Interconnected MXene/Graphene Network Constructed by Soft Template for Multi-Performance Improvement of Polymer Composites
Corresponding Author: Peng Ding
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 133
Abstract
The multi-functionalization of polymer composites refers to the ability to connect multiple properties through simple structural design and simultaneously achieve multi-performance optimization. The large-scale design and mass production to realize the reasonable structure design of multifunctional polymer composites are urgently remaining challenges. Herein, the multifunctional MXene/graphene/polymer composites with three-dimensional thermally and electrically conductive network structures are fabricated via the utilization of the microstructure of the soft template, and a facile dispersion dip-coating approach. As a result, the polymer composites have a multi-performance improvement. At the MXene and graphene content of 18.7 wt%, the superior through-plane thermal conductivity of polymer composite is 2.44 W m−1 K−1, which is 1118% higher than that of the polymer matrix. The electromagnetic interference (EMI) shielding effectiveness of the sample reaches 43.3 dB in the range of X-band. And the mechanical property of the sample has advanced 4 times compared with the polymer matrix. The excellent EMI shielding and thermal management performance, along with the effortless and easy-to-scalable producing techniques, imply promising perspectives of the polymer composites in the next-generation smart electronic devices.
Highlights:
1 Interconnected MXene/graphene networks are constructed by soft template through a facile dispersion dip-coating approach for multi-performance improvement of polymer composites.
2 The superior through-plane thermal conductivity, electromagnetic interference shielding, and mechanical property performance of polymer composites are achieved.
3 The polymer composites obtained improve phase change and thermomechanical properties, which provided the possibility for the application in variable temperature environments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H.G. Liu, S.Q. Wu, C.Y. You, N. Tian, Y. Li et al., Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 172, 569–596 (2021). https://doi.org/10.1016/j.carbon.2020.10.067
- J.C. Li, X.Y. Zhao, W.J. Wu, X.W. Ji, Y.L. Lu et al., Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J. 415, 129054 (2021). https://doi.org/10.1016/j.cej.2021.129054
- J. Chen, X. Huang, Y. Zhu, P. Jiang, Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27(5), 1604754 (2017). https://doi.org/10.1002/adfm.201604754
- K.M. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012). https://doi.org/10.1021/nl203906r
- W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
- A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
- D.W. Kim, K. Eum, H. Kim, D. Kim, M.D.D. Mello et al., Continuous ZIF-8/reduced graphene oxide nanocoating for ultrafast oil/water separation. Chem. Eng. J. 372, 509–515 (2019). https://doi.org/10.1016/j.cej.2019.04.179
- H.B. Chen, P. Shen, M.J. Chen, H.B. Zhao, D.A. Schiraldi, Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Appl. Mater. Interfaces 8(47), 32557–32564 (2016). https://doi.org/10.1021/acsami.6b11659
- T. Wang, J. Zhao, C. Weng, T. Wang, Y. Liu et al., Three-dimensional graphene coated shape memory polyurethane foam with fast responsive performance. J. Mater. Chem. C 9(23), 7444–7451 (2021). https://doi.org/10.1039/d1tc01315g
- W.J. Ma, W.R. Cai, W.H. Chen, P.J. Liu, J.F. Wang et al., A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 426, 130729 (2021). https://doi.org/10.1016/j.cej.2021.130729
- D.L. Fan, N.X. Li, M.G. Li, S. Wang, S.X. Li et al., Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance. Chem. Eng. J. 427, 131635 (2022). https://doi.org/10.1016/J.Cej.2021.131635
- Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu et al., Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Compos. Sci. Technol. 215, 109023 (2021). https://doi.org/10.1016/j.compscitech.2021.109023
- J.F. Ying, X. Tan, L. Lv, X.Z. Wang, J.Y. Gao et al., Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 15(8), 12922–12934 (2021). https://doi.org/10.1021/acsnano.1c01332
- W. Dai, L. Lv, T.F. Ma, X.Z. Wang, J.F. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
- N. Song, P. Wang, L. Jin, F. Zhang, Z. Wang et al., Tunable oriented cellulose/BNNSs films designed for high-performance thermal management. Chem. Eng. J. 437, 135404 (2022). https://doi.org/10.1016/j.cej.2022.135404
- C. Feng, Z. Yi, X. Jin, S.M. Seraji, Y. Dong et al., Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Compos. Part B Eng. 194, 108065 (2020). https://doi.org/10.1016/j.compositesb.2020.108065
- F. Jiang, S.S. Zhou, T.L. Xu, N. Song, P. Ding, Enhanced thermal conductive and mechanical properties of thermoresponsive polymeric composites: Influence of 3D interconnected boron nitride network supported by polyurethane@polydopamine skeleton. Compos. Sci. Technol. 208, 108779 (2021). https://doi.org/10.1016/j.compscitech.2021.108779
- W. Yang, Y.F. Wang, Y. Li, C. Gao, X.J. Tian et al., Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos. Part B Eng. 224, 109168 (2021). https://doi.org/10.1016/j.compositesb.2021.109168
- B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
- B. Xue, Y. Li, Z.L. Cheng, S.D. Yang, L. Xie et al., Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 14, 16 (2021). https://doi.org/10.1007/s40820-021-00743-y
- B. Wei, M.Q. Wang, Z.J. Yao, Z.P. Chen, P. Chen et al., Bimetallic nanoarrays embedded in three-dimensional carbon foam as lightweight and efficient microwave absorbers. Carbon 191, 486–501 (2022). https://doi.org/10.1016/j.carbon.2022.02.020
- B. Huang, J. Yue, B. Fan, X.-Z. Tang, Y. Liu et al., Constructing hierarchical structure via in situ growth of CNT in SiO2-coated carbon foam for high-performance EMI shielding application. Compos. Sci. Technol. 222, 109372 (2022). https://doi.org/10.1016/j.compscitech.2022.109372
- Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, J.F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 12(7), 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
- Z. Yu, T.W. Dai, S.W. Yuan, H.W. Zou, P.B. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
- F. Jiang, S.Q. Cui, C. Rungnim, N. Song, L.Y. Shi et al., Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 31(18), 7686–7695 (2019). https://doi.org/10.1021/acs.chemmater.9b02551
- F. Jiang, S. Cui, N. Song, L. Shi, P. Ding, Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl. Mater. Interfaces 10(19), 16812–16821 (2018). https://doi.org/10.1021/acsami.8b03522
- L. Li, Y. Cheng, H. Cao, Z. Liang, Z. Liu et al., MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022). https://doi.org/10.1016/j.nanoen.2022.106986
- M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
- F. Jiang, N. Song, R.H. Ouyang, P. Ding, Wall density-controlled thermal conductive and mechanical properties of three-dimensional vertically aligned boron nitride network-based polymeric composites. ACS Appl. Mater. Interfaces 13(6), 7556–7566 (2021). https://doi.org/10.1021/acsami.0c22702
- S.S. Zhou, T.L. Xu, L.Y. Jin, N. Song, P. Ding, Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: Design of assembled well-oriented boron nitride nanosheets. Compos. Sci. Technol. 219, 109259 (2022). https://doi.org/10.1016/j.compscitech.2022.109259
- Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
- G.H. Kim, D. Lee, A. Shanker, L. Shao, M.S. Kwon et al., High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14(3), 295–300 (2015). https://doi.org/10.1038/nmat4141
- S. Xu, X. Li, G. Sui, R. Du, Q. Zhang et al., Plasma modification of PU foam for piezoresistive sensor with high sensitivity, mechanical properties and long-term stability. Chem. Eng. J. 381, 122666 (2020). https://doi.org/10.1016/j.cej.2019.122666
- H. Choe, J.H. Lee, J.H. Kim, Polyurethane composite foams including CaCO3 fillers for enhanced sound absorption and compression properties. Compos. Sci. Technol. 194, 108153 (2020). https://doi.org/10.1016/j.compscitech.2020.108153
- T. Keplinger, X. Wang, I. Burgert, Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. J. Mater. Chem. A 7(7), 2981–2992 (2019). https://doi.org/10.1039/c8ta10711d
- L.Y. Jin, P. Wang, W.J. Cao, N. Song, P. Ding, Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl. Mater. Interfaces 14(1), 1747–1756 (2022). https://doi.org/10.1021/acsami.1c20267
- T.L. Xu, S.S. Zhou, F. Jiang, N. Song, L.Y. Shi et al., Polyamide composites with improved thermal conductivity for effective thermal management: The three-dimensional vertically aligned carbon network. Compos. Part B Eng. 224, 109205 (2021). https://doi.org/10.1016/j.compositesb.2021.109205
- Y. Du, H. Huang, X. Hu, S. Liu, X. Sheng et al., Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion. Renew. Energy 171, 1–10 (2021). https://doi.org/10.1016/j.renene.2021.02.077
- M. Li, L. Li, Y. Qin, X. Wei, X. Kong et al., Crystallization induced realignment of carbon fibers in a phase change material to achieve exceptional thermal transportation properties. J. Mater. Chem. A 10(2), 593–601 (2022). https://doi.org/10.1039/d1ta09056a
- M. Rim, D.-G. Kang, H. Ko, Y. Wi, W. Kim et al., Shape-morphing thermoactuators: tetrathiafulvalene-based polymer networks with an effective phonon conduction pathway. Chem. Mater. 34(2), 718–727 (2021). https://doi.org/10.1021/acs.chemmater.1c03440
- Z.M. Shen, J.C. Feng, Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustain. Chem. Eng. 7(6), 6259–6266 (2019). https://doi.org/10.1021/acssuschemeng.8b06661
- D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
- W.W. Gao, N.F. Zhao, T. Yu, J.B. Xi, A.R. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020). https://doi.org/10.1016/j.carbon.2019.10.051
- H.M. Zhang, G.C. Zhang, M. Tang, L.S. Zhou, J.T. Li et al., Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem. Eng. J. 353, 381–393 (2018). https://doi.org/10.1016/j.cej.2018.07.144
- C.H. Cui, D.X. Yan, H. Pang, L.C. Jia, Y. Bao et al., Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks. Chin. J. Polym. Sci. 34(12), 1490–1499 (2016). https://doi.org/10.1007/s10118-016-1849-6
- N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty, Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. Part A Appl. Sci. Manuf. 31(10), 1069–1081 (2000). https://doi.org/10.1016/S1359-835x(00)00064-6
- Y.M. Huangfu, C.B. Liang, Y.X. Han, H. Qiu, P. Song et al., Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 169, 70–75 (2019). https://doi.org/10.1016/j.compscitech.2018.11.012
- Z.X. Wang, X.S. Han, Z.J. Zhou, W.Y. Meng, X.W. Han et al., Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 213, 108931 (2021). https://doi.org/10.1016/j.compscitech.2021.108931
- Y.Q. Guo, H. Qiu, K.P. Ruan, Y.L. Zhang, J.W. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
- L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2021). https://doi.org/10.1007/s40820-021-00759-4
- P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
- P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
- H. Fang, Y. Zhao, Y. Zhang, Y. Ren, S.L. Bai, Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces 9(31), 26447–26459 (2017). https://doi.org/10.1021/acsami.7b07650
- L.L. Ren, X.L. Zeng, R. Sun, J.B. Xu, C.P. Wong, Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem. Eng. J. 370, 166–175 (2019). https://doi.org/10.1016/j.cej.2019.03.217
- X. Lu, H.W. Huang, X.Y. Zhang, P.C. Lin, J.T. Huang et al., Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Compos. Part B Eng. 177, 107372 (2019). https://doi.org/10.1016/j.compositesb.2019.107372
- M.J. Feng, Y.M. Pan, M.T. Zhang, Q.S. Gao, C.T. Liu et al., Largely improved thermal conductivity of HDPE composites by building a 3D hybrid fillers network. Compos. Sci. Technol. 206, 108666 (2021). https://doi.org/10.1016/j.compscitech.2021.108666
- Y. Lin, J. Chen, P.K. Jiang, X.Y. Huang, Wood annual ring structured elastomer composites with high thermal conduction enhancement efficiency. Chem. Eng. J. 389, 123467 (2020). https://doi.org/10.1016/j.cej.2019.123467
- H.H. Liao, W.H. Chen, Y. Liu, Q. Wang, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Compos. Sci. Technol. 189, 108010 (2020). https://doi.org/10.1016/j.compscitech.2020.108010
- X.L. Chen, J.S.K. Lim, W.L. Yan, F. Guo, Y.N. Liang et al., Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 12(14), 16987–16996 (2020). https://doi.org/10.1021/acsami.0c04882
- H.B. Liu, R.L. Fu, X.Q. Su, B.Y. Wu, H. Wang et al., MXene confined in shape-stabilized phase change material combining enhanced electromagnetic interference shielding and thermal management capability. Compos. Sci. Technol. 210, 108835 (2021). https://doi.org/10.1016/j.compscitech.2021.108835
- X.X. Sheng, D.X. Dong, X. Lu, L. Zhang, Y. Chen, MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Compos. Part A Appl. Sci. Manuf. 138, 106067 (2020). https://doi.org/10.1016/j.compositesa.2020.106067
References
H.G. Liu, S.Q. Wu, C.Y. You, N. Tian, Y. Li et al., Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 172, 569–596 (2021). https://doi.org/10.1016/j.carbon.2020.10.067
J.C. Li, X.Y. Zhao, W.J. Wu, X.W. Ji, Y.L. Lu et al., Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity. Chem. Eng. J. 415, 129054 (2021). https://doi.org/10.1016/j.cej.2021.129054
J. Chen, X. Huang, Y. Zhu, P. Jiang, Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv. Funct. Mater. 27(5), 1604754 (2017). https://doi.org/10.1002/adfm.201604754
K.M. Shahil, A.A. Balandin, Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 12(2), 861–867 (2012). https://doi.org/10.1021/nl203906r
W. Chen, L.X. Liu, H.B. Zhang, Z.Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.-K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369(6502), 446–450 (2020). https://doi.org/10.1126/science.aba7977
D.W. Kim, K. Eum, H. Kim, D. Kim, M.D.D. Mello et al., Continuous ZIF-8/reduced graphene oxide nanocoating for ultrafast oil/water separation. Chem. Eng. J. 372, 509–515 (2019). https://doi.org/10.1016/j.cej.2019.04.179
H.B. Chen, P. Shen, M.J. Chen, H.B. Zhao, D.A. Schiraldi, Highly efficient flame retardant polyurethane foam with alginate/clay aerogel coating. ACS Appl. Mater. Interfaces 8(47), 32557–32564 (2016). https://doi.org/10.1021/acsami.6b11659
T. Wang, J. Zhao, C. Weng, T. Wang, Y. Liu et al., Three-dimensional graphene coated shape memory polyurethane foam with fast responsive performance. J. Mater. Chem. C 9(23), 7444–7451 (2021). https://doi.org/10.1039/d1tc01315g
W.J. Ma, W.R. Cai, W.H. Chen, P.J. Liu, J.F. Wang et al., A novel structural design of shielding capsule to prepare high-performance and self-healing MXene-based sponge for ultra-efficient electromagnetic interference shielding. Chem. Eng. J. 426, 130729 (2021). https://doi.org/10.1016/j.cej.2021.130729
D.L. Fan, N.X. Li, M.G. Li, S. Wang, S.X. Li et al., Polyurethane/polydopamine/graphene auxetic composite foam with high-efficient and tunable electromagnetic interference shielding performance. Chem. Eng. J. 427, 131635 (2022). https://doi.org/10.1016/J.Cej.2021.131635
Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu et al., Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Compos. Sci. Technol. 215, 109023 (2021). https://doi.org/10.1016/j.compscitech.2021.109023
J.F. Ying, X. Tan, L. Lv, X.Z. Wang, J.Y. Gao et al., Tailoring highly ordered graphene framework in epoxy for high-performance polymer-based heat dissipation plates. ACS Nano 15(8), 12922–12934 (2021). https://doi.org/10.1021/acsnano.1c01332
W. Dai, L. Lv, T.F. Ma, X.Z. Wang, J.F. Ying et al., Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management. Adv. Sci. 8(7), 2003734 (2021). https://doi.org/10.1002/advs.202003734
N. Song, P. Wang, L. Jin, F. Zhang, Z. Wang et al., Tunable oriented cellulose/BNNSs films designed for high-performance thermal management. Chem. Eng. J. 437, 135404 (2022). https://doi.org/10.1016/j.cej.2022.135404
C. Feng, Z. Yi, X. Jin, S.M. Seraji, Y. Dong et al., Solvent crystallization-induced porous polyurethane/graphene composite foams for pressure sensing. Compos. Part B Eng. 194, 108065 (2020). https://doi.org/10.1016/j.compositesb.2020.108065
F. Jiang, S.S. Zhou, T.L. Xu, N. Song, P. Ding, Enhanced thermal conductive and mechanical properties of thermoresponsive polymeric composites: Influence of 3D interconnected boron nitride network supported by polyurethane@polydopamine skeleton. Compos. Sci. Technol. 208, 108779 (2021). https://doi.org/10.1016/j.compscitech.2021.108779
W. Yang, Y.F. Wang, Y. Li, C. Gao, X.J. Tian et al., Three-dimensional skeleton assembled by carbon nanotubes/boron nitride as filler in epoxy for thermal management materials with high thermal conductivity and electrical insulation. Compos. Part B Eng. 224, 109168 (2021). https://doi.org/10.1016/j.compositesb.2021.109168
B. Shen, Y. Li, W. Zhai, W. Zheng, Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 8(12), 8050–8057 (2016). https://doi.org/10.1021/acsami.5b11715
B. Xue, Y. Li, Z.L. Cheng, S.D. Yang, L. Xie et al., Directional electromagnetic interference shielding based on step-wise asymmetric conductive networks. Nano-Micro Lett. 14, 16 (2021). https://doi.org/10.1007/s40820-021-00743-y
B. Wei, M.Q. Wang, Z.J. Yao, Z.P. Chen, P. Chen et al., Bimetallic nanoarrays embedded in three-dimensional carbon foam as lightweight and efficient microwave absorbers. Carbon 191, 486–501 (2022). https://doi.org/10.1016/j.carbon.2022.02.020
B. Huang, J. Yue, B. Fan, X.-Z. Tang, Y. Liu et al., Constructing hierarchical structure via in situ growth of CNT in SiO2-coated carbon foam for high-performance EMI shielding application. Compos. Sci. Technol. 222, 109372 (2022). https://doi.org/10.1016/j.compscitech.2022.109372
Y.Y. Wang, Z.H. Zhou, C.G. Zhou, W.J. Sun, J.F. Gao et al., Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption. ACS Appl. Mater. Interfaces 12(7), 8704–8712 (2020). https://doi.org/10.1021/acsami.9b21048
Z. Yu, T.W. Dai, S.W. Yuan, H.W. Zou, P.B. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12(27), 30990–31001 (2020). https://doi.org/10.1021/acsami.0c07122
F. Jiang, S.Q. Cui, C. Rungnim, N. Song, L.Y. Shi et al., Control of a dual-cross-linked boron nitride framework and the optimized design of the thermal conductive network for its thermoresponsive polymeric composites. Chem. Mater. 31(18), 7686–7695 (2019). https://doi.org/10.1021/acs.chemmater.9b02551
F. Jiang, S. Cui, N. Song, L. Shi, P. Ding, Hydrogen bond-regulated boron nitride network structures for improved thermal conductive property of polyamide-imide composites. ACS Appl. Mater. Interfaces 10(19), 16812–16821 (2018). https://doi.org/10.1021/acsami.8b03522
L. Li, Y. Cheng, H. Cao, Z. Liang, Z. Liu et al., MXene/rGO/PS spheres multiple physical networks as high-performance pressure sensor. Nano Energy 95, 106986 (2022). https://doi.org/10.1016/j.nanoen.2022.106986
M.-S. Cao, Y.-Z. Cai, P. He, J.-C. Shu, W.-Q. Cao et al., 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J. 359, 1265–1302 (2019). https://doi.org/10.1016/j.cej.2018.11.051
F. Jiang, N. Song, R.H. Ouyang, P. Ding, Wall density-controlled thermal conductive and mechanical properties of three-dimensional vertically aligned boron nitride network-based polymeric composites. ACS Appl. Mater. Interfaces 13(6), 7556–7566 (2021). https://doi.org/10.1021/acsami.0c22702
S.S. Zhou, T.L. Xu, L.Y. Jin, N. Song, P. Ding, Ultraflexible polyamide-imide films with simultaneously improved thermal conductive and mechanical properties: Design of assembled well-oriented boron nitride nanosheets. Compos. Sci. Technol. 219, 109259 (2022). https://doi.org/10.1016/j.compscitech.2022.109259
Z.L. Ma, S.L. Kang, J.Z. Ma, L. Shao, Y.L. Zhang et al., Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14(7), 8368–8382 (2020). https://doi.org/10.1021/acsnano.0c02401
G.H. Kim, D. Lee, A. Shanker, L. Shao, M.S. Kwon et al., High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14(3), 295–300 (2015). https://doi.org/10.1038/nmat4141
S. Xu, X. Li, G. Sui, R. Du, Q. Zhang et al., Plasma modification of PU foam for piezoresistive sensor with high sensitivity, mechanical properties and long-term stability. Chem. Eng. J. 381, 122666 (2020). https://doi.org/10.1016/j.cej.2019.122666
H. Choe, J.H. Lee, J.H. Kim, Polyurethane composite foams including CaCO3 fillers for enhanced sound absorption and compression properties. Compos. Sci. Technol. 194, 108153 (2020). https://doi.org/10.1016/j.compscitech.2020.108153
T. Keplinger, X. Wang, I. Burgert, Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. J. Mater. Chem. A 7(7), 2981–2992 (2019). https://doi.org/10.1039/c8ta10711d
L.Y. Jin, P. Wang, W.J. Cao, N. Song, P. Ding, Isolated solid wall-assisted thermal conductive performance of three-dimensional anisotropic MXene/graphene polymeric composites. ACS Appl. Mater. Interfaces 14(1), 1747–1756 (2022). https://doi.org/10.1021/acsami.1c20267
T.L. Xu, S.S. Zhou, F. Jiang, N. Song, L.Y. Shi et al., Polyamide composites with improved thermal conductivity for effective thermal management: The three-dimensional vertically aligned carbon network. Compos. Part B Eng. 224, 109205 (2021). https://doi.org/10.1016/j.compositesb.2021.109205
Y. Du, H. Huang, X. Hu, S. Liu, X. Sheng et al., Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion. Renew. Energy 171, 1–10 (2021). https://doi.org/10.1016/j.renene.2021.02.077
M. Li, L. Li, Y. Qin, X. Wei, X. Kong et al., Crystallization induced realignment of carbon fibers in a phase change material to achieve exceptional thermal transportation properties. J. Mater. Chem. A 10(2), 593–601 (2022). https://doi.org/10.1039/d1ta09056a
M. Rim, D.-G. Kang, H. Ko, Y. Wi, W. Kim et al., Shape-morphing thermoactuators: tetrathiafulvalene-based polymer networks with an effective phonon conduction pathway. Chem. Mater. 34(2), 718–727 (2021). https://doi.org/10.1021/acs.chemmater.1c03440
Z.M. Shen, J.C. Feng, Preparation of thermally conductive polymer composites with good electromagnetic interference shielding efficiency based on natural wood-derived carbon scaffolds. ACS Sustain. Chem. Eng. 7(6), 6259–6266 (2019). https://doi.org/10.1021/acssuschemeng.8b06661
D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559–566 (2015). https://doi.org/10.1002/adfm.201403809
W.W. Gao, N.F. Zhao, T. Yu, J.B. Xi, A.R. Mao et al., High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading. Carbon 157, 570–577 (2020). https://doi.org/10.1016/j.carbon.2019.10.051
H.M. Zhang, G.C. Zhang, M. Tang, L.S. Zhou, J.T. Li et al., Synergistic effect of carbon nanotube and graphene nanoplates on the mechanical, electrical and electromagnetic interference shielding properties of polymer composites and polymer composite foams. Chem. Eng. J. 353, 381–393 (2018). https://doi.org/10.1016/j.cej.2018.07.144
C.H. Cui, D.X. Yan, H. Pang, L.C. Jia, Y. Bao et al., Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks. Chin. J. Polym. Sci. 34(12), 1490–1499 (2016). https://doi.org/10.1007/s10118-016-1849-6
N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty, Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. Part A Appl. Sci. Manuf. 31(10), 1069–1081 (2000). https://doi.org/10.1016/S1359-835x(00)00064-6
Y.M. Huangfu, C.B. Liang, Y.X. Han, H. Qiu, P. Song et al., Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites. Compos. Sci. Technol. 169, 70–75 (2019). https://doi.org/10.1016/j.compscitech.2018.11.012
Z.X. Wang, X.S. Han, Z.J. Zhou, W.Y. Meng, X.W. Han et al., Lightweight and elastic wood-derived composites for pressure sensing and electromagnetic interference shielding. Compos. Sci. Technol. 213, 108931 (2021). https://doi.org/10.1016/j.compscitech.2021.108931
Y.Q. Guo, H. Qiu, K.P. Ruan, Y.L. Zhang, J.W. Gu, Hierarchically multifunctional polyimide composite films with strongly enhanced thermal conductivity. Nano-Micro Lett. 14, 26 (2021). https://doi.org/10.1007/s40820-021-00767-4
L. Ma, M. Hamidinejad, B. Zhao, C. Liang, C.B. Park, Layered foam/film polymer nanocomposites with highly efficient EMI shielding properties and ultralow reflection. Nano-Micro Lett. 14, 19 (2021). https://doi.org/10.1007/s40820-021-00759-4
P. Song, B. Liu, C.B. Liang, K.P. Ruan, H. Qiu et al., Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 13, 91 (2021). https://doi.org/10.1007/s40820-021-00624-4
P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, J.W. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 14, 51 (2022). https://doi.org/10.1007/s40820-022-00798-5
H. Fang, Y. Zhao, Y. Zhang, Y. Ren, S.L. Bai, Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces 9(31), 26447–26459 (2017). https://doi.org/10.1021/acsami.7b07650
L.L. Ren, X.L. Zeng, R. Sun, J.B. Xu, C.P. Wong, Spray-assisted assembled spherical boron nitride as fillers for polymers with enhanced thermally conductivity. Chem. Eng. J. 370, 166–175 (2019). https://doi.org/10.1016/j.cej.2019.03.217
X. Lu, H.W. Huang, X.Y. Zhang, P.C. Lin, J.T. Huang et al., Novel light-driven and electro-driven polyethylene glycol/two-dimensional MXene form-stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Compos. Part B Eng. 177, 107372 (2019). https://doi.org/10.1016/j.compositesb.2019.107372
M.J. Feng, Y.M. Pan, M.T. Zhang, Q.S. Gao, C.T. Liu et al., Largely improved thermal conductivity of HDPE composites by building a 3D hybrid fillers network. Compos. Sci. Technol. 206, 108666 (2021). https://doi.org/10.1016/j.compscitech.2021.108666
Y. Lin, J. Chen, P.K. Jiang, X.Y. Huang, Wood annual ring structured elastomer composites with high thermal conduction enhancement efficiency. Chem. Eng. J. 389, 123467 (2020). https://doi.org/10.1016/j.cej.2019.123467
H.H. Liao, W.H. Chen, Y. Liu, Q. Wang, A phase change material encapsulated in a mechanically strong graphene aerogel with high thermal conductivity and excellent shape stability. Compos. Sci. Technol. 189, 108010 (2020). https://doi.org/10.1016/j.compscitech.2020.108010
X.L. Chen, J.S.K. Lim, W.L. Yan, F. Guo, Y.N. Liang et al., Salt template assisted BN scaffold fabrication toward highly thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 12(14), 16987–16996 (2020). https://doi.org/10.1021/acsami.0c04882
H.B. Liu, R.L. Fu, X.Q. Su, B.Y. Wu, H. Wang et al., MXene confined in shape-stabilized phase change material combining enhanced electromagnetic interference shielding and thermal management capability. Compos. Sci. Technol. 210, 108835 (2021). https://doi.org/10.1016/j.compscitech.2021.108835
X.X. Sheng, D.X. Dong, X. Lu, L. Zhang, Y. Chen, MXene-wrapped bio-based pomelo peel foam/polyethylene glycol composite phase change material with enhanced light-to-thermal conversion efficiency, thermal energy storage capability and thermal conductivity. Compos. Part A Appl. Sci. Manuf. 138, 106067 (2020). https://doi.org/10.1016/j.compositesa.2020.106067