, H. Zhai, J. Sun, Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. Nanoscale 9(11), 3834–3842 (2017). https://doi.org/10.1039/C7NR00121E
A. Chhetry, J. Kim, H. Yoon, J.Y. Park, Ultrasensitive interfacial capacitive pressure sensor based on a randomly distributed microstructured iontronic film for wearable applications. ACS Appl. Mater. Interfaces 11(3), 3438–3449 (2019). https://doi.org/10.1021/acsami.8b17765
G.Y. Bae, J.T. Han, G. Lee, S. Lee, S.W. Kim et al., Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30(43), 1803388 (2018). https://doi.org/10.1002/adma.201803388
L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang et al., Highly sensitive pseudocapacitive iontronic pressure sensor with broad sensing range. Nano-Micro Lett. 13, 140 (2021). https://doi.org/10.1007/s40820-021-00664-w
S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12(19), 22212–22224 (2020). https://doi.org/10.1021/acsami.0c05819
M.S. Sarwar, Y. Dobashi, C. Preston, J.K.M. Wyss, S. Mirabbasi et al., Bend, stretch, and touch: locating a finger on an actively deformed transparent sensor array. Sci. Adv. 3(3), e1602200 (2017). https://doi.org/10.1126/sciadv.1602200
H. Jin, S. Jung, J. Kim, S. Heo, J. Lim et al., Stretchable dual-capacitor multi-sensor for touch-curvature-pressure-strain sensing. Sci. Rep. 7, 10854 (2017). https://doi.org/10.1038/s41598-017-11217-w
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
J. Kim, T.N. Ng, W.S. Kim, Highly sensitive tactile sensors integrated with organic transistors. Appl. Phys. Lett. 101, 103308 (2012). https://doi.org/10.1063/1.4751354
S.C.B. Mannsfeld, B.C.K. Tee, R.M. Stoltenberg, C.V.H.H. Chen, S. Barman et al., Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010). https://doi.org/10.1038/nmat2834
G. Schwartz, B.C.K. Tee, J. Mei, A.L. Appleton, D.H. Kim et al., Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). https://doi.org/10.1038/ncomms2832
Z.W. Yang, Y. Pang, L. Zhang, C. Lu, J. Chen et al., Tribotronic transistor array as an active tactile sensing system. ACS Nano 10(12), 10912–10920 (2016). https://doi.org/10.1021/acsnano.6b05507
D. Thuau, M. Abbas, G. Wantz, L. Hirsch, I. Dufour et al., Piezoelectric polymer gated OFET: cutting-edge electro-mechanical transducer for organic MEMS-based sensors. Sci. Rep. 6, 38672 (2016). https://doi.org/10.1038/srep38672
F. Xue, L. Chen, L. Wang, Y. Pang, J. Chen et al., MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 26(13), 2104–2109 (2016). https://doi.org/10.1002/adfm.201504485
L. Nela, J. Tang, Q. Cao, G. Tulevski, S.J. Han, Large-area high-performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 18(3), 2054–2059 (2018). https://doi.org/10.1021/acs.nanolett.8b00063
L. Dileena, S.D.B. Sreeja, C.O. Sreekala, A comparative study on piezoelectric and piezoresistive pressure sensor using COMSOL simulation. Mater. Today Proc. 46, 3121–3126 (2021). https://doi.org/10.1016/j.matpr.2021.02.688
Y. Qi, M.C. McAlpine, Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3(9), 1275–1285 (2010). https://doi.org/10.1039/c0ee00137f
A.E. Kacimi, E. Pauliac-Vaujour, J. Eymery, Flexible capacitive piezoelectric sensor with vertically aligned ultralong GaN wires. ACS Appl. Mater. Interfaces 10(5), 4794–4800 (2018). https://doi.org/10.1021/acsami.7b15649
P. Zhu, Y. Chen, J. Shi, Piezocatalytic tumor therapy by ultrasound-triggered and BaTiO3 -mediated piezoelectricity. Adv. Mater. 32(29), 2001976 (2020). https://doi.org/10.1002/adma.202001976
T. Sun, F. Tasnim, R.T. McIntosh, N. Amiri, D. Solav et al., Decoding of facial strains via conformable piezoelectric interfaces. Nat. Biomed. Eng. 4, 954–972 (2020). https://doi.org/10.1038/s41551-020-00612-w
T. Huang, S. Yang, P. He, J. Sun, S. Zhang et al., Phase-separation-induced PVDF/graphene coating on fabrics toward flexible piezoelectric sensors. ACS Appl. Mater. Interfaces 10(36), 30732–30740 (2018). https://doi.org/10.1021/acsami.8b10552
J.H. Lee, H.J. Yoon, T.Y. Kim, M.K. Gupta, J.H. Lee et al., Micropatterned P(VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors. Adv. Funct. Mater. 25(21), 3203–3209 (2015). https://doi.org/10.1002/adfm.201500856
J. Zhu, Y. Zhang, G. Zheng, Y. Ji, K. Dai et al., Microribbon structured polyvinylidene fluoride with high-performance piezoelectricity for sensing application. ACS Appl. Polym. Mater. 3(5), 2411–2419 (2021). https://doi.org/10.1021/acsapm.1c00012
Q. Zhong, J. Zhong, X. Cheng, X. Yao, B. Wang et al., Paper-based active tactile sensor array. Adv. Mater. 27(44), 7130–7136 (2015). https://doi.org/10.1002/adma.201502470
X. Mo, H. Zhou, W. Li, Z. Xu, J. Duan et al., Piezoelectrets for wearable energy harvesters and sensors. Nano Energy 65, 104033 (2019). https://doi.org/10.1016/j.nanoen.2019.104033
S. Maiti, S.K. Karan, J. Lee, A.K. Mishra, B.B. Khatua et al., Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 42, 282–293 (2017). https://doi.org/10.1016/j.nanoen.2017.10.041
S.K. Karan, S. Maiti, O. Kwon, S. Paria, A. Maitra et al., Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator. Nano Energy 49, 655–666 (2018). https://doi.org/10.1016/j.nanoen.2018.05.014
S.K. Karan, S. Maiti, S. Paria, A. Maitra, S.K. Si et al., A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Mater. Today Energy 9, 114–125 (2018). https://doi.org/10.1016/j.mtener.2018.05.006
H. Yuan, P. Han, K. Tao, S. Liu, E. Gazit et al., Piezoelectric peptide and metabolite materials. Research. (2019). https://doi.org/10.34133/2019/9025939
V. Nguyen, R. Zhu, K. Jenkins, R. Yang, Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 7, 13566 (2016). https://doi.org/10.1038/ncomms13566
S. Guerin, A. Stapleton, D. Chovan, R. Mouras, M. Gleeson et al., Control of piezoelectricity in amino acids by supramolecular packing. Nat. Mater. 17, 180–186 (2018). https://doi.org/10.1038/nmat5045
K. Tao, W. Hu, B. Xue, D. Chovan, N. Brown et al., Bioinspired stable and photoluminescent assemblies for power generation. Adv. Mater. 31(12), 1807481 (2019). https://doi.org/10.1002/adma.201807481
Y. Qiu, Y. Tian, S. Sun, J. Hu, Y. Wang et al., Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 78, 105337 (2020). https://doi.org/10.1016/j.nanoen.2020.105337
F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
Z.L. Wang, On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20(2), 74–82 (2017). https://doi.org/10.1016/j.mattod.2016.12.001
S. Wang, L. Lin, Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11, 436–462 (2015). https://doi.org/10.1016/j.nanoen.2014.10.034
Z. Zhang, W. Gong, Z. Bai, D. Wang, Y. Xu et al., Oxygen-rich polymers as highly effective positive tribomaterials for mechanical energy harvesting. ACS Nano 13(11), 12787–12797 (2019). https://doi.org/10.1021/acsnano.9b04911
T. Jin, Z. Sun, L. Li, Q. Zhang, M. Zhu et al., Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 11, 5381 (2020). https://doi.org/10.1038/s41467-020-19059-3
K. Shi, H. Zou, B. Sun, P. Jiang, J. He et al., Dielectric modulated cellulose paper/PDMS-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv. Funct. Mater. 30(4), 1904536 (2020). https://doi.org/10.1002/adfm.201904536
K. Dong, Z. Wu, J. Deng, A.C. Wang, H. Zou et al., A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 30(43), 1804944 (2018). https://doi.org/10.1002/adma.201804944
P. Zhang, W. Zhang, H. Zhang, A triboelectric nanogenerator based on waste polyvinyl chloride for morse code generator. Sens. Actuators A Phys. 322, 112633 (2021). https://doi.org/10.1016/j.sna.2021.112633
T. Charoonsuk, R. Muanghlua, S. Sriphan, S. Pongampai, N. Vittayakorn, Utilization of commodity thermoplastic polyethylene (PE) by enhanced sensing performance with liquid phase electrolyte for a flexible and transparent triboelectric tactile sensor. Sustain. Mater. Technol. 27, e00239 (2021). https://doi.org/10.1016/j.susmat.2020.e00239
A.P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu et al., Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 5, 3731 (2014). https://doi.org/10.1038/ncomms4731
C. Luo, J. Jia, Y. Gong, Z. Wang, Q. Fu et al., Highly sensitive, durable, and multifunctional sensor inspired by a spider. ACS Appl. Mater. Interfaces 9(23), 19955–19962 (2017). https://doi.org/10.1021/acsami.7b02988
P.S. Ghosh, J. Doherty, S. Lisenkov, I. Ponomareva, Tunability of structure, polarization, and band gap of high TC organic–inorganic ferroelectrics by hydrostatic pressure: first-principles study. J. Phys. Chem. C 125(29), 16296–16303 (2021). https://doi.org/10.1021/acs.jpcc.1c03980
A. Gottscholl, M. Diez, V. Soltamov, C. Kasper, D. Krauße et al., Spin defects in HBN as promising temperature, pressure and magnetic field quantum sensors. Nat. Commun. 12, 4480 (2021). https://doi.org/10.1038/s41467-021-24725-1
Y. Lv, Q. Huang, S. Chang, H. Wang, J. He, Highly sensitive bilayer phosphorene nanoribbon pressure sensor based on the energy gap modulation mechanism: a theoretical study. IEEE Electron. Dev. Lett. 38(9), 1313–1316 (2017). https://doi.org/10.1109/LED.2017.2734909
M. Runowski, P. Woźny, N. Stopikowska, Q. Guo, S. Lis, Optical pressure sensor based on the emission and excitation band width (fwhm) and luminescence shift of Ce3+-doped fluorapatite—high-pressure sensing. ACS Appl. Mater. Interfaces 11(4), 4131–4138 (2019). https://doi.org/10.1021/acsami.8b19500
B. Szentpéteri, P. Rickhaus, F.K. Vries, A. Márffy, B. Fülöp et al., Tailoring the band structure of twisted double bilayer graphene with pressure. Nano Lett. 21(20), 8777–8784 (2021). https://doi.org/10.1021/acs.nanolett.1c03066
J.A. Talla, S.A. Salman, H. Sabbah, E. Yasin, A.A. Zir, Modeling single-walled boron nitride nanotube pressure sensor: density functional study. Nanosci. Nanotechnol. Lett. 7(6), 500–506 (2015). https://doi.org/10.1166/nnl.2015.1994
B. Zhu, Y. Ling, L.W. Yap, M. Yang, F. Lin et al., Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring. ACS Appl. Mater. Interfaces 11(32), 29014–29021 (2019). https://doi.org/10.1021/acsami.9b06260
J. Park, M. Kim, Y. Lee, H.S. Lee, H. Ko, Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1(9), e1500661 (2015). https://doi.org/10.1126/sciadv.1500661
J. Wang, M. Tenjimbayashi, Y. Tokura, J.Y. Park, K. Kawase et al., Bionic fish-scale surface structures fabricated via air/water interface for flexible and ultrasensitive pressure sensors. ACS Appl. Mater. Interfaces 10(36), 30689–30697 (2018). https://doi.org/10.1021/acsami.8b08933
M. Jian, K. Xia, Q. Wang, Z. Yin, H. Wang et al., Flexible and highly sensitive pressure sensors based on bionic hierarchical structures. Adv. Funct. Mater. 27(9), 1606066 (2017). https://doi.org/10.1002/adfm.201606066
X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 26(9), 1336–1342 (2014). https://doi.org/10.1002/adma.201304248
J.O. Kim, S.Y. Kwon, Y. Kim, H.B. Choi, J.C. Yang et al., Highly ordered 3D microstructure-based electronic skin capable of differentiating pressure, temperature, and proximity. ACS Appl. Mater. Interfaces 11(1), 1503–1511 (2019). https://doi.org/10.1021/acsami.8b19214
Y. Xiang, L. Fang, F. Wu, S. Zhang, H. Ruan et al., 3D crinkled alk-Ti3C2 MXene based flexible piezoresistive sensors with ultra-high sensitivity and ultra-wide pressure range. Adv. Mater. Technol. 6(6), 2001157 (2021). https://doi.org/10.1002/admt.202001157
Z. Yang, S. Lv, Y. Zhang, J. Wang, L. Jiang et al., Self-assembly 3D porous crumpled MXene spheres as efficient gas and pressure sensing material for transient all-MXene sensors. Nano-Micro Lett. 14, 56 (2022). https://doi.org/10.1007/s40820-022-00796-7
P. Xue, S. Liu, X. Shi, C. Sun, C. Lai et al., A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes. Adv. Mater. 30(44), 1804165 (2018). https://doi.org/10.1002/adma.201804165
S. Jang, J.H. Oh, Rapid fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci. Rep. 8, 14287 (2018). https://doi.org/10.1038/s41598-018-32609-6
Z. Chen, H. Zhuo, Y. Hu, H. Lai, L. Liu et al., Wood-derived lightweight and elastic carbon aerogel for pressure sensing and energy storage. Adv. Funct. Mater. 30(17), 1910292 (2020). https://doi.org/10.1002/adfm.201910292
Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang et al., Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano 9(9), 8933–8941 (2015). https://doi.org/10.1021/acsnano.5b02781
D.H. Ho, S. Cheon, P. Hong, J.H. Park, J.W. Suk et al., Multifunctional smart textronics with blow-spun nonwoven fabrics. Adv. Funct. Mater. 29(24), 1900025 (2019). https://doi.org/10.1002/adfm.201900025
A. Tewari, S. Gandla, S. Bohm, C.R. McNeill, D. Gupta, Highly exfoliated MWNT–rGO ink-wrapped polyurethane foam for piezoresistive pressure sensor applications. ACS Appl. Mater. Interfaces 10(6), 5185–5195 (2018). https://doi.org/10.1021/acsami.7b15252
Y. Wu, H. Liu, S. Chen, X. Dong, P. Wang et al., Channel crack-designed gold@PU sponge for highly elastic piezoresistive sensor with excellent detectability. ACS Appl. Mater. Interfaces 9(23), 20098–20105 (2017). https://doi.org/10.1021/acsami.7b04605
J. Lee, J. Kim, Y. Shin, I. Jung, Ultra-robust wide-range pressure sensor with fast response based on polyurethane foam doubly coated with conformal silicone rubber and CNT/TPU nanocomposites islands. Compos. Part B Eng. 177, 107364 (2019). https://doi.org/10.1016/j.compositesb.2019.107364
S. Zhao, R. Zhu, High sensitivity and broad range flexible pressure sensor using multilayered porous PDMS/AgNP sponge. Adv. Mater. Technol. 4(9), 1900414 (2019). https://doi.org/10.1002/admt.201900414
S. Liang, Y. Li, J. Yang, J. Zhang, C. He et al., 3D stretchable, compressible, and highly conductive metal-coated polydimethylsiloxane sponges. Adv. Mater. Technol. 1(7), 1600117 (2016). https://doi.org/10.1002/admt.201600117
L. Miao, J. Wan, Y. Song, H. Guo, H. Chen et al., Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure. ACS Appl. Mater. Interfaces 11(42), 39219–39227 (2019). https://doi.org/10.1021/acsami.9b13383
X. Wu, Y. Han, X. Zhang, Z. Zhou, C. Lu, Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 26(34), 6246–6256 (2016). https://doi.org/10.1002/adfm.201601995
S. Uzun, S. Seyedin, A.L. Stoltzfus, A.S. Levitt, M. Alhabeb et al., Knittable and washable multifunctional MXene-coated cellulose yarns. Adv. Funct. Mater. 29(45), 1905015 (2019). https://doi.org/10.1002/adfm.201905015
L. Wang, J.A. Jackman, E.L. Tan, J.H. Park, M.G. Potroz et al., High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 36, 38–45 (2017). https://doi.org/10.1016/j.nanoen.2017.04.015
S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin et al., A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 472–478 (2016). https://doi.org/10.1038/nnano.2015.324
J.Y. Yoo, M.H. Seo, J.S. Lee, K.W. Choi, M.S. Jo et al., Industrial grade, bending-insensitive, transparent nanoforce touch sensor via enhanced percolation effect in a hierarchical nanocomposite film. Adv. Funct. Mater. 28(42), 1804721 (2018). https://doi.org/10.1002/adfm.201804721
Z. Shen, X. Zhu, C. Majidi, G. Gu, Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses. Adv. Mater. 33(38), 2102069 (2021). https://doi.org/10.1002/adma.202102069
Y.R. Kim, M.P. Kim, J. Park, Y. Lee, S.K. Ghosh et al., Binary spiky/spherical nanop films with hierarchical micro/nanostructures for high-performance flexible pressure sensors. ACS Appl. Mater. Interfaces 12(53), 58403–58411 (2020). https://doi.org/10.1021/acsami.0c18543
J. Wen, Z. Song, J. Ding, F. Wang, H. Li et al., MXene-derived TiO2 nanosheets decorated with Ag nanops for highly sensitive detection of ammonia at room temperature. J. Mater. Sci. Technol. 114, 233–239 (2022). https://doi.org/10.1016/j.jmst.2021.12.005
T. Zhou, C. Wu, Y. Wang, A.P. Tomsia, M. Li et al., Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020). https://doi.org/10.1038/s41467-020-15991-6
W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang et al., Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires. IEEE Electron. Dev. Lett. 39(7), 1069–1072 (2018). https://doi.org/10.1109/LED.2018.2835467
Z. Lou, S. Chen, L. Wang, K. Jiang, G. Shen, An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23, 7–14 (2016). https://doi.org/10.1016/j.nanoen.2016.02.053
H. Li, K. Wu, Z. Xu, Z. Wang, Y. Meng et al., Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure. ACS Appl. Mater. Interfaces 10(24), 20826–20834 (2018). https://doi.org/10.1021/acsami.8b03639
Q. Liu, Z. Liu, C. Li, K. Xie, P. Zhu et al., Highly transparent and flexible iontronic pressure sensors based on an opaque to transparent transition. Adv. Sci. 7(10), 2000348 (2020). https://doi.org/10.1002/advs.202000348
H. Ren, L. Zheng, G. Wang, X. Gao, Z. Tan et al., Transfer-medium-free nanofiber-reinforced graphene film and applications in wearable transparent pressure sensors. ACS Nano 13(5), 5541–5548 (2019). https://doi.org/10.1021/acsnano.9b00395
P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), 2002397 (2021). https://doi.org/10.1002/adma.202002397
F. Gao, X. Zhao, Z. Zhang, L. An, L. Xu et al., A stretching-insensitive, self-powered and wearable pressure sensor. Nano Energy 91, 106695 (2022). https://doi.org/10.1016/j.nanoen.2021.106695
E. Roh, H.B. Lee, D.I. Kim, N.E. Lee, A solution-processable, omnidirectionally stretchable, and high-pressure-sensitive piezoresistive device. Adv. Mater. 29(42), 1703004 (2017). https://doi.org/10.1002/adma.201703004
K.K. Kim, S. Hong, H.M. Cho, J. Lee, Y.D. Suh et al., Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15(8), 5240–5247 (2015). https://doi.org/10.1021/acs.nanolett.5b01505
K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13(8), 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
K. Xia, C. Wang, M. Jian, Q. Wang, Y. Zhang, CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 11, 1124–1134 (2018). https://doi.org/10.1007/s12274-017-1731-z
L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
L. Wang, M. Zhang, B. Yang, J. Tan, X. Ding, Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 14(8), 10633–10647 (2020). https://doi.org/10.1021/acsnano.0c04888
Y. Pang, H. Tian, L. Tao, Y. Li, X. Wang et al., Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8(40), 26458–26452 (2016). https://doi.org/10.1021/acsami.6b08172
Y.A. Samad, Y. Li, A. Schiffer, S.M. Alhassan, K. Liao, Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications. Small 11(20), 2380–2385 (2015). https://doi.org/10.1002/smll.201403532
Q. Guo, X. Zhang, F. Zhao, Q. Song, G. Su et al., Protein-inspired self-healable Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS Nano 14(3), 2788–2797 (2020). https://doi.org/10.1021/acsnano.9b09802
H. An, T. Habib, S. Shah, H. Gao, M. Radovic et al., Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 4(3), eaaq0118 (2018)
S. Shi, B. Qian, X. Wu, H. Sun, H. Wang et al., Self-assembly of MXene-surfactants at liquid–liquid interfaces: from structured liquids to 3D aerogels. Angew. Chem. Int. Ed. 58(50), 18171–18176 (2019). https://doi.org/10.1002/anie.201908402
H. Bai, Y. Chen, B. Delattre, A.P. Tomsia, R.O. Ritchie, Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Sci. Adv. 1(11), e1500849 (2015). https://doi.org/10.1126/sciadv.1500849
C. Wang, X. Chen, B. Wang, M. Huang, B. Wang et al., Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure. ACS Nano 12(6), 5816–5852 (2018). https://doi.org/10.1021/acsnano.8b01747
S. Gonçalves, J. Serrado-Nunes, J. Oliveira, N. Pereira, L. Hilliou et al., Environmentally friendly printable piezoelectric inks and their application in the development of all-printed touch screens. ACS Appl. Electron. Mater. 1(8), 1678–1687 (2019). https://doi.org/10.1021/acsaelm.9b00363
S.I. Jeong, E.J. Lee, G.R. Hong, Y. Jo, S.M. Jung et al., Three-dimensional multistack-printed, self-powered flexible pressure sensor arrays: piezoelectric composites with chemically anchored heterogeneous interfaces. ACS Omega 5(4), 1956–1965 (2020). https://doi.org/10.1021/acsomega.9b03753
I. Liashenko, J. Rosell-Llompart, A. Cabot, Ultrafast 3D printing with submicrometer features using electrostatic jet deflection. Nat. Commun. 11, 753 (2020). https://doi.org/10.1038/s41467-020-14557-w
Y.K. Fuh, B.S. Wang, C.Y. Tsai, Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci. Rep. 7, 6759 (2017). https://doi.org/10.1038/s41598-017-07360-z
S. Bodkhe, G. Turcot, F.P. Gosselin, D. Therriault, One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures. ACS Appl. Mater. Interfaces 9(24), 20833–20842 (2017). https://doi.org/10.1021/acsami.7b04095
K. Kim, J. Choi, Y. Jeong, I. Cho, M. Kim et al., Highly sensitive and wearable liquid metal-based pressure sensor for health monitoring applications: integration of a 3D-printed microbump array with the microchannel. Adv. Healthc. Mater. 8(22), 1900978 (2019). https://doi.org/10.1002/adhm.201900978
H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar et al., Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nat. Mater. 18, 234–241 (2019). https://doi.org/10.1038/s41563-018-0268-1
E. MacDonald, R. Wicker, Multiprocess 3D printing for increasing component functionality. Science (2016). https://doi.org/10.1126/science.aaf2093
T. Xia, R. Yu, J. Yuan, C. Yi, L. Ma et al., Ultrahigh sensitivity flexible pressure sensors based on 3D-printed hollow microstructures for electronic skins. Adv. Mater. Technol. 6(3), 2000984 (2021). https://doi.org/10.1002/admt.202000984
A.M. Kamat, A.G.P. Kottapalli, 3D printed graphene-coated flexible lattice as piezoresistive pressure senesor. 21st Int. Conf. Solid-State Sens. Actuators Microsyst. Transducers, Orlando, FL, USA, 888–891 (2021). https://doi.org/10.1109/Transducers50396.2021.9495428
J. Jia, G. Huang, J. Deng, K. Pan, Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles. Nanoscale 11(10), 4258–4266 (2019). https://doi.org/10.1039/C8NR08503J
Y. Song, H. Chen, X. Chen, H. Wu, H. Guo et al., All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy 53, 189–197 (2018). https://doi.org/10.1016/j.nanoen.2018.08.041
H. Zhuo, Y. Hu, X. Tong, Z. Chen, L. Zhong et al., A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle. Adv. Mater. 30(18), 1706705 (2018). https://doi.org/10.1002/adma.201706705
B. Wu, W. Zhang, N. Gao, M. Zhou, Y. Liang et al., Poly (ionic liquid)-based breath figure films: a new kind of honeycomb porous films with great extendable capability. Sci. Rep. 7, 13973 (2017). https://doi.org/10.1038/s41598-017-14563-x
S. Lee, S. Franklin, F.A. Hassani, T. Yokota, M.O.G. Nayeem et al., Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370(6519), 966–970 (2020). https://doi.org/10.1126/science.abc9735
Z. Wu, B. Zhang, H. Zou, Z. Lin, G. Liu et al., Multifunctional sensor based on translational-rotary triboelectric nanogenerator. Adv. Energy Mater. 9(33), 1901124 (2019). https://doi.org/10.1002/aenm.201901124
L.Y. Chen, B.C.K. Tee, A.L. Chortos, G. Schwartz, V. Tse et al., Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 5028 (2014). https://doi.org/10.1038/ncomms6028
Y. Wang, L. Yin, Y. Bai, S. Liu, L. Wang et al., Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.abd0996
L. Yang, Y. Liu, C.D.M. Filipe, D. Ljubic, Y. Luo et al., Development of a Highly sensitive, broad-range hierarchically structured reduced graphene oxide/polyHIPE foam for pressure sensing. ACS Appl. Mater. Interfaces 11(4), 4318–4327 (2019). https://doi.org/10.1021/acsami.8b17020
B. Cheng, P. Wu, Scalable fabrication of kevlar/Ti3C2Tx MXene intelligent wearable fabrics with multiple sensory capabilities. ACS Nano 15(5), 8676–8685 (2021). https://doi.org/10.1021/acsnano.1c00749
C. Zhang, Y. Liu, B. Zhang, O. Yang, W. Yuan et al., Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system. ACS Energy Lett. 6(4), 1490–1499 (2021). https://doi.org/10.1021/acsenergylett.1c00368
X.S. Meng, H.Y. Li, G. Zhu, Z.L. Wang, Fully enclosed bearing-structured self-powered rotation sensor based on electrification at rolling interfaces for multi-tasking motion measurement. Nano Energy 12, 606–611 (2015). https://doi.org/10.1016/j.nanoen.2015.01.015
G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.1127647
A.S. Chandrabhatla, I.J. Pomeraniec, A. Ksendzovsky, Co-evolution of machine learning and digital technologies to improve monitoring of Parkinson’s disease motor symptoms. npj Digit. Med. 5(1), 1–18 (2022)
J.H. Pu, X.J. Zha, L.S. Tang, L. Bai, R.Y. Bao et al., Human skin-inspired electronic sensor skin with electromagnetic interference shielding for the sensation and protection of wearable electronics. ACS Appl. Mater. Interfaces 10(47), 40880–40889 (2018). https://doi.org/10.1021/acsami.8b15809
Y. Liu, X. Shi, S. Liu, H. Li, H. Zhang et al., Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor. Nano Energy 63, 103898 (2019). https://doi.org/10.1016/j.nanoen.2019.103898
H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202113082
C. Ma, D. Xu, P. Wang, Z. Lin, J. Zhou et al., Two-dimensional van der Waals thin film transistors as active matrix for spatially resolved pressure sensing. Nano Res. 14, 3395–3401 (2021). https://doi.org/10.1007/s12274-021-3717-0
T. Yang, H. Xiang, C. Qin, Y. Liu, X. Zhao et al., Highly sensitive 1T-MoS2 pressure sensor with wide linearity based on hierarchical microstructures of leaf vein as spacer. Adv. Electron. Mater. 6(1), 1900916 (2020). https://doi.org/10.1002/aelm.201900916