Fabrication of multi-level 3-dimension microstructures by phase inversion process
Corresponding Author: Y. Song
Nano-Micro Letters,
Vol. 2 No. 2 (2010), Article Number: 95-100
Abstract
One process based on phase inversion of fillers in microstructures for the fabrication of multi-level three-dimensional (3-D) microstructures is described using SU-8, a kind of epoxy photoresist, as the model constructing materials. This process is depicted by use of the routine photolithography technique to construct the top layer of 3-D microstructures on the bottom layer of 3-D microstructures layer by layer. This process makes it possible to fabricate multi-level 3-D microstructures with connectors at desired locations, and to seal long span microstructures (e.g. very shallow channels with depth less than 50 μm and width more than 300 μm) without blockage. In addition, this process can provide a sealing layer by the solidification of a liquid polymer layer, which can be as strong as the bulk constructing materials for microstructures due to a complete contact and cross-linking between the sealing layer and the patterned layers. The hydrodynamic testing indicates that this kind of sealing and interconnection can endure a static pressure of more than 10 MPa overnight and a hydrodynamic pressure drop of about 5.3 MPa for more than 8 hours by pumping the tetrahydrofuran solution through a 60 μm wide micro-channels.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. A. Stone and S. Kim, AIChE J. 47, 1250 (2001). doi:10.1002/aic.690470602.
- B. Zhao, J. S. Moore and D. J. Beebe, Science 291, 1023 (2001). doi:10.1126/science.291.5506.1023.
- C. Wiles, P. Watts, S. J. Haswell and E. Pombo-Villar Lab Chip 4, 171 (2004). doi:10.1039/b400280f.
- W. Ehrfeld, V. Hessol and H. Lowe, Microreactors: New technology for modern Chemistry, Wiley-VCH, New York, 2000.
- P. Watts and S. J. Haswell, Drug Discovery Today 8, 586 (2003). doi:10.1016/S1359-6446(03)02732-6.
- Y. Song, C. S. S. R. Kumar and J. Hormes, Small 4, 698 (2008). doi:10.1002/smll.200701029.
- Y. Song, L. L. Henry and W. T. Yang, Langmuir 25, 10209 (2009). doi:10.1021/la9009866.
- Y. Song and L. L. Henry, Nanoscale Res. Lett. 4, 1130 (2009). doi:10.1007/s11671-009-9369-8.
- P. Watts and S. J. Haswell, Curr. Opin. Chem. Biol. 7, 380 (2003). doi:10.1016/S1367-5931(03)00050-4.
- H. Pennemann, P. Watts, S J Haswell, V. Hessel and H. Löwe, Org. Process Res. Dev. 8, 422 (2004). doi:10.10 21/op0341770.
- M. Castano-Álvarez, M. T., Fernández-Abedul A. Costa-García, M. Agirregabiria, L. J. Fernández, J. M. Ruano-López and B. Barredo-Presa, Talanta 80, 24 (2009). doi:10.1016/j.talanta.2009.05.049.
- Y. Song, C. S. S. R. Kumar and J. Hormes, J. Micromech. Microeng. 14, 932 (2004). doi:10.1088/0960-1317/14/7/013.
- D. Sander, R. Hoffmann, V. Relling and J. Muller, J. Microelectron. Syst. 4, 81 (1995). doi:10.1109/84.388116.
- J Gobet, F. Cardot, J. Bergqvist and F. Rudolf, J. Micromech. Microeng. 3, 123 (1993). doi:10.1088/0960-1317/3/3/007.
- O. Lehmann and M. Stuke, Science 270, 1644 (1995). doi:10.1126/science.270.5242.1644.
- R. J. Jackman, S. T. Brittain, A. Adams, M. G. Prentiss and G. M. Whitesides, Science 280, 2089 (1998). doi:10.1126/science.280.5372.2089.
- A. A. Ayon, R. A. Braff, R. Bayt, H. H. Sawin and M. A. Schmidt, J. Electrochem. Soc. 146, 2730 (1999).
- R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt and K. F. Jensen, J. Micromech. Microeng. 11, 263 (2001). doi:10.1088/0960-1317/11/3/316.
- C. Lin, G. Lee, B. Chang and G. Chang, J. Micromech. Microeng. 12, 590 (2002). doi:10.1088/0960-1317/12/5/312.
- H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger and P. Renaud, Sensors and Actuators A: Physical A 64, 33 (1998). doi:10.1016/S0924-4247(98)80055-1.
- Z. Peng, Z. Ling, M. Tondra, C. Liu, M. Zhang, K. Lian, J. Goettert and J. Hormes, J. Microelect. Syst. 15, 708 (2006).
- A. McAleavey, G. Coles, R. L. Edwards and W. N. Sharpe, Materials science of microelectromechanical systems (MEMS) devices; Proceedings of the Symposium, Boston, MA, USA, Dec. 1–2, pp. 213–218 (1998).
References
H. A. Stone and S. Kim, AIChE J. 47, 1250 (2001). doi:10.1002/aic.690470602.
B. Zhao, J. S. Moore and D. J. Beebe, Science 291, 1023 (2001). doi:10.1126/science.291.5506.1023.
C. Wiles, P. Watts, S. J. Haswell and E. Pombo-Villar Lab Chip 4, 171 (2004). doi:10.1039/b400280f.
W. Ehrfeld, V. Hessol and H. Lowe, Microreactors: New technology for modern Chemistry, Wiley-VCH, New York, 2000.
P. Watts and S. J. Haswell, Drug Discovery Today 8, 586 (2003). doi:10.1016/S1359-6446(03)02732-6.
Y. Song, C. S. S. R. Kumar and J. Hormes, Small 4, 698 (2008). doi:10.1002/smll.200701029.
Y. Song, L. L. Henry and W. T. Yang, Langmuir 25, 10209 (2009). doi:10.1021/la9009866.
Y. Song and L. L. Henry, Nanoscale Res. Lett. 4, 1130 (2009). doi:10.1007/s11671-009-9369-8.
P. Watts and S. J. Haswell, Curr. Opin. Chem. Biol. 7, 380 (2003). doi:10.1016/S1367-5931(03)00050-4.
H. Pennemann, P. Watts, S J Haswell, V. Hessel and H. Löwe, Org. Process Res. Dev. 8, 422 (2004). doi:10.10 21/op0341770.
M. Castano-Álvarez, M. T., Fernández-Abedul A. Costa-García, M. Agirregabiria, L. J. Fernández, J. M. Ruano-López and B. Barredo-Presa, Talanta 80, 24 (2009). doi:10.1016/j.talanta.2009.05.049.
Y. Song, C. S. S. R. Kumar and J. Hormes, J. Micromech. Microeng. 14, 932 (2004). doi:10.1088/0960-1317/14/7/013.
D. Sander, R. Hoffmann, V. Relling and J. Muller, J. Microelectron. Syst. 4, 81 (1995). doi:10.1109/84.388116.
J Gobet, F. Cardot, J. Bergqvist and F. Rudolf, J. Micromech. Microeng. 3, 123 (1993). doi:10.1088/0960-1317/3/3/007.
O. Lehmann and M. Stuke, Science 270, 1644 (1995). doi:10.1126/science.270.5242.1644.
R. J. Jackman, S. T. Brittain, A. Adams, M. G. Prentiss and G. M. Whitesides, Science 280, 2089 (1998). doi:10.1126/science.280.5372.2089.
A. A. Ayon, R. A. Braff, R. Bayt, H. H. Sawin and M. A. Schmidt, J. Electrochem. Soc. 146, 2730 (1999).
R. J. Jackman, T. M. Floyd, R. Ghodssi, M. A. Schmidt and K. F. Jensen, J. Micromech. Microeng. 11, 263 (2001). doi:10.1088/0960-1317/11/3/316.
C. Lin, G. Lee, B. Chang and G. Chang, J. Micromech. Microeng. 12, 590 (2002). doi:10.1088/0960-1317/12/5/312.
H. Lorenz, M. Despont, N. Fahrni, J. Brugger, P. Vettiger and P. Renaud, Sensors and Actuators A: Physical A 64, 33 (1998). doi:10.1016/S0924-4247(98)80055-1.
Z. Peng, Z. Ling, M. Tondra, C. Liu, M. Zhang, K. Lian, J. Goettert and J. Hormes, J. Microelect. Syst. 15, 708 (2006).
A. McAleavey, G. Coles, R. L. Edwards and W. N. Sharpe, Materials science of microelectromechanical systems (MEMS) devices; Proceedings of the Symposium, Boston, MA, USA, Dec. 1–2, pp. 213–218 (1998).