High-Performance Flexible Microneedle Array as a Low-Impedance Surface Biopotential Dry Electrode for Wearable Electrophysiological Recording and Polysomnography
Corresponding Author: Zhihong Li
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 132
Abstract
Microneedle array (MNA) electrodes are an effective solution to achieve high-quality surface biopotential recording without the coordination of conductive gel and are thus very suitable for long-term wearable applications. Existing schemes are limited by flexibility, biosafety, and manufacturing costs, which create large barriers for wider applications. Here, we present a novel flexible MNA electrode that can simultaneously achieve flexibility of the substrate to fit a curved body surface, robustness of microneedles to penetrate the skin without fracture, and a simplified process to allow mass production. The compatibility with wearable wireless systems and the short preparation time of the electrodes significantly improves the comfort and convenience of electrophysiological recording. The normalized electrode–skin contact impedance reaches 0.98 kΩ cm2 at 1 kHz and 1.50 kΩ cm2 at 10 Hz, a record low value compared to previous reports and approximately 1/250 of the standard electrodes. The morphology, biosafety, and electrical/mechanical properties are fully characterized, and wearable recordings with a high signal-to-noise ratio and low motion artifacts are realized. The first reported clinical study of microneedle electrodes for surface electrophysiological monitoring was conducted in tens of healthy and sleep-disordered subjects with 44 nights of recording (over 8 h per night), providing substantial evidence that the electrodes can be leveraged to substitute for clinical standard electrodes.
Highlights:
1 Polyimide-based flexible microneedle array (PI-MNA) electrodes realize high electrical/mechanical performance and are compatible with wearable wireless recording systems.
2 The normalized electrode–skin interface impedance (EII) of the PI-MNA electrodes reaches 0.98 kΩ cm2 at 1 kHz and 1.50 kΩ cm2 at 10 Hz, approximately 1/250 of clinical standard electrodes.
3 This is the first report on the clinical study of microneedle electrodes. The PI-MNA electrodes are applied to clinical long-term continuous monitoring for polysomnography.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong et al., Disruptive, soft, wearable sensors. Adv. Mater. 32(18), 1904664 (2020). https://doi.org/10.1002/adma.201904664
- T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
- Y.H. Wang, L. Yin, Y.Z. Bai, S.Y. Liu, L. Wang et al., Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. 6(43), abd0996 (2020). https://doi.org/10.1126/sciadv.abd0996
- L. Tian, B. Zimmerman, A. Akhtar, K.J. Yu, M. Moore et al., Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3(3), 194–205 (2019). https://doi.org/10.1038/s41551-019-0347-x
- L.F. Wang, J.Q. Liu, B. Yang, C.S. Yang, PDMS-based low cost flexible dry electrode for long-term EEG measurement. IEEE Sens. J. 12(9), 2898–2904 (2012). https://doi.org/10.1109/jsen.2012.2204339
- Y. Fu, J. Zhao, Y. Dong, X. Wang, Dry electrodes for human bioelectrical signal monitoring. Sensors 20(13), 3651 (2020). https://doi.org/10.3390/s20133651
- P. Leleux, C. Johnson, X. Strakosas, J. Rivnay, T. Herve et al., Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. Adv. Healthc. Mater. 3(9), 1377–1380 (2014). https://doi.org/10.1002/adhm.201300614
- K.P. Gao, H.J. Yang, X.L. Wang, B. Yang, J.Q. Liu, Soft pin-shaped dry electrode with bristles for EEG signal measurements. Sens. Actuators A Phys. 283, 348–361 (2018). https://doi.org/10.1016/j.sna.2018.09.045
- F. Stauffer, M. Thielen, C. Sauter, S. Chardonnens, S. Bachmann et al., Skin conformal polymer electrodes for clinical ECG and EEGrecordings. Adv. Healthc. Mater. 7(7), 1700994 (2018). https://doi.org/10.1002/adhm.201700994
- C.T. Lin, L.D. Liao, Y.H. Liu, I.J. Wang, B.S. Lin et al., Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans. Biomed. Eng. 58(5), 1200–1207 (2011). https://doi.org/10.1109/TBME.2010.2102353
- T.M. Blicharz, P. Gong, B.M. Bunner, L.L. Chu, K.M. Leonard et al., Microneedle-based device for the one-step painless collection of capillary blood samples. Nat. Biomed. Eng. 2(3), 151–157 (2018). https://doi.org/10.1038/s41551-018-0194-1
- P. Dardano, I. Rea, L.D. Stefano, Microneedles-based electrochemical sensors: new tools for advanced biosensing. Curr. Opi. Electrochem. 17, 121–127 (2019). https://doi.org/10.1016/j.coelec.2019.05.012
- D. Huang, J. Li, T. Li, Z. Wang, Q. Wang et al., Recent advances on fabrication of microneedles on the flexible substrate. J. Micromech. Microeng. 31(7), 0073001 (2021). https://doi.org/10.1088/1361-6439/ac0513
- N.W. Kang, S. Kim, J.Y. Lee, K.T. Kim, Y. Choi et al., Microneedles for drug delivery: recent advances in materials and geometry for preclinical and clinical studies. Expert Opin. Drug Deliv. 18(7), 929–947 (2021). https://doi.org/10.1080/17425247.2021.1828860
- S. Kusama, K. Sato, Y. Matsui, N. Kimura, H. Abe et al., Transdermal electroosmotic flow generated by a porous microneedle array patch. Nat. Commun. 12, 658 (2021). https://doi.org/10.1038/s41467-021-20948-4
- W. Li, R.N. Terry, J. Tang, M.R. Feng, S.P. Schwendeman et al., Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3(3), 220–229 (2019). https://doi.org/10.1038/s41551-018-0337-4
- G.S. Liu, Y. Kong, Y. Wang, Y. Luo, X. Fan et al., Microneedles for transdermal diagnostics: recent advances and new horizons. Biomaterials 232, 119740 (2020). https://doi.org/10.1016/j.biomaterials.2019.119740
- K.T.M. Tran, T.D. Gavitt, N.J. Farrell, E.J. Curry, A.B. Mara et al., Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nat. Biomed. Eng. 5(9), 998–1007 (2021). https://doi.org/10.1038/s41551-020-00650-4
- Z. Wang, J. Luan, A. Seth, L. Liu, M. You et al., Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat. Biomed. Eng. 5(1), 64–76 (2021). https://doi.org/10.1038/s41551-020-00672-y
- G.S. Guvanasen, L. Guo, R.J. Aguilar, A.L. Cheek, C.S. Shafor et al., A stretchable microneedle electrode array for stimulating and measuring intramuscular electromyographic activity. IEEE Trans. Neural Syst. Rehabil. Eng. 25(9), 1440–1452 (2017). https://doi.org/10.1109/TNSRE.2016.2629461
- R. Bhandari, S. Negi, F. Solzbacher, Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed. Microdev. 12(5), 797–807 (2010). https://doi.org/10.1007/s10544-010-9434-1
- X. Hong, Z. Wu, L. Chen, F. Wu, L. Wei et al., Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett. 6, 191–199 (2014). https://doi.org/10.1007/bf03353783
- P. Makvandi, R. Jamaledin, G. Chen, Z. Baghbantaraghdari, E.N. Zare et al., Stimuli-responsive transdermal microneedle patches. Mater. Today 47, 206–222 (2021). https://doi.org/10.1016/j.mattod.2021.03.012
- P. Makvandi, A. Maleki, M. Shabani, A. Hutton, M. Kirkby et al., Bioinspired microneedle patches: biomimetic designs, fabrication, and biomedical applications. Matter 5(2), 390–429 (2022). https://doi.org/10.1016/j.matt.2021.11.021
- L. Ren, B. Liu, W. Zhou, L. Jiang, A mini review of microneedle array electrode for bio-signal recording: a review. IEEE Sens. J. 20(2), 577–590 (2020). https://doi.org/10.1109/jsen.2019.2944847
- M. Kim, T. Kim, D.S. Kim, W.K. Chung, Curved microneedle array-based sEMG electrode for robust long-term measurements and high selectivity. Sensors 15(7), 16265–16280 (2015). https://doi.org/10.3390/s150716265
- P. Makvandi, M. Kirkby, A.R.J. Hutton, M. Shabani, C.K.Y. Yiu et al., Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 13, 93 (2021). https://doi.org/10.1007/s40820-021-00611-9
- Y. Hou, Z. Li, Z. Wang, H. Yu, Miura-ori structured flexible microneedle array electrode for biosignal recording. Microsyst. Nanoeng. 7, 53 (2021). https://doi.org/10.1038/s41378-021-00259-w
- R. Wang, X. Jiang, W. Wang, Z. Li, A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens. Actuators B Chem. 244, 750–758 (2017). https://doi.org/10.1016/j.snb.2017.01.052
- R. Wang, W. Zhao, W. Wang, Z. Li, A flexible microneedle electrode array with solid silicon needles. J. Microelectromech. Syst. 21(5), 1084–1089 (2012). https://doi.org/10.1109/jmems.2012.2203790
- L. Ren, Q. Jiang, Z. Chen, K. Chen, S. Xu et al., Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sens. Actuators A Phys. 268, 38–45 (2017). https://doi.org/10.1016/j.sna.2017.10.042
- L. Ren, S. Xu, J. Gao, Z. Lin, Z. Chen et al., Fabrication of flexible microneedle array electrodes for wearable bio-signal recording. Sensors 18(4), 1191 (2018). https://doi.org/10.3390/s18041191
- M. Mahmood, S. Kwon, H. Kim, Y.S. Kim, P. Siriaraya et al., Wireless soft scalp electronics and virtual reality system for motor imagery-based brain–machine interfaces. Adv. Sci. 8(19), 2101129 (2021). https://doi.org/10.1002/advs.202101129
- L.F. Wang, J.Q. Liu, X.X. Yan, B. Yang, C.S. Yang, A MEMS-based pyramid micro-needle electrode for long-term EEG measurement. Microsyst. Technol. 19(2), 269–276 (2012). https://doi.org/10.1007/s00542-012-1638-2
- R. Wang, W. Wang, Z. Li, An improved manufacturing approach for discrete silicon microneedle arrays with tunable height-pitch ratio. Sensors 16(10), 1628 (2016). https://doi.org/10.3390/s16101628
- H. Roh, Y.J. Yoon, J.S. Park, D.H. Kang, S.M. Kwak et al., Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nano-Micro Lett. 14, 24 (2021). https://doi.org/10.1007/s40820-021-00778-1
- K. Badnikar, S.N. Jayadevi, S. Pahal, S. Sripada, M.M. Nayak et al., Generic molding platform for simple, low-cost fabrication of polymeric microneedles. Macromol. Mater. Eng. 305(5), 2000072 (2020). https://doi.org/10.1002/mame.202000072
- R. He, Y. Niu, Z. Li, A. Li, H. Yang et al., A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid. Adv. Healthc. Mater. 9(4), 1901201 (2020). https://doi.org/10.1002/adhm.201901201
- K.J. Krieger, N. Bertollo, M. Dangol, J.T. Sheridan, M.M. Lowery et al., Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst. Nanoeng. 5, 42 (2019). https://doi.org/10.1038/s41378-019-0088-8
- J. Madden, C. O’Mahony, M. Thompson, A. O’Riordan, P. Galvin, Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. Sens. Bio. Sens. Res. 29, 100348 (2020). https://doi.org/10.1016/j.sbsr.2020.100348
- K.J. Krieger, J. Liegey, E.M. Cahill, N. Bertollo, M.M. Lowery et al., Development and evaluation of 3D-printed dry microneedle electrodes for surface electromyography. Adv. Mater. Technol. 5(10), 2000518 (2020). https://doi.org/10.1002/admt.202000518
- L. Ren, Z. Chen, H. Wang, Z. Dou, B. Liu et al., Fabrication of bendable microneedle-array electrode by magnetorheological drawing lithography for electroencephalogram recording. IEEE Trans. Instrum. Meas. 69(10), 8328–8334 (2020). https://doi.org/10.1109/tim.2020.2990523
- R. Soltanzadeh, E. Afsharipour, C. Shafai, N. Anssari, B. Mansouri et al., Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation. Biomed. Microdev. 20, 1 (2017). https://doi.org/10.1007/s10544-017-0241-9
- A.K. Srivastava, B. Bhartia, K. Mukhopadhyay, A. Sharma, Long term biopotential recording by body conformable photolithography fabricated low cost polymeric microneedle arrays. Sens. Actuators A Phys. 236, 164–172 (2015). https://doi.org/10.1016/j.sna.2015.10.041
- K. Moussi, A. Bukhamsin, T. Hidalgo, J. Kosel, Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. Adv. Eng. Mater. 22(2), 1901358 (2019). https://doi.org/10.1002/adem.201901358
- J.H. Lee, H. Kim, J.H. Kim, S.H. Lee, Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16(6), 959–976 (2016). https://doi.org/10.1039/c5lc00842e
- S. Venkatraman, J. Hendricks, Z.A. King, A.J. Sereno, S. Richardson-Burns et al., In vitro and in vivo evaluation of pedot microelectrodes for neural stimulation and recording. IEEE Trans. Neural Syst. Rehabil. Eng. 19(3), 307–316 (2011). https://doi.org/10.1109/tnsre.2011.2109399
- N. Rossetti, P. Luthra, J.E. Hagler, A.H.J. Lee, C. Bodart et al., Poly(3,4-ethylenedioxythiophene) (PEDOT) coatings for high-quality electromyography recording. ACS Appl. Bio Mater. 2(11), 5154–5163 (2019). https://doi.org/10.1021/acsabm.9b00809
- C. Bodart, N. Rossetti, J.E. Hagler, P. Chevreau, D. Chhin et al., Electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) coatings for implantable deep-brain-stimulating microelectrodes. ACS Appl. Mater. Interfaces 11(19), 17226–17233 (2019). https://doi.org/10.1021/acsami.9b03088
- P. Fattahi, G. Yang, G. Kim, M.R. Abidian, A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26(12), 1846–1885 (2014). https://doi.org/10.1002/adma.201304496
- K.M. Szostak, L. Grand, T.G. Constandinou, Neural interfaces for intracortical recording: requirements, fabrication methods, and characteristics. Front. Neurosci. 11, 665 (2017). https://doi.org/10.3389/fnins.2017.00665
- C.A. Goldstein, R.D. Chervin, Use of clinical tools and tests in sleep medicine, in Principles and Practice of Sleep Medicine. (Elsevier, 2017), pp. 607–617. https://doi.org/10.1016/B978-0-323-24288-2.00060-X
- Products: sleep diagnostics. (Compumedics). https://www.compumedics.com.au/en/product-category/sleep-diagnostics/
- What is EEGLAB? (Swartz Center for Computational Neuroscience). https://sccn.ucsd.edu/eeglab/
References
Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong et al., Disruptive, soft, wearable sensors. Adv. Mater. 32(18), 1904664 (2020). https://doi.org/10.1002/adma.201904664
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
Y.H. Wang, L. Yin, Y.Z. Bai, S.Y. Liu, L. Wang et al., Electrically compensated, tattoo-like electrodes for epidermal electrophysiology at scale. Sci. Adv. 6(43), abd0996 (2020). https://doi.org/10.1126/sciadv.abd0996
L. Tian, B. Zimmerman, A. Akhtar, K.J. Yu, M. Moore et al., Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3(3), 194–205 (2019). https://doi.org/10.1038/s41551-019-0347-x
L.F. Wang, J.Q. Liu, B. Yang, C.S. Yang, PDMS-based low cost flexible dry electrode for long-term EEG measurement. IEEE Sens. J. 12(9), 2898–2904 (2012). https://doi.org/10.1109/jsen.2012.2204339
Y. Fu, J. Zhao, Y. Dong, X. Wang, Dry electrodes for human bioelectrical signal monitoring. Sensors 20(13), 3651 (2020). https://doi.org/10.3390/s20133651
P. Leleux, C. Johnson, X. Strakosas, J. Rivnay, T. Herve et al., Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. Adv. Healthc. Mater. 3(9), 1377–1380 (2014). https://doi.org/10.1002/adhm.201300614
K.P. Gao, H.J. Yang, X.L. Wang, B. Yang, J.Q. Liu, Soft pin-shaped dry electrode with bristles for EEG signal measurements. Sens. Actuators A Phys. 283, 348–361 (2018). https://doi.org/10.1016/j.sna.2018.09.045
F. Stauffer, M. Thielen, C. Sauter, S. Chardonnens, S. Bachmann et al., Skin conformal polymer electrodes for clinical ECG and EEGrecordings. Adv. Healthc. Mater. 7(7), 1700994 (2018). https://doi.org/10.1002/adhm.201700994
C.T. Lin, L.D. Liao, Y.H. Liu, I.J. Wang, B.S. Lin et al., Novel dry polymer foam electrodes for long-term EEG measurement. IEEE Trans. Biomed. Eng. 58(5), 1200–1207 (2011). https://doi.org/10.1109/TBME.2010.2102353
T.M. Blicharz, P. Gong, B.M. Bunner, L.L. Chu, K.M. Leonard et al., Microneedle-based device for the one-step painless collection of capillary blood samples. Nat. Biomed. Eng. 2(3), 151–157 (2018). https://doi.org/10.1038/s41551-018-0194-1
P. Dardano, I. Rea, L.D. Stefano, Microneedles-based electrochemical sensors: new tools for advanced biosensing. Curr. Opi. Electrochem. 17, 121–127 (2019). https://doi.org/10.1016/j.coelec.2019.05.012
D. Huang, J. Li, T. Li, Z. Wang, Q. Wang et al., Recent advances on fabrication of microneedles on the flexible substrate. J. Micromech. Microeng. 31(7), 0073001 (2021). https://doi.org/10.1088/1361-6439/ac0513
N.W. Kang, S. Kim, J.Y. Lee, K.T. Kim, Y. Choi et al., Microneedles for drug delivery: recent advances in materials and geometry for preclinical and clinical studies. Expert Opin. Drug Deliv. 18(7), 929–947 (2021). https://doi.org/10.1080/17425247.2021.1828860
S. Kusama, K. Sato, Y. Matsui, N. Kimura, H. Abe et al., Transdermal electroosmotic flow generated by a porous microneedle array patch. Nat. Commun. 12, 658 (2021). https://doi.org/10.1038/s41467-021-20948-4
W. Li, R.N. Terry, J. Tang, M.R. Feng, S.P. Schwendeman et al., Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3(3), 220–229 (2019). https://doi.org/10.1038/s41551-018-0337-4
G.S. Liu, Y. Kong, Y. Wang, Y. Luo, X. Fan et al., Microneedles for transdermal diagnostics: recent advances and new horizons. Biomaterials 232, 119740 (2020). https://doi.org/10.1016/j.biomaterials.2019.119740
K.T.M. Tran, T.D. Gavitt, N.J. Farrell, E.J. Curry, A.B. Mara et al., Transdermal microneedles for the programmable burst release of multiple vaccine payloads. Nat. Biomed. Eng. 5(9), 998–1007 (2021). https://doi.org/10.1038/s41551-020-00650-4
Z. Wang, J. Luan, A. Seth, L. Liu, M. You et al., Microneedle patch for the ultrasensitive quantification of protein biomarkers in interstitial fluid. Nat. Biomed. Eng. 5(1), 64–76 (2021). https://doi.org/10.1038/s41551-020-00672-y
G.S. Guvanasen, L. Guo, R.J. Aguilar, A.L. Cheek, C.S. Shafor et al., A stretchable microneedle electrode array for stimulating and measuring intramuscular electromyographic activity. IEEE Trans. Neural Syst. Rehabil. Eng. 25(9), 1440–1452 (2017). https://doi.org/10.1109/TNSRE.2016.2629461
R. Bhandari, S. Negi, F. Solzbacher, Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed. Microdev. 12(5), 797–807 (2010). https://doi.org/10.1007/s10544-010-9434-1
X. Hong, Z. Wu, L. Chen, F. Wu, L. Wei et al., Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett. 6, 191–199 (2014). https://doi.org/10.1007/bf03353783
P. Makvandi, R. Jamaledin, G. Chen, Z. Baghbantaraghdari, E.N. Zare et al., Stimuli-responsive transdermal microneedle patches. Mater. Today 47, 206–222 (2021). https://doi.org/10.1016/j.mattod.2021.03.012
P. Makvandi, A. Maleki, M. Shabani, A. Hutton, M. Kirkby et al., Bioinspired microneedle patches: biomimetic designs, fabrication, and biomedical applications. Matter 5(2), 390–429 (2022). https://doi.org/10.1016/j.matt.2021.11.021
L. Ren, B. Liu, W. Zhou, L. Jiang, A mini review of microneedle array electrode for bio-signal recording: a review. IEEE Sens. J. 20(2), 577–590 (2020). https://doi.org/10.1109/jsen.2019.2944847
M. Kim, T. Kim, D.S. Kim, W.K. Chung, Curved microneedle array-based sEMG electrode for robust long-term measurements and high selectivity. Sensors 15(7), 16265–16280 (2015). https://doi.org/10.3390/s150716265
P. Makvandi, M. Kirkby, A.R.J. Hutton, M. Shabani, C.K.Y. Yiu et al., Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 13, 93 (2021). https://doi.org/10.1007/s40820-021-00611-9
Y. Hou, Z. Li, Z. Wang, H. Yu, Miura-ori structured flexible microneedle array electrode for biosignal recording. Microsyst. Nanoeng. 7, 53 (2021). https://doi.org/10.1038/s41378-021-00259-w
R. Wang, X. Jiang, W. Wang, Z. Li, A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens. Actuators B Chem. 244, 750–758 (2017). https://doi.org/10.1016/j.snb.2017.01.052
R. Wang, W. Zhao, W. Wang, Z. Li, A flexible microneedle electrode array with solid silicon needles. J. Microelectromech. Syst. 21(5), 1084–1089 (2012). https://doi.org/10.1109/jmems.2012.2203790
L. Ren, Q. Jiang, Z. Chen, K. Chen, S. Xu et al., Flexible microneedle array electrode using magnetorheological drawing lithography for bio-signal monitoring. Sens. Actuators A Phys. 268, 38–45 (2017). https://doi.org/10.1016/j.sna.2017.10.042
L. Ren, S. Xu, J. Gao, Z. Lin, Z. Chen et al., Fabrication of flexible microneedle array electrodes for wearable bio-signal recording. Sensors 18(4), 1191 (2018). https://doi.org/10.3390/s18041191
M. Mahmood, S. Kwon, H. Kim, Y.S. Kim, P. Siriaraya et al., Wireless soft scalp electronics and virtual reality system for motor imagery-based brain–machine interfaces. Adv. Sci. 8(19), 2101129 (2021). https://doi.org/10.1002/advs.202101129
L.F. Wang, J.Q. Liu, X.X. Yan, B. Yang, C.S. Yang, A MEMS-based pyramid micro-needle electrode for long-term EEG measurement. Microsyst. Technol. 19(2), 269–276 (2012). https://doi.org/10.1007/s00542-012-1638-2
R. Wang, W. Wang, Z. Li, An improved manufacturing approach for discrete silicon microneedle arrays with tunable height-pitch ratio. Sensors 16(10), 1628 (2016). https://doi.org/10.3390/s16101628
H. Roh, Y.J. Yoon, J.S. Park, D.H. Kang, S.M. Kwak et al., Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nano-Micro Lett. 14, 24 (2021). https://doi.org/10.1007/s40820-021-00778-1
K. Badnikar, S.N. Jayadevi, S. Pahal, S. Sripada, M.M. Nayak et al., Generic molding platform for simple, low-cost fabrication of polymeric microneedles. Macromol. Mater. Eng. 305(5), 2000072 (2020). https://doi.org/10.1002/mame.202000072
R. He, Y. Niu, Z. Li, A. Li, H. Yang et al., A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid. Adv. Healthc. Mater. 9(4), 1901201 (2020). https://doi.org/10.1002/adhm.201901201
K.J. Krieger, N. Bertollo, M. Dangol, J.T. Sheridan, M.M. Lowery et al., Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst. Nanoeng. 5, 42 (2019). https://doi.org/10.1038/s41378-019-0088-8
J. Madden, C. O’Mahony, M. Thompson, A. O’Riordan, P. Galvin, Biosensing in dermal interstitial fluid using microneedle based electrochemical devices. Sens. Bio. Sens. Res. 29, 100348 (2020). https://doi.org/10.1016/j.sbsr.2020.100348
K.J. Krieger, J. Liegey, E.M. Cahill, N. Bertollo, M.M. Lowery et al., Development and evaluation of 3D-printed dry microneedle electrodes for surface electromyography. Adv. Mater. Technol. 5(10), 2000518 (2020). https://doi.org/10.1002/admt.202000518
L. Ren, Z. Chen, H. Wang, Z. Dou, B. Liu et al., Fabrication of bendable microneedle-array electrode by magnetorheological drawing lithography for electroencephalogram recording. IEEE Trans. Instrum. Meas. 69(10), 8328–8334 (2020). https://doi.org/10.1109/tim.2020.2990523
R. Soltanzadeh, E. Afsharipour, C. Shafai, N. Anssari, B. Mansouri et al., Molybdenum coated SU-8 microneedle electrodes for transcutaneous electrical nerve stimulation. Biomed. Microdev. 20, 1 (2017). https://doi.org/10.1007/s10544-017-0241-9
A.K. Srivastava, B. Bhartia, K. Mukhopadhyay, A. Sharma, Long term biopotential recording by body conformable photolithography fabricated low cost polymeric microneedle arrays. Sens. Actuators A Phys. 236, 164–172 (2015). https://doi.org/10.1016/j.sna.2015.10.041
K. Moussi, A. Bukhamsin, T. Hidalgo, J. Kosel, Biocompatible 3D printed microneedles for transdermal, intradermal, and percutaneous applications. Adv. Eng. Mater. 22(2), 1901358 (2019). https://doi.org/10.1002/adem.201901358
J.H. Lee, H. Kim, J.H. Kim, S.H. Lee, Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 16(6), 959–976 (2016). https://doi.org/10.1039/c5lc00842e
S. Venkatraman, J. Hendricks, Z.A. King, A.J. Sereno, S. Richardson-Burns et al., In vitro and in vivo evaluation of pedot microelectrodes for neural stimulation and recording. IEEE Trans. Neural Syst. Rehabil. Eng. 19(3), 307–316 (2011). https://doi.org/10.1109/tnsre.2011.2109399
N. Rossetti, P. Luthra, J.E. Hagler, A.H.J. Lee, C. Bodart et al., Poly(3,4-ethylenedioxythiophene) (PEDOT) coatings for high-quality electromyography recording. ACS Appl. Bio Mater. 2(11), 5154–5163 (2019). https://doi.org/10.1021/acsabm.9b00809
C. Bodart, N. Rossetti, J.E. Hagler, P. Chevreau, D. Chhin et al., Electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) coatings for implantable deep-brain-stimulating microelectrodes. ACS Appl. Mater. Interfaces 11(19), 17226–17233 (2019). https://doi.org/10.1021/acsami.9b03088
P. Fattahi, G. Yang, G. Kim, M.R. Abidian, A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26(12), 1846–1885 (2014). https://doi.org/10.1002/adma.201304496
K.M. Szostak, L. Grand, T.G. Constandinou, Neural interfaces for intracortical recording: requirements, fabrication methods, and characteristics. Front. Neurosci. 11, 665 (2017). https://doi.org/10.3389/fnins.2017.00665
C.A. Goldstein, R.D. Chervin, Use of clinical tools and tests in sleep medicine, in Principles and Practice of Sleep Medicine. (Elsevier, 2017), pp. 607–617. https://doi.org/10.1016/B978-0-323-24288-2.00060-X
Products: sleep diagnostics. (Compumedics). https://www.compumedics.com.au/en/product-category/sleep-diagnostics/
What is EEGLAB? (Swartz Center for Computational Neuroscience). https://sccn.ucsd.edu/eeglab/