Oxygen Evolution Reaction in Energy Conversion and Storage: Design Strategies Under and Beyond the Energy Scaling Relationship
Corresponding Author: Jiangtian Li
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 112
Abstract
The oxygen evolution reaction (OER) is the essential module in energy conversion and storage devices such as electrolyzer, rechargeable metal–air batteries and regenerative fuel cells. The adsorption energy scaling relations between the reaction intermediates, however, impose a large intrinsic overpotential and sluggish reaction kinetics on OER catalysts. Developing advanced electrocatalysts with high activity and stability based on non-noble metal materials is still a grand challenge. Central to the rational design of novel and high-efficiency catalysts is the development and understanding of quantitative structure–activity relationships, which correlate the catalytic activities with structural and electronic descriptors. This paper comprehensively reviews the benchmark descriptors for OER electrolysis, aiming to give an in-depth understanding on the origins of the electrocatalytic activity of the OER and further contribute to building the theory of electrocatalysis. Meanwhile, the cutting-edge research frontiers for proposing new OER paradigms and crucial strategies to circumvent the scaling relationship are also summarized. Challenges, opportunities and perspectives are discussed, intending to shed some light on the rational design concepts and advance the development of more efficient catalysts for enhancing OER performance.
Highlights:
1 Catalytic descriptors for oxygen evolution reaction under scaling relationship are comprehensively reviewed.
2 New oxygen evolution paradigms and design strategies aiming to circumvent the adsorption energy scaling relationship are summarized.
3 Challenges and perspectives for further improving oxygen evolution activity are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.R. Zeradjanin, J. Masa, I. Spanos, R. Schlögl, Activity and stability of oxides during oxygen evolution reaction—from mechanistic controversies toward relevant electrocatalytic descriptors. Front. Energy Res. 8, 613092 (2021). https://doi.org/10.3389/fenrg.2020.613092
- Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen et al., Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 11, 2002 (2020). https://doi.org/10.1038/s41467-020-15873-x
- Y. Yang, Y. Yu, J. Li, Q. Chen, Y. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
- A. Grimaud, K.J. May, C.E. Carlton, Y. Lee, M. Risch et al., Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013). https://doi.org/10.1038/ncomms3439
- M. Cui, X. Ding, X. Huang, Z. Shen, T. Lee et al., Ni3+-induced hole states enhance the oxygen evolution reaction activity of nixco3−xo4 electrocatalysts. Chem. Mater. 31(18), 7618–7625 (2019). https://doi.org/10.1021/acs.chemmater.9b02453
- W.H. Lee, M.H. Han, Y. Ko, B.K. Min, K.H. Chae et al., Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe–CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 13, 605 (2022). https://doi.org/10.1038/s41467-022-28260-5
- D.A. Cullen, K.C. Neyerlin, R.K. Ahluwalia, R. Mukundan, K.L. More et al., New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021). https://doi.org/10.1038/s41560-021-00775-z
- X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
- W.H. Lee, Y. Ko, J.H. Kim, C.H. Choi, K.H. Chae et al., High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nat. Commun. 12, 4271 (2021). https://doi.org/10.1038/s41467-021-24578-8
- J. Li, D. Chu, D.R. Baker, R. Jiang, Seamless separation of OHad and Had on a Ni–O catalyst toward exceptional alkaline hydrogen evolution. J. Mater. Chem. A 10(3), 1278–1283 (2022). https://doi.org/10.1039/D1TA07303F
- H. Nan, Y. Su, C. Tang, R. Cao, D. Li et al., Engineering the electronic and strained interface for high activity of PdMcore@Ptmonolayer electrocatalysts for oxygen reduction reaction. Sci. Bull. 65(16), 1396–1404 (2020). https://doi.org/10.1016/j.scib.2020.04.015
- P. Rao, Y. Liu, Y. Su, M. Zhong, K. Zhang et al., S, N co-doped carbon nanotube encased Co NPs as efficient bifunctional oxygen electrocatalysts for zinc–air batteries. Chem. Eng. J. 422, 130135 (2021). https://doi.org/10.1016/j.cej.2021.130135
- T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/C8EE01419A
- Z. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303), 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
- H.N. Nong, T. Reier, H. Oh, M. Gliech, P. Paciok et al., A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts. Nat. Catal. 1, 841–851 (2018). https://doi.org/10.1038/s41929-018-0153-y
- J. Zhang, Q. Zhou, Y. Tang, L. Zhang, Y. Li, Zinc–air batteries: are they ready for prime time? Chem. Sci. 10(39), 8924–8929 (2019). https://doi.org/10.1039/C9SC04221K
- W. Sun, F. Wang, B. Zhang, M. Zhang, V. Küpers et al., A rechargeable zinc–air battery based on zinc peroxide chemistry. Science 371(6524), 46–51 (2021). https://doi.org/10.1126/science.abb9554
- Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc–air batteries. Nano-Micro Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
- W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55(8), 2650–2676 (2016). https://doi.org/10.1002/anie.201504830
- Y.N. Regmi, X. Peng, J.C. Fornaciari, M. Wei, D.J. Myers et al., A low temperature unitized regenerative fuel cell realizing 60% round trip efficiency and 10,000 cycles of durability for energy storage applications. Energy Environ. Sci. 13(7), 2096–2105 (2020). https://doi.org/10.1039/C9EE03626A
- J.T. Mefford, A.R. Akbashev, M. Kang, C.L. Bentley, W.E. Gent et al., Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021). https://doi.org/10.1038/s41586-021-03454-x
- H.N. Nong, L.J. Falling, A. Bergmann, M. Klingenhof, H.P. Tran et al., Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020). https://doi.org/10.1038/s41586-020-2908-2
- J. Li, D. Chu, D.R. Baker, A. Leff, P. Zheng et al., Earth-abundant Fe and Ni dually doped Co2P for superior oxygen evolution reactivity and as a bifunctional electrocatalyst toward renewable energy-powered overall alkaline water splitting. ACS Appl. Energy Mater. 4(9), 9969–9981 (2021). https://doi.org/10.1021/acsaem.1c01926
- J. Li, D. Chu, H. Dong, D.R. Baker, R. Jiang, Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J. Am. Chem. Soc. 142(1), 50–54 (2020). https://doi.org/10.1021/jacs.9b10882
- R. Xie, Z. Nie, X. Hu, Y. Yu, C. Aruta et al., Pr-doped LaCoO3 toward stable and efficient oxygen evolution reaction. ACS Appl. Energy Mater. 4(9), 9057–9065 (2021). https://doi.org/10.1021/acsaem.1c01348
- J.S. Kim, B. Kim, H. Kim, K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 8(11), 1702774 (2018). https://doi.org/10.1002/aenm.201702774
- H. Tian, L. Zeng, Y. Huang, Z. Ma, G. Meng et al., In situ electrochemical Mn(III)/Mn(IV) generation of Mn(II)O electrocatalysts for high-performance oxygen reduction. Nano-Micro Lett. 12, 161 (2020). https://doi.org/10.1007/s40820-020-00500-7
- G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke et al., Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29, 83 (2016). https://doi.org/10.1016/j.nanoen.2015.12.032
- W.T. Hong, R.E. Welsch, Y. Shao-Horn, Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. J. Phys. Chem. C 120(1), 78–86 (2016). https://doi.org/10.1021/acs.jpcc.5b10071
- B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
- H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan et al., The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2(7), 724–771 (2010). https://doi.org/10.1002/cctc.201000126
- H. Lv, D. Li, D. Strmcnik, A.P. Paulikas, N.M. Markovic et al., Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy 29, 149–165 (2016). https://doi.org/10.1016/j.nanoen.2016.04.008
- L. Gao, X. Cui, C. Sewell, J. Li, Z. Lin, Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 50(15), 8428–8569 (2021). https://doi.org/10.1039/D0CS00962H
- S. Yuan, X. Duan, J. Liu, Y. Ye, F. Lv et al., Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Mater. 42, 317–369 (2021). https://doi.org/10.1016/j.ensm.2021.07.007
- H. Sun, X. Xu, Y. Song, W. Zhou, Z. Shao, Designing high-valence metal sites for electrochemical water splitting. Adv. Funct. Mater. 31(16), 2009779 (2021). https://doi.org/10.1002/adfm.202009779
- I.C. Man, H. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7), 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
- J. Rossmeisl, A. Logadottir, J.K. Nørskov, Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319(1–3), 178–184 (2005). https://doi.org/10.1016/j.chemphys.2005.05.038
- J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607(1–2), 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- Z. Huang, J. Song, S. Dou, X. Li, J. Wang et al., Strategies to break the scaling relationtoward enhanced oxygen electrocatalysis. Matter 1(6), 1494–1518 (2019). https://doi.org/10.1016/j.matt.2019.09.011
- X. Li, S. Duan, E. Sharman, Y. Zhao, L. Yang et al., Exceeding the volcano relationship in oxygen reduction/evolution reactions using single-atom-based catalysts with dual-active-sites. J. Mater. Chem. A 8(20), 10193–10198 (2020). https://doi.org/10.1039/D0TA01399D
- J. Liu, H. Liu, H. Chen, X. Du, B. Zhang et al., Progress and challenges toward the rational design of oxygen electrocatalysts based on a descriptor approach. Adv. Sci. 7(1), 1901614 (2020). https://doi.org/10.1002/advs.201901614
- J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. PNAS 108(3), 937–943 (2011). https://doi.org/10.1073/pnas.1006652108
- Z. Zhao, S. Liu, S. Zha, D. Cheng, F. Studt et al., Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4, 792–804 (2019). https://doi.org/10.1038/s41578-019-0152-x
- K. Zhang, R. Zou, Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small 17(37), 2100129 (2021). https://doi.org/10.1002/smll.202100129
- J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). https://doi.org/10.1038/nchem.121
- Z. Wang, J. Huang, L. Wang, Y. Liu, W. Liu et al., Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202114696
- K. Yang, P. Xu, Z. Lin, Y. Yang, P. Jiang et al., Ultrasmall Ru/Cu-doped RuO2 complex embedded in amorphous carbon skeleton as highly active bifunctional electrocatalysts for overall water splitting. Small 14(41), 1803009 (2018). https://doi.org/10.1002/smll.201803009
- S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, Tailoring the d-band centers endows (NixFe1−x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 10(16), 9086–9097 (2020). https://doi.org/10.1021/acscatal.0c01273
- W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich et al., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8(5), 1404–1427 (2015). https://doi.org/10.1039/C4EE03869J
- Y. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, D. Morgan, Prediction of solid oxidefuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4(10), 3966–3970 (2011). https://doi.org/10.1039/C1EE02032C
- Y. Lee, D. Lee, X.R. Wang, H.N. Lee, D. Morgan et al., Kinetics of oxygen surface exchange on epitaxial Ruddlesden–Popper phases and correlations to first-principles descriptors. J. Phys. Chem. Lett. 7(2), 244–249 (2016). https://doi.org/10.1021/acs.jpclett.5b02423
- W. Xie, Y. Lee, Y. Shao-Horn, D. Morgan, Oxygen point defect chemistry in Ruddlesden–Popper oxides (La1−xSrx)2MO4±δ (M=Co, Ni, Cu). J. Phys. Chem. Lett. 7(10), 1939–1944 (2016). https://doi.org/10.1021/acs.jpclett.6b00739
- A. Fujimori, Electronic structure of metallic oxides: band-gap closure and valence control. J. Phys. Chem. Solids 53(12), 15951602 (1992). https://doi.org/10.1016/0022-3697(92)90149-8
- E. Antolini, J. Salgado, E. Gonzalez, The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: a literature review and tests on a Pt–Co catalyst. J. Power Sources 160(2), 957–968 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.006
- T. Wang, Y. Sun, Y. Zhou, S. Sun, X. Hu et al., Identifying influential parameters of octahedrally coordinated cations in spinel ZnMnxCo2−xO4 oxides for the oxidation reaction. ACS Catal. 8(9), 8568–8577 (2018). https://doi.org/10.1021/acscatal.8b02376
- H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 121(21), 13174–13212 (2021). https://doi.org/10.1021/acs.chemrev.1c00234
- K.J. May, C.E. Carlton, K.A. Stoerzinger, M. Risch, J. Suntivich et al., Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3(22), 3264–3270 (2012). https://doi.org/10.1021/jz301414z
- B. Han, K.A. Stoerzinger, V. Tileli, A.D. Gamalski, E.A. Stach et al., Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nat. Mater. 16, 121–126 (2017). https://doi.org/10.1038/nmat4764
- Y. Matsumoto, H. Yoneyama, H. Tamura, Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides. J. Electroanal. Chem. Interfacial Electrochem. 79(2), 319–326 (1977). https://doi.org/10.1016/S0022-0728(77)80453-1
- Y. Matsumoto, H. Yoneyama, H. Tamura, Influence of the nature of the conduction band of transition metal oxides on catalytic activity for oxygen reduction. J. Electroanal. Chem. Interfacial Electrochem. 83(2), 237–243 (1977). https://doi.org/10.1016/S0022-0728(77)80169-1
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011). https://doi.org/10.1038/nchem.1069
- C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn et al., Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29(23), 1606800 (2017). https://doi.org/10.1002/adma.201606800
- J. Bockris, T. Otagawa, Mechanism of oxygen evolution on perovskites. J. Phys. Chem. 87(15), 2960–2971 (1983). https://doi.org/10.1021/j100238a048
- J. Bockris, T. Otagawa, The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290 (1984). https://doi.org/10.1149/1.2115565
- J. Suntivich, W.T. Hong, Y. Lee, J.M. Rondinell, W. Yang et al., Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 118(4), 1856–1863 (2013). https://doi.org/10.1021/jp410644j
- X. Wang, X.J. Gao, L. Qin, C. Wang, L. Song et al., eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat. Commun. 10, 704 (2019). https://doi.org/10.1038/s41467-019-08657-5
- M. Yu, G. Li, C. Fu, E. Liu, K. Manna et al., Tunable eg Orbital occupancy in heusler compounds for oxygen evolution reaction. Angew. Chem. Int. Ed. 60(11), 5800–5805 (2021). https://doi.org/10.1002/anie.202013610
- J. Song, C. Wei, Z. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/C9CS00607A
- Y. Li, H. Jiang, Z. Cui, S. Zhu, Z. Li et al., Spin state tuning of the octahedral sites in Ni–Co-based spinel toward highly efficient urea oxidation reaction. J. Phys. Chem. C 125(17), 9190–9199 (2021). https://doi.org/10.1021/acs.jpcc.1c02116
- Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang et al., Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 3(5), 812–821 (2017). https://doi.org/10.1016/j.chempr.2017.09.003
- H. Liu, S. Liu, Y. Zou, X. Zhang, P. Guo et al., Synergistic doping and tailoring: realizing in depth modulation on valence state of CoFe spinel oxide for high-efficiency water oxidation. Appl. Surf. Sci. 572, 151388 (2022). https://doi.org/10.1016/j.apsusc.2021.151388
- Y. Zhou, S. Sun, S. Xi, Y. Duan, T. Sritharan et al., Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide. Adv. Mater. 30(11), 1705407 (2018). https://doi.org/10.1002/adma.201705407
- A. Badreldin, A.E. Abusrafa, A. Abdel-Wahab, Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting. Chemsuschem 14(1), 10–32 (2021). https://doi.org/10.1002/cssc.202002002
- Y. Guo, Y. Tong, P. Chen, K. Xu, J. Zhao et al., Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 27(39), 5989–5994 (2015). https://doi.org/10.1002/adma.201502024
- J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358(6364), 751–756 (2017). https://doi.org/10.1126/science.aam7092
- W.T. Hong, K.A. Stoerzinger, Y. Lee, L. Giordano, A. Grimaud et al., Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 10(10), 2190–2200 (2017). https://doi.org/10.1039/C7EE02052J
- D.A. Kuznetsov, B. Han, Y. Yu, R.R. Rao, J. Hwang et al., Tuning redox transitions via inductive effect in metal oxides and complexes, and implicationsin oxygen electrocatalysis. Joule 2(2), 225–244 (2018). https://doi.org/10.1016/j.joule.2017.11.014
- Y. Duan, S. Sun, S. Xi, X. Ren, Y. Zhou et al., Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem. Mater. 29(24), 10534–10541 (2017). https://doi.org/10.1021/acs.chemmater.7b04534
- D. Du, R. Zheng, X. Chen, W. Xiang, C. Zhao et al., Adjusting the covalency of metal–oxygen bonds in LaCoO3 by Sr and Fe cation codoping to achieve highly efficient electrocatalysts for aprotic lithium–oxygen batteries. ACS Appl. Mater. Interfaces 13(28), 33133–33146 (2021). https://doi.org/10.1021/acsami.1c08586
- S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami et al., Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 6, 8249 (2015). https://doi.org/10.1038/ncomms9249
- Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen et al., Enlarged Co–O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 30(32), 1802912 (2018). https://doi.org/10.1002/adma.201802912
- F. Liu, M. Yu, X. Chen, J. Li, H. Liu et al., Defective high-entropy rocksalt oxide with enhanced metal-oxygen covalency for electrocatalytic oxygen evolution. Chin. J. Catal. 43(1), 122–129 (2022). https://doi.org/10.1016/S1872-2067(21)63794-4
- Y. Zhu, H.A. Tahini, Z. Hu, Y. Yin, Q. Lin et al., Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered Ruddlesden–Popper oxide. EcoMat 2(2), e12021 (2020). https://doi.org/10.1002/eom2.12021
- S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren et al., Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides. Angew. Chem. Int. Ed. 58(18), 6042–6047 (2019). https://doi.org/10.1002/anie.201902114
- X. Cheng, E. Fabbri, M. Nachtegaal, I.E. Castelli, M.E. Kazzi et al., Oxygen evolution reaction on L1−xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 27(22), 7662–7672 (2015). https://doi.org/10.1021/acs.chemmater.5b03138
- C. Yang, A. Grimaud, Factors controlling the redox activity of oxygen in perovskites: from theory to application for catalytic reactions. Catalysts 7(5), 149 (2017). https://doi.org/10.3390/catal7050149
- F. Calle-Vallejo, N.G. Inoglu, H. Su, J.I. Martínez, I.C. Man et al., Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4(3), 1245–1249 (2013). https://doi.org/10.1039/C2SC21601A
- F. Calle-Vallejo, J.I. Martínez, J.M. García-Lastra, J. Rossmeisl, M.T.M. Koper, Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. Phys. Rev. Lett. 108, 116103 (2012). https://doi.org/10.1103/PhysRevLett.108.116103
- F. Calle-Vallejo, J.I. Martínez, J.M.G. Lastra, E. Abad, M.T.M. Koper, Oxygen reduction and evolution at single-metal active sites: comparison between functionalized graphitic materials and protoporphyrins. Surf. Sci. 607, 47–53 (2013). https://doi.org/10.1016/j.susc.2012.08.005
- F. Calle-Vallejo, O. Diaz-Morales, M.J. Kolb, M.T.M. Koper, Why is bulk thermochemistry a good descriptor for the electrocatalytic activity of transition metal oxides? ACS Catal. 5(2), 869–873 (2015). https://doi.org/10.1021/cs5016657
- C.F. Dickens, J.H. Montoya, A.R. Kulkarni, M. Bajdich, J.K. Nørskov, An electronic structure descriptor for oxygen reactivity at metal and metaloxide surfaces. Surf. Sci. 681, 122–129 (2019). https://doi.org/10.1016/j.susc.2018.11.019
- H.B. Tao, L. Fang, J. Chen, H.B. Yang, J. Gao et al., Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 138(31), 9978–9985 (2016). https://doi.org/10.1021/jacs.6b05398
- N. Govindarajan, M.T.M. Koper, E.J. Meijer, F. Calle-Vallejo, Outlining the scaling-based and scaling-free optimization of electrocatalysts. ACS Catal. 9(5), 4218–4225 (2019). https://doi.org/10.1021/acscatal.9b00532
- C.F. Dickens, C. Kirk, J.K. Nørskov, Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C 123(31), 18960–18977 (2019). https://doi.org/10.1021/acs.jpcc.9b03830
- N.B. Halck, V. Petrykin, P. Krtil, J. Rossmeisl, Beyond the volcano limitations in electrocatalysis–oxygen evolution reaction. Phys. Chem. Chem. Phys. 16(27), 13688–13688 (2014). https://doi.org/10.1039/C4CP00571F
- M. Kodera, Y. Kawahara, Y. Hitomi, T. Nomura, T. Ogura et al., Reversible O–O bond scission of peroxodiiron(III) to high-spin oxodiiron(IV) in dioxygen activation of a diiron center with a bis-tpa dinucleating ligand as a soluble methane monooxygenase model. J. Am. Chem. Soc. 134(32), 13236–13239 (2012). https://doi.org/10.1021/ja306089q
- S. Kundu, E. Matito, S. Walleck, F.F. Pfaff, F. Heims et al., O–O bond formation mediated by a hexanuclear iron complex supported on a stannoxane. Chem. Eur. J. 18(10), 2787–2791 (2012). https://doi.org/10.1002/chem.201102326
- M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai et al., A pentanuclear iron catalyst designed for water oxidation. Nature 530, 465–468 (2016). https://doi.org/10.1038/nature16529
- Y. Umena, K. Kawakami, J. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011). https://doi.org/10.1038/nature09913
- G.C. Dismukes, R. Brimblecombe, G.A.N. Felton, R.S. Pryadun, J.E. Sheats et al., Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 42(12), 1935–1943 (2009). https://doi.org/10.1021/ar900249x
- A. Ramírez, P. Hillebrand, D. Stellmach, M.M. May, P. Bogdanoff et al., Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J. Phys. Chem. C 118(26), 14073–14081 (2014). https://doi.org/10.1021/jp500939d
- C. Lin, J. Li, X. Li, S. Yang, W. Luo et al., In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021). https://doi.org/10.1038/s41929-021-00703-0
- J.O. Bockris, Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817 (1956). https://doi.org/10.1063/1.1742616
- F. Song, M.M. Busch, B. Lassalle-Kaiser, C. Hsu, E. Petkucheva et al., An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 5(3), 558–568 (2019). https://doi.org/10.1021/acscentsci.9b00053
- P. Garrido-Barros, C. Gimbert-Suriñach, R. Matheu, X. Sala, A. Llobet, How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 46(20), 6088–6098 (2017). https://doi.org/10.1039/C7CS00248C
- Z. Gao, J. Liu, X. Chen, X. Zheng, J. Mao et al., Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Adv. Mater. 31(11), 1804769 (2019). https://doi.org/10.1002/adma.201804769
- N.B. Halck, V. Petrykin, P. Krtil, J. Rossmeisl, Beyond the volcano limitations in electrocatalysis—oxygen evolution reaction. Phys. Chem. Chem. Phys. 16(27), 13682–13688 (2014). https://doi.org/10.1039/C4CP00571F
- H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
- J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen et al., Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 140(11), 3876–3879 (2018). https://doi.org/10.1021/jacs.8b00752
- H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu et al., Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354(6315), 1031–1036 (2016). https://doi.org/10.1126/science.aaf7680
- L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li et al., Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354(6318), 1410–1414 (2016). https://doi.org/10.1126/science.aah6133
- M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59
- Y. Xie, Z. Wang, T. Zhua, D. Shu, Z. Hou et al., Breaking the scaling relations for oxygen reduction reaction on nitrogen-doped graphene by tensile strain. Carbon 139, 129–136 (2018). https://doi.org/10.1016/j.carbon.2018.06.026
- A. Khorshidi, J. Violet, J. Hashemi, A.A. Peterson, How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018). https://doi.org/10.1038/s41929-018-0054-0
- A.D. Doyle, J.H. Montoya, A. Vojvodic, Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 7(5), 738–742 (2015). https://doi.org/10.1002/cctc.201402864
- Y. Li, L. Zhang, J. Peng, W. Zhang, K. Peng, Magnetic field enhancing electrocatalysis of Co3O4/NF for oxygen evolution reaction. J. Power Sources 433, 226704 (2019). https://doi.org/10.1016/j.jpowsour.2019.226704
- F.A. Garcés-Pineda, M. Blasco-Ahicart, D. Nieto-Castro, N. López, J.R. Galán-Mascarós, Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4, 519–525 (2019). https://doi.org/10.1038/s41560-019-0404-4
- W. Mtangi, F. Tassinari, K. Vankayala, A.V. Jentzsch, B. Adelizzi et al., Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting. J. Am. Chem. Soc. 139(7), 2794–2798 (2017). https://doi.org/10.1021/jacs.6b12971
- X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian et al., Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12, 2608 (2021). https://doi.org/10.1038/s41467-021-22865-y
- Y. Zhang, P. Guo, S. Li, J. Sun, W. Wang et al., Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials. J. Mater. Chem. A 10(4), 1760–1767 (2022). https://doi.org/10.1039/D1TA09444K
- G. Zhou, P. Wang, H. Li, B. Hu, Y. Sun et al., Spin-state reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat. Commun. 12, 4827 (2021). https://doi.org/10.1038/s41467-021-25095-4
- L. Gao, X. Cui, Z. Wang, C.D. Sewell, Z. Li et al., Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution. PNAS 118(7), e2023421118 (2021). https://doi.org/10.1073/pnas.2023421118
- J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5(3), 1360–1384 (2015). https://doi.org/10.1039/C4CY00974F
- J. Li, S. Cushing, F. Meng, T. Senty, A.D. Bristow et al., Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photon. 9, 601–607 (2015). https://doi.org/10.1038/nphoton.2015.142
- J. Li, S.K. Cushing, P. Zheng, F. Meng, D. Chu et al., Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4, 2651 (2013). https://doi.org/10.1038/ncomms3651
- G. Liu, P. Li, G. Zhao, X. Wang, J. Kong et al., Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 138(29), 9128–9136 (2016). https://doi.org/10.1021/jacs.6b05190
- N. Zhang, Y. Chai, Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Enviorn. Sci. 14(9), 4647–4671 (2021). https://doi.org/10.1039/D1EE01277K
- Y. Sun, H. Liao, J. Wang, B. Chen, S. Sun et al., Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nat. Catal. 3, 554–563 (2020). https://doi.org/10.1038/s41929-020-0465-6
- A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017). https://doi.org/10.1038/nchem.2695
- G. Assat, J. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li–ion batteries. Nat. Energy 3, 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0
- J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai et al., Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7, 11053 (2016). https://doi.org/10.1038/ncomms11053
- X. Li, H. Wang, Z. Cui, Y. Li, S. Xin et al., Exceptional oxygen evolution reactivities on CaCoO3 and SrCoO3. Sci. Adv. 5(8), eaav6262 (2019). https://doi.org/10.1126/sciadv.aav6262
- T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014). https://doi.org/10.1038/ncomms4949
- X. Rong, J. Parolin, A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6(2), 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432
- R.P. Forslund, W.G. Hardin, X. Rong, A.M. Abakumov, D. Filimonov et al., Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexO4±δ Ruddlesden–Popper oxides. Nat. Commun. 9, 3150 (2018). https://doi.org/10.1038/s41467-018-05600-y
- Z. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019). https://doi.org/10.1038/s41560-019-0355-9
- D. Seo, J. Lee, A. Urban, R. Malik, S. Kang et al., The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). https://doi.org/10.1038/nchem.2524
- J. Lee, D.A. Kitchaev, D. Kwon, C. Lee, J.K. Papp et al., Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018). https://doi.org/10.1038/s41586-018-0015-4
- J. Hong, W.E. Gent, P. Xiao, K. Lim, D. Seo et al., Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019). https://doi.org/10.1038/s41563-018-0276-1
- V.M.V.G. Nageswaran, Operando X-ray spectroscopic techniques: a focus on hydrogen and oxygen evolution reactions. Front. Chem. 8, 23 (2020). https://doi.org/10.3389/fchem.2020.00023
- N. Zhang, X. Feng, D. Rao, X. Deng, L. Cai et al., Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11, 4066 (2020). https://doi.org/10.1038/s41467-020-17934-7
- J. Shan, T. Ling, K. Davey, Y. Zheng, S. Qiao, Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 31(17), 1900510 (2019). https://doi.org/10.1002/adma.201900510
- A. Moysiadou, S. Lee, C. Hsu, H.M. Chen, X. Hu, Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 142(27), 11901–11914 (2020). https://doi.org/10.1021/jacs.0c04867
- S. Lee, K. Banjac, M. Lingenfelder, X. Hu, Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem. Int. Ed. 58(30), 10295–10299 (2019). https://doi.org/10.1002/anie.201903200
- M.T.M. Koper, Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4(7), 2710–2723 (2013). https://doi.org/10.1039/C3SC50205H
- L. Giordano, B. Han, M. Risch, W.T. Hong, R.R. Rao et al., pH dependence of OER activity of oxides: current and future perspectives. Catal. Today 262, 2–10 (2016). https://doi.org/10.1016/j.cattod.2015.10.006
- C. Roy, B. Sebok, S.B. Scott, E.M. Fiordaliso, J.E. Sørensen et al., Impact of nanop size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 1, 820–829 (2018). https://doi.org/10.1038/s41929-018-0162-x
- B. Hua, M. Li, W. Pang, W. Tang, S. Zhao et al., Activating p-blocking centers in perovskite for efficient water splitting. Chem 4(12), 2902–2916 (2018). https://doi.org/10.1016/j.chempr.2018.09.012
- P. Wang, Q. Cheng, C. Mao, W. Su, L. Yang et al., Regulation of oxygen vacancy within oxide pyrochlores by F-doping to boost oxygen-evolution activity. J. Power Sources 502, 229903 (2021). https://doi.org/10.1016/j.jpowsour.2021.229903
- L. Bai, C. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, A cobalt–iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141(36), 14190–14199 (2019). https://doi.org/10.1021/jacs.9b05268
References
A.R. Zeradjanin, J. Masa, I. Spanos, R. Schlögl, Activity and stability of oxides during oxygen evolution reaction—from mechanistic controversies toward relevant electrocatalytic descriptors. Front. Energy Res. 8, 613092 (2021). https://doi.org/10.3389/fenrg.2020.613092
Y. Pan, X. Xu, Y. Zhong, L. Ge, Y. Chen et al., Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 11, 2002 (2020). https://doi.org/10.1038/s41467-020-15873-x
Y. Yang, Y. Yu, J. Li, Q. Chen, Y. Du et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 13, 160 (2021). https://doi.org/10.1007/s40820-021-00679-3
A. Grimaud, K.J. May, C.E. Carlton, Y. Lee, M. Risch et al., Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013). https://doi.org/10.1038/ncomms3439
M. Cui, X. Ding, X. Huang, Z. Shen, T. Lee et al., Ni3+-induced hole states enhance the oxygen evolution reaction activity of nixco3−xo4 electrocatalysts. Chem. Mater. 31(18), 7618–7625 (2019). https://doi.org/10.1021/acs.chemmater.9b02453
W.H. Lee, M.H. Han, Y. Ko, B.K. Min, K.H. Chae et al., Electrode reconstruction strategy for oxygen evolution reaction: maintaining Fe–CoOOH phase with intermediate-spin state during electrolysis. Nat. Commun. 13, 605 (2022). https://doi.org/10.1038/s41467-022-28260-5
D.A. Cullen, K.C. Neyerlin, R.K. Ahluwalia, R. Mukundan, K.L. More et al., New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 6, 462–474 (2021). https://doi.org/10.1038/s41560-021-00775-z
X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019). https://doi.org/10.1038/s41929-019-0237-3
W.H. Lee, Y. Ko, J.H. Kim, C.H. Choi, K.H. Chae et al., High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells. Nat. Commun. 12, 4271 (2021). https://doi.org/10.1038/s41467-021-24578-8
J. Li, D. Chu, D.R. Baker, R. Jiang, Seamless separation of OHad and Had on a Ni–O catalyst toward exceptional alkaline hydrogen evolution. J. Mater. Chem. A 10(3), 1278–1283 (2022). https://doi.org/10.1039/D1TA07303F
H. Nan, Y. Su, C. Tang, R. Cao, D. Li et al., Engineering the electronic and strained interface for high activity of PdMcore@Ptmonolayer electrocatalysts for oxygen reduction reaction. Sci. Bull. 65(16), 1396–1404 (2020). https://doi.org/10.1016/j.scib.2020.04.015
P. Rao, Y. Liu, Y. Su, M. Zhong, K. Zhang et al., S, N co-doped carbon nanotube encased Co NPs as efficient bifunctional oxygen electrocatalysts for zinc–air batteries. Chem. Eng. J. 422, 130135 (2021). https://doi.org/10.1016/j.cej.2021.130135
T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ. Sci. 11(10), 2696–2767 (2018). https://doi.org/10.1039/C8EE01419A
Z. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321), eaad4998 (2017). https://doi.org/10.1126/science.aad4998
L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya et al., A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303), 1011–1014 (2016). https://doi.org/10.1126/science.aaf5050
H.N. Nong, T. Reier, H. Oh, M. Gliech, P. Paciok et al., A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts. Nat. Catal. 1, 841–851 (2018). https://doi.org/10.1038/s41929-018-0153-y
J. Zhang, Q. Zhou, Y. Tang, L. Zhang, Y. Li, Zinc–air batteries: are they ready for prime time? Chem. Sci. 10(39), 8924–8929 (2019). https://doi.org/10.1039/C9SC04221K
W. Sun, F. Wang, B. Zhang, M. Zhang, V. Küpers et al., A rechargeable zinc–air battery based on zinc peroxide chemistry. Science 371(6524), 46–51 (2021). https://doi.org/10.1126/science.abb9554
Y. Zhu, K. Yue, C. Xia, S. Zaman, H. Yang et al., Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc–air batteries. Nano-Micro Lett. 13, 137 (2021). https://doi.org/10.1007/s40820-021-00669-5
W. Xia, A. Mahmood, Z. Liang, R. Zou, S. Guo, Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55(8), 2650–2676 (2016). https://doi.org/10.1002/anie.201504830
Y.N. Regmi, X. Peng, J.C. Fornaciari, M. Wei, D.J. Myers et al., A low temperature unitized regenerative fuel cell realizing 60% round trip efficiency and 10,000 cycles of durability for energy storage applications. Energy Environ. Sci. 13(7), 2096–2105 (2020). https://doi.org/10.1039/C9EE03626A
J.T. Mefford, A.R. Akbashev, M. Kang, C.L. Bentley, W.E. Gent et al., Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021). https://doi.org/10.1038/s41586-021-03454-x
H.N. Nong, L.J. Falling, A. Bergmann, M. Klingenhof, H.P. Tran et al., Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020). https://doi.org/10.1038/s41586-020-2908-2
J. Li, D. Chu, D.R. Baker, A. Leff, P. Zheng et al., Earth-abundant Fe and Ni dually doped Co2P for superior oxygen evolution reactivity and as a bifunctional electrocatalyst toward renewable energy-powered overall alkaline water splitting. ACS Appl. Energy Mater. 4(9), 9969–9981 (2021). https://doi.org/10.1021/acsaem.1c01926
J. Li, D. Chu, H. Dong, D.R. Baker, R. Jiang, Boosted oxygen evolution reactivity by igniting double exchange interaction in spinel oxides. J. Am. Chem. Soc. 142(1), 50–54 (2020). https://doi.org/10.1021/jacs.9b10882
R. Xie, Z. Nie, X. Hu, Y. Yu, C. Aruta et al., Pr-doped LaCoO3 toward stable and efficient oxygen evolution reaction. ACS Appl. Energy Mater. 4(9), 9057–9065 (2021). https://doi.org/10.1021/acsaem.1c01348
J.S. Kim, B. Kim, H. Kim, K. Kang, Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 8(11), 1702774 (2018). https://doi.org/10.1002/aenm.201702774
H. Tian, L. Zeng, Y. Huang, Z. Ma, G. Meng et al., In situ electrochemical Mn(III)/Mn(IV) generation of Mn(II)O electrocatalysts for high-performance oxygen reduction. Nano-Micro Lett. 12, 161 (2020). https://doi.org/10.1007/s40820-020-00500-7
G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke et al., Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy 29, 83 (2016). https://doi.org/10.1016/j.nanoen.2015.12.032
W.T. Hong, R.E. Welsch, Y. Shao-Horn, Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. J. Phys. Chem. C 120(1), 78–86 (2016). https://doi.org/10.1021/acs.jpcc.5b10071
B. Hammer, J.K. Nørskov, Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71–129 (2000). https://doi.org/10.1016/S0360-0564(02)45013-4
H. Dau, C. Limberg, T. Reier, M. Risch, S. Roggan et al., The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2(7), 724–771 (2010). https://doi.org/10.1002/cctc.201000126
H. Lv, D. Li, D. Strmcnik, A.P. Paulikas, N.M. Markovic et al., Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction. Nano Energy 29, 149–165 (2016). https://doi.org/10.1016/j.nanoen.2016.04.008
L. Gao, X. Cui, C. Sewell, J. Li, Z. Lin, Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 50(15), 8428–8569 (2021). https://doi.org/10.1039/D0CS00962H
S. Yuan, X. Duan, J. Liu, Y. Ye, F. Lv et al., Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Mater. 42, 317–369 (2021). https://doi.org/10.1016/j.ensm.2021.07.007
H. Sun, X. Xu, Y. Song, W. Zhou, Z. Shao, Designing high-valence metal sites for electrochemical water splitting. Adv. Funct. Mater. 31(16), 2009779 (2021). https://doi.org/10.1002/adfm.202009779
I.C. Man, H. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez et al., Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3(7), 1159–1165 (2011). https://doi.org/10.1002/cctc.201000397
J. Rossmeisl, A. Logadottir, J.K. Nørskov, Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319(1–3), 178–184 (2005). https://doi.org/10.1016/j.chemphys.2005.05.038
J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Nørskov, Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607(1–2), 83–89 (2007). https://doi.org/10.1016/j.jelechem.2006.11.008
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004). https://doi.org/10.1021/jp047349j
Z. Huang, J. Song, S. Dou, X. Li, J. Wang et al., Strategies to break the scaling relationtoward enhanced oxygen electrocatalysis. Matter 1(6), 1494–1518 (2019). https://doi.org/10.1016/j.matt.2019.09.011
X. Li, S. Duan, E. Sharman, Y. Zhao, L. Yang et al., Exceeding the volcano relationship in oxygen reduction/evolution reactions using single-atom-based catalysts with dual-active-sites. J. Mater. Chem. A 8(20), 10193–10198 (2020). https://doi.org/10.1039/D0TA01399D
J. Liu, H. Liu, H. Chen, X. Du, B. Zhang et al., Progress and challenges toward the rational design of oxygen electrocatalysts based on a descriptor approach. Adv. Sci. 7(1), 1901614 (2020). https://doi.org/10.1002/advs.201901614
J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. PNAS 108(3), 937–943 (2011). https://doi.org/10.1073/pnas.1006652108
Z. Zhao, S. Liu, S. Zha, D. Cheng, F. Studt et al., Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 4, 792–804 (2019). https://doi.org/10.1038/s41578-019-0152-x
K. Zhang, R. Zou, Advanced transition metal-based OER electrocatalysts: current status, opportunities, and challenges. Small 17(37), 2100129 (2021). https://doi.org/10.1002/smll.202100129
J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009). https://doi.org/10.1038/nchem.121
Z. Wang, J. Huang, L. Wang, Y. Liu, W. Liu et al., Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202114696
K. Yang, P. Xu, Z. Lin, Y. Yang, P. Jiang et al., Ultrasmall Ru/Cu-doped RuO2 complex embedded in amorphous carbon skeleton as highly active bifunctional electrocatalysts for overall water splitting. Small 14(41), 1803009 (2018). https://doi.org/10.1002/smll.201803009
S. Sun, X. Zhou, B. Cong, W. Hong, G. Chen, Tailoring the d-band centers endows (NixFe1−x)2P nanosheets with efficient oxygen evolution catalysis. ACS Catal. 10(16), 9086–9097 (2020). https://doi.org/10.1021/acscatal.0c01273
W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, J. Suntivich et al., Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8(5), 1404–1427 (2015). https://doi.org/10.1039/C4EE03869J
Y. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, D. Morgan, Prediction of solid oxidefuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4(10), 3966–3970 (2011). https://doi.org/10.1039/C1EE02032C
Y. Lee, D. Lee, X.R. Wang, H.N. Lee, D. Morgan et al., Kinetics of oxygen surface exchange on epitaxial Ruddlesden–Popper phases and correlations to first-principles descriptors. J. Phys. Chem. Lett. 7(2), 244–249 (2016). https://doi.org/10.1021/acs.jpclett.5b02423
W. Xie, Y. Lee, Y. Shao-Horn, D. Morgan, Oxygen point defect chemistry in Ruddlesden–Popper oxides (La1−xSrx)2MO4±δ (M=Co, Ni, Cu). J. Phys. Chem. Lett. 7(10), 1939–1944 (2016). https://doi.org/10.1021/acs.jpclett.6b00739
A. Fujimori, Electronic structure of metallic oxides: band-gap closure and valence control. J. Phys. Chem. Solids 53(12), 15951602 (1992). https://doi.org/10.1016/0022-3697(92)90149-8
E. Antolini, J. Salgado, E. Gonzalez, The stability of Pt–M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells: a literature review and tests on a Pt–Co catalyst. J. Power Sources 160(2), 957–968 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.006
T. Wang, Y. Sun, Y. Zhou, S. Sun, X. Hu et al., Identifying influential parameters of octahedrally coordinated cations in spinel ZnMnxCo2−xO4 oxides for the oxidation reaction. ACS Catal. 8(9), 8568–8577 (2018). https://doi.org/10.1021/acscatal.8b02376
H. Ding, H. Liu, W. Chu, C. Wu, Y. Xie, Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 121(21), 13174–13212 (2021). https://doi.org/10.1021/acs.chemrev.1c00234
K.J. May, C.E. Carlton, K.A. Stoerzinger, M. Risch, J. Suntivich et al., Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3(22), 3264–3270 (2012). https://doi.org/10.1021/jz301414z
B. Han, K.A. Stoerzinger, V. Tileli, A.D. Gamalski, E.A. Stach et al., Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nat. Mater. 16, 121–126 (2017). https://doi.org/10.1038/nmat4764
Y. Matsumoto, H. Yoneyama, H. Tamura, Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides. J. Electroanal. Chem. Interfacial Electrochem. 79(2), 319–326 (1977). https://doi.org/10.1016/S0022-0728(77)80453-1
Y. Matsumoto, H. Yoneyama, H. Tamura, Influence of the nature of the conduction band of transition metal oxides on catalytic activity for oxygen reduction. J. Electroanal. Chem. Interfacial Electrochem. 83(2), 237–243 (1977). https://doi.org/10.1016/S0022-0728(77)80169-1
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011). https://doi.org/10.1038/nchem.1069
C. Wei, Z. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn et al., Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29(23), 1606800 (2017). https://doi.org/10.1002/adma.201606800
J. Bockris, T. Otagawa, Mechanism of oxygen evolution on perovskites. J. Phys. Chem. 87(15), 2960–2971 (1983). https://doi.org/10.1021/j100238a048
J. Bockris, T. Otagawa, The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290 (1984). https://doi.org/10.1149/1.2115565
J. Suntivich, W.T. Hong, Y. Lee, J.M. Rondinell, W. Yang et al., Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 118(4), 1856–1863 (2013). https://doi.org/10.1021/jp410644j
X. Wang, X.J. Gao, L. Qin, C. Wang, L. Song et al., eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat. Commun. 10, 704 (2019). https://doi.org/10.1038/s41467-019-08657-5
M. Yu, G. Li, C. Fu, E. Liu, K. Manna et al., Tunable eg Orbital occupancy in heusler compounds for oxygen evolution reaction. Angew. Chem. Int. Ed. 60(11), 5800–5805 (2021). https://doi.org/10.1002/anie.202013610
J. Song, C. Wei, Z. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49(7), 2196–2214 (2020). https://doi.org/10.1039/C9CS00607A
Y. Li, H. Jiang, Z. Cui, S. Zhu, Z. Li et al., Spin state tuning of the octahedral sites in Ni–Co-based spinel toward highly efficient urea oxidation reaction. J. Phys. Chem. C 125(17), 9190–9199 (2021). https://doi.org/10.1021/acs.jpcc.1c02116
Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang et al., Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity. Chem 3(5), 812–821 (2017). https://doi.org/10.1016/j.chempr.2017.09.003
H. Liu, S. Liu, Y. Zou, X. Zhang, P. Guo et al., Synergistic doping and tailoring: realizing in depth modulation on valence state of CoFe spinel oxide for high-efficiency water oxidation. Appl. Surf. Sci. 572, 151388 (2022). https://doi.org/10.1016/j.apsusc.2021.151388
Y. Zhou, S. Sun, S. Xi, Y. Duan, T. Sritharan et al., Superexchange effects on oxygen reduction activity of edge-sharing [CoxMn1−xO6] octahedra in spinel oxide. Adv. Mater. 30(11), 1705407 (2018). https://doi.org/10.1002/adma.201705407
A. Badreldin, A.E. Abusrafa, A. Abdel-Wahab, Oxygen-deficient cobalt-based oxides for electrocatalytic water splitting. Chemsuschem 14(1), 10–32 (2021). https://doi.org/10.1002/cssc.202002002
Y. Guo, Y. Tong, P. Chen, K. Xu, J. Zhao et al., Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Adv. Mater. 27(39), 5989–5994 (2015). https://doi.org/10.1002/adma.201502024
J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu et al., Perovskites in catalysis and electrocatalysis. Science 358(6364), 751–756 (2017). https://doi.org/10.1126/science.aam7092
W.T. Hong, K.A. Stoerzinger, Y. Lee, L. Giordano, A. Grimaud et al., Charge-transfer-energy-dependent oxygen evolution reaction mechanisms for perovskite oxides. Energy Environ. Sci. 10(10), 2190–2200 (2017). https://doi.org/10.1039/C7EE02052J
D.A. Kuznetsov, B. Han, Y. Yu, R.R. Rao, J. Hwang et al., Tuning redox transitions via inductive effect in metal oxides and complexes, and implicationsin oxygen electrocatalysis. Joule 2(2), 225–244 (2018). https://doi.org/10.1016/j.joule.2017.11.014
Y. Duan, S. Sun, S. Xi, X. Ren, Y. Zhou et al., Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction. Chem. Mater. 29(24), 10534–10541 (2017). https://doi.org/10.1021/acs.chemmater.7b04534
D. Du, R. Zheng, X. Chen, W. Xiang, C. Zhao et al., Adjusting the covalency of metal–oxygen bonds in LaCoO3 by Sr and Fe cation codoping to achieve highly efficient electrocatalysts for aprotic lithium–oxygen batteries. ACS Appl. Mater. Interfaces 13(28), 33133–33146 (2021). https://doi.org/10.1021/acsami.1c08586
S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami et al., Covalency-reinforced oxygen evolution reaction catalyst. Nat. Commun. 6, 8249 (2015). https://doi.org/10.1038/ncomms9249
Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen et al., Enlarged Co–O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 30(32), 1802912 (2018). https://doi.org/10.1002/adma.201802912
F. Liu, M. Yu, X. Chen, J. Li, H. Liu et al., Defective high-entropy rocksalt oxide with enhanced metal-oxygen covalency for electrocatalytic oxygen evolution. Chin. J. Catal. 43(1), 122–129 (2022). https://doi.org/10.1016/S1872-2067(21)63794-4
Y. Zhu, H.A. Tahini, Z. Hu, Y. Yin, Q. Lin et al., Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered Ruddlesden–Popper oxide. EcoMat 2(2), e12021 (2020). https://doi.org/10.1002/eom2.12021
S. Sun, Y. Sun, Y. Zhou, S. Xi, X. Ren et al., Shifting oxygen charge towards octahedral metal: a way to promote water oxidation on cobalt spinel oxides. Angew. Chem. Int. Ed. 58(18), 6042–6047 (2019). https://doi.org/10.1002/anie.201902114
X. Cheng, E. Fabbri, M. Nachtegaal, I.E. Castelli, M.E. Kazzi et al., Oxygen evolution reaction on L1−xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 27(22), 7662–7672 (2015). https://doi.org/10.1021/acs.chemmater.5b03138
C. Yang, A. Grimaud, Factors controlling the redox activity of oxygen in perovskites: from theory to application for catalytic reactions. Catalysts 7(5), 149 (2017). https://doi.org/10.3390/catal7050149
F. Calle-Vallejo, N.G. Inoglu, H. Su, J.I. Martínez, I.C. Man et al., Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem. Sci. 4(3), 1245–1249 (2013). https://doi.org/10.1039/C2SC21601A
F. Calle-Vallejo, J.I. Martínez, J.M. García-Lastra, J. Rossmeisl, M.T.M. Koper, Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. Phys. Rev. Lett. 108, 116103 (2012). https://doi.org/10.1103/PhysRevLett.108.116103
F. Calle-Vallejo, J.I. Martínez, J.M.G. Lastra, E. Abad, M.T.M. Koper, Oxygen reduction and evolution at single-metal active sites: comparison between functionalized graphitic materials and protoporphyrins. Surf. Sci. 607, 47–53 (2013). https://doi.org/10.1016/j.susc.2012.08.005
F. Calle-Vallejo, O. Diaz-Morales, M.J. Kolb, M.T.M. Koper, Why is bulk thermochemistry a good descriptor for the electrocatalytic activity of transition metal oxides? ACS Catal. 5(2), 869–873 (2015). https://doi.org/10.1021/cs5016657
C.F. Dickens, J.H. Montoya, A.R. Kulkarni, M. Bajdich, J.K. Nørskov, An electronic structure descriptor for oxygen reactivity at metal and metaloxide surfaces. Surf. Sci. 681, 122–129 (2019). https://doi.org/10.1016/j.susc.2018.11.019
H.B. Tao, L. Fang, J. Chen, H.B. Yang, J. Gao et al., Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 138(31), 9978–9985 (2016). https://doi.org/10.1021/jacs.6b05398
N. Govindarajan, M.T.M. Koper, E.J. Meijer, F. Calle-Vallejo, Outlining the scaling-based and scaling-free optimization of electrocatalysts. ACS Catal. 9(5), 4218–4225 (2019). https://doi.org/10.1021/acscatal.9b00532
C.F. Dickens, C. Kirk, J.K. Nørskov, Insights into the electrochemical oxygen evolution reaction with ab initio calculations and microkinetic modeling: beyond the limiting potential volcano. J. Phys. Chem. C 123(31), 18960–18977 (2019). https://doi.org/10.1021/acs.jpcc.9b03830
N.B. Halck, V. Petrykin, P. Krtil, J. Rossmeisl, Beyond the volcano limitations in electrocatalysis–oxygen evolution reaction. Phys. Chem. Chem. Phys. 16(27), 13688–13688 (2014). https://doi.org/10.1039/C4CP00571F
M. Kodera, Y. Kawahara, Y. Hitomi, T. Nomura, T. Ogura et al., Reversible O–O bond scission of peroxodiiron(III) to high-spin oxodiiron(IV) in dioxygen activation of a diiron center with a bis-tpa dinucleating ligand as a soluble methane monooxygenase model. J. Am. Chem. Soc. 134(32), 13236–13239 (2012). https://doi.org/10.1021/ja306089q
S. Kundu, E. Matito, S. Walleck, F.F. Pfaff, F. Heims et al., O–O bond formation mediated by a hexanuclear iron complex supported on a stannoxane. Chem. Eur. J. 18(10), 2787–2791 (2012). https://doi.org/10.1002/chem.201102326
M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai et al., A pentanuclear iron catalyst designed for water oxidation. Nature 530, 465–468 (2016). https://doi.org/10.1038/nature16529
Y. Umena, K. Kawakami, J. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011). https://doi.org/10.1038/nature09913
G.C. Dismukes, R. Brimblecombe, G.A.N. Felton, R.S. Pryadun, J.E. Sheats et al., Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis. Acc. Chem. Res. 42(12), 1935–1943 (2009). https://doi.org/10.1021/ar900249x
A. Ramírez, P. Hillebrand, D. Stellmach, M.M. May, P. Bogdanoff et al., Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J. Phys. Chem. C 118(26), 14073–14081 (2014). https://doi.org/10.1021/jp500939d
C. Lin, J. Li, X. Li, S. Yang, W. Luo et al., In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 4, 1012–1023 (2021). https://doi.org/10.1038/s41929-021-00703-0
J.O. Bockris, Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817 (1956). https://doi.org/10.1063/1.1742616
F. Song, M.M. Busch, B. Lassalle-Kaiser, C. Hsu, E. Petkucheva et al., An unconventional iron nickel catalyst for the oxygen evolution reaction. ACS Cent. Sci. 5(3), 558–568 (2019). https://doi.org/10.1021/acscentsci.9b00053
P. Garrido-Barros, C. Gimbert-Suriñach, R. Matheu, X. Sala, A. Llobet, How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 46(20), 6088–6098 (2017). https://doi.org/10.1039/C7CS00248C
Z. Gao, J. Liu, X. Chen, X. Zheng, J. Mao et al., Engineering NiO/NiFe LDH intersection to bypass scaling relationship for oxygen evolution reaction via dynamic tridimensional adsorption of intermediates. Adv. Mater. 31(11), 1804769 (2019). https://doi.org/10.1002/adma.201804769
N.B. Halck, V. Petrykin, P. Krtil, J. Rossmeisl, Beyond the volcano limitations in electrocatalysis—oxygen evolution reaction. Phys. Chem. Chem. Phys. 16(27), 13682–13688 (2014). https://doi.org/10.1039/C4CP00571F
H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen et al., Single-atom Au/NiFe layered double hydroxide electrocatalyst: probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 140(11), 3876–3879 (2018). https://doi.org/10.1021/jacs.8b00752
H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu et al., Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354(6315), 1031–1036 (2016). https://doi.org/10.1126/science.aaf7680
L. Bu, N. Zhang, S. Guo, X. Zhang, J. Li et al., Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 354(6318), 1410–1414 (2016). https://doi.org/10.1126/science.aah6133
M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat. Rev. Mater. 2, 17059 (2017). https://doi.org/10.1038/natrevmats.2017.59
Y. Xie, Z. Wang, T. Zhua, D. Shu, Z. Hou et al., Breaking the scaling relations for oxygen reduction reaction on nitrogen-doped graphene by tensile strain. Carbon 139, 129–136 (2018). https://doi.org/10.1016/j.carbon.2018.06.026
A. Khorshidi, J. Violet, J. Hashemi, A.A. Peterson, How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018). https://doi.org/10.1038/s41929-018-0054-0
A.D. Doyle, J.H. Montoya, A. Vojvodic, Improving oxygen electrochemistry through nanoscopic confinement. ChemCatChem 7(5), 738–742 (2015). https://doi.org/10.1002/cctc.201402864
Y. Li, L. Zhang, J. Peng, W. Zhang, K. Peng, Magnetic field enhancing electrocatalysis of Co3O4/NF for oxygen evolution reaction. J. Power Sources 433, 226704 (2019). https://doi.org/10.1016/j.jpowsour.2019.226704
F.A. Garcés-Pineda, M. Blasco-Ahicart, D. Nieto-Castro, N. López, J.R. Galán-Mascarós, Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media. Nat. Energy 4, 519–525 (2019). https://doi.org/10.1038/s41560-019-0404-4
W. Mtangi, F. Tassinari, K. Vankayala, A.V. Jentzsch, B. Adelizzi et al., Control of electrons’ spin eliminates hydrogen peroxide formation during water splitting. J. Am. Chem. Soc. 139(7), 2794–2798 (2017). https://doi.org/10.1021/jacs.6b12971
X. Ren, T. Wu, Y. Sun, Y. Li, G. Xian et al., Spin-polarized oxygen evolution reaction under magnetic field. Nat. Commun. 12, 2608 (2021). https://doi.org/10.1038/s41467-021-22865-y
Y. Zhang, P. Guo, S. Li, J. Sun, W. Wang et al., Magnetic field assisted electrocatalytic oxygen evolution reaction of nickel-based materials. J. Mater. Chem. A 10(4), 1760–1767 (2022). https://doi.org/10.1039/D1TA09444K
G. Zhou, P. Wang, H. Li, B. Hu, Y. Sun et al., Spin-state reconfiguration induced by alternating magnetic field for efficient oxygen evolution reaction. Nat. Commun. 12, 4827 (2021). https://doi.org/10.1038/s41467-021-25095-4
L. Gao, X. Cui, Z. Wang, C.D. Sewell, Z. Li et al., Operando unraveling photothermal-promoted dynamic active-sites generation in NiFe2O4 for markedly enhanced oxygen evolution. PNAS 118(7), e2023421118 (2021). https://doi.org/10.1073/pnas.2023421118
J. Li, N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5(3), 1360–1384 (2015). https://doi.org/10.1039/C4CY00974F
J. Li, S. Cushing, F. Meng, T. Senty, A.D. Bristow et al., Plasmon-induced resonance energy transfer for solar energy conversion. Nat. Photon. 9, 601–607 (2015). https://doi.org/10.1038/nphoton.2015.142
J. Li, S.K. Cushing, P. Zheng, F. Meng, D. Chu et al., Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 4, 2651 (2013). https://doi.org/10.1038/ncomms3651
G. Liu, P. Li, G. Zhao, X. Wang, J. Kong et al., Promoting active species generation by plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 138(29), 9128–9136 (2016). https://doi.org/10.1021/jacs.6b05190
N. Zhang, Y. Chai, Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy Enviorn. Sci. 14(9), 4647–4671 (2021). https://doi.org/10.1039/D1EE01277K
Y. Sun, H. Liao, J. Wang, B. Chen, S. Sun et al., Covalency competition dominates the water oxidation structure–activity relationship on spinel oxides. Nat. Catal. 3, 554–563 (2020). https://doi.org/10.1038/s41929-020-0465-6
A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y. Lee et al., Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017). https://doi.org/10.1038/nchem.2695
G. Assat, J. Tarascon, Fundamental understanding and practical challenges of anionic redox activity in Li–ion batteries. Nat. Energy 3, 373–386 (2018). https://doi.org/10.1038/s41560-018-0097-0
J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai et al., Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7, 11053 (2016). https://doi.org/10.1038/ncomms11053
X. Li, H. Wang, Z. Cui, Y. Li, S. Xin et al., Exceptional oxygen evolution reactivities on CaCoO3 and SrCoO3. Sci. Adv. 5(8), eaav6262 (2019). https://doi.org/10.1126/sciadv.aav6262
T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014). https://doi.org/10.1038/ncomms4949
X. Rong, J. Parolin, A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6(2), 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432
R.P. Forslund, W.G. Hardin, X. Rong, A.M. Abakumov, D. Filimonov et al., Exceptional electrocatalytic oxygen evolution via tunable charge transfer interactions in La0.5Sr1.5Ni1−xFexO4±δ Ruddlesden–Popper oxides. Nat. Commun. 9, 3150 (2018). https://doi.org/10.1038/s41467-018-05600-y
Z. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019). https://doi.org/10.1038/s41560-019-0355-9
D. Seo, J. Lee, A. Urban, R. Malik, S. Kang et al., The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016). https://doi.org/10.1038/nchem.2524
J. Lee, D.A. Kitchaev, D. Kwon, C. Lee, J.K. Papp et al., Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556, 185–190 (2018). https://doi.org/10.1038/s41586-018-0015-4
J. Hong, W.E. Gent, P. Xiao, K. Lim, D. Seo et al., Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019). https://doi.org/10.1038/s41563-018-0276-1
V.M.V.G. Nageswaran, Operando X-ray spectroscopic techniques: a focus on hydrogen and oxygen evolution reactions. Front. Chem. 8, 23 (2020). https://doi.org/10.3389/fchem.2020.00023
N. Zhang, X. Feng, D. Rao, X. Deng, L. Cai et al., Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 11, 4066 (2020). https://doi.org/10.1038/s41467-020-17934-7
J. Shan, T. Ling, K. Davey, Y. Zheng, S. Qiao, Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 31(17), 1900510 (2019). https://doi.org/10.1002/adma.201900510
A. Moysiadou, S. Lee, C. Hsu, H.M. Chen, X. Hu, Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 142(27), 11901–11914 (2020). https://doi.org/10.1021/jacs.0c04867
S. Lee, K. Banjac, M. Lingenfelder, X. Hu, Oxygen isotope labeling experiments reveal different reaction sites for the oxygen evolution reaction on nickel and nickel iron oxides. Angew. Chem. Int. Ed. 58(30), 10295–10299 (2019). https://doi.org/10.1002/anie.201903200
M.T.M. Koper, Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4(7), 2710–2723 (2013). https://doi.org/10.1039/C3SC50205H
L. Giordano, B. Han, M. Risch, W.T. Hong, R.R. Rao et al., pH dependence of OER activity of oxides: current and future perspectives. Catal. Today 262, 2–10 (2016). https://doi.org/10.1016/j.cattod.2015.10.006
C. Roy, B. Sebok, S.B. Scott, E.M. Fiordaliso, J.E. Sørensen et al., Impact of nanop size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 1, 820–829 (2018). https://doi.org/10.1038/s41929-018-0162-x
B. Hua, M. Li, W. Pang, W. Tang, S. Zhao et al., Activating p-blocking centers in perovskite for efficient water splitting. Chem 4(12), 2902–2916 (2018). https://doi.org/10.1016/j.chempr.2018.09.012
P. Wang, Q. Cheng, C. Mao, W. Su, L. Yang et al., Regulation of oxygen vacancy within oxide pyrochlores by F-doping to boost oxygen-evolution activity. J. Power Sources 502, 229903 (2021). https://doi.org/10.1016/j.jpowsour.2021.229903
L. Bai, C. Hsu, D.T.L. Alexander, H.M. Chen, X. Hu, A cobalt–iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 141(36), 14190–14199 (2019). https://doi.org/10.1021/jacs.9b05268