High-Density Nanowells Formation in Ultrafast Laser-Irradiated Thin Film Metallic Glass
Corresponding Author: Jean‑Philippe Colombier
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 103
Abstract
We present an effective approach for fabricating nanowell arrays in a one-step laser process with promising applications for the storage and detection of chemical or biological elements. Biocompatible thin films of metallic glasses are manufactured with a selected composition of Zr65Cu35, known to exhibit remarkable mechanical properties and glass forming ability. Dense nanowell arrays spontaneously form in the ultrafast laser irradiation spot with dimensions down to 20 nm. The flared shape observed by transmission electron microscopy is ideal to ensure chemical or biological material immobilization into the nanowells. This also indicates that the localization of the cavitation-induced nanopores can be tuned by the density and size of the initial nanometric interstice from the columnar structure of films deposited by magnetron sputtering. In addition to the topographic functionalization, the laser-irradiated amorphous material exhibits structural changes analyzed by spectroscopic techniques at the nanoscale such as energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. Results reveal structural changes consisting of nanocrystals of monoclinic zirconia that grow within the amorphous matrix. The mechanism is driven by local oxidation process catalyzed by extreme temperature and pressure conditions estimated by an atomistic simulation of the laser-induced nanowell formation.
Highlights:
1 Ultrafast laser-induced nano-topography modifications: generation of highly concentrated 20 nm diameter nanowells on the surface with expected applications for storage of chemical and biological active species and for blocking crack propagation.
2 Ultrafast laser-induced structural modifications: turning of a metallic glass to a composite material of monoclinic zirconia crystallites embedded inside amorphous metallic glass.
3 A flexible one-step laser irradiation process without direct mechanical contact for thin film metallic glasses surface functionalization.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.H. Warner, A. Hoshino, K. Yamamoto, R.D. Tilley, Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Ed. 44(29), 4550–4554 (2005). https://doi.org/10.1002/anie.200501256
- S.Y. Kim, A. Nunns, J. Gwyther, R.L. Davis, I. Manners et al., Large-area nanosquare arrays from shear-aligned block copolymer thin films. Nano Lett. 14(10), 5698–5705 (2014). https://doi.org/10.1021/nl502416b
- P. Angenendt, L. Nyarsik, W. Szaflarski, J. Glökler, K.H. Nierhaus et al., Cell-free protein expression and functional assay in nanowell chip format. Anal. Chem. 76(7), 1844–1849 (2004). https://doi.org/10.1021/ac035114i
- M. Yan, M.A. Bartlett, Micro/nanowell arrays fabricated from covalently immobilized polymer thin films on a flat substrate. Nano Lett. 2(4), 275–278 (2002). https://doi.org/10.1021/nl0156742
- B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak et al., Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7, 897–901 (2013). https://doi.org/10.1038/nphoton.2013.272
- R. Wang, L. Wang, Z.T. Callaway, H. Lu, T.J. Huang et al., A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. Sens. Actuators B Chem. 240, 934–940 (2017). https://doi.org/10.1016/j.snb.2016.09.067
- K. Taki, Y. Waratani, M. Ohshima, Preparation of nanowells on a PS-b-PMMA copolymer thin film by CO2 treatment. Macromol. Mater. Eng. 293(7), 589–597 (2008). https://doi.org/10.1002/mame.200700428
- T. Wen, M. Wang, M. Luo, N. Yu, H. Xiong et al., A nanowell-based molecularly imprinted electrochemical sensor for highly sensitive and selective detection of 17β-estradiol in food samples. Food Chem. 297, 124968 (2019). https://doi.org/10.1016/j.foodchem.2019.124968
- A.P. Amalathas, M.M. Alkaisi, Nanostructures for light trapping in thin film solar cells. Micromachines 10(9), 619 (2019). https://doi.org/10.3390/mi10090619
- M. Dou, Y. Zhu, A. Liyu, Y. Liang, J. Chen et al., Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of <1000 mammalian cells. Chem. Sci. 9(34), 6944–6951 (2018). https://doi.org/10.1039/C8SC02680G
- H.H. Wang, K.I. Son, B. Lee, J. Lu, C. Han, AAO nanowells: synthesis, in-situ growth study, and applications in ultra-sensitive chemical detection. MRS Online Proc. Library 951, 910 (2006). https://doi.org/10.1557/PROC-0951-E09-10
- M.L. Visnapuu, T. Fazio, S. Wind, E.C. Greene, Parallel arrays of geometric nanowells for assembling curtains of DNA with controlled lateral dispersion. Langmuir 24(19), 11293–11299 (2008). https://doi.org/10.1021/la8017634
- L.D. Goldstein, Y.J.J. Chen, J. Dunne, A. Mir, H. Hubschle et al., Massively parallel nanowell-based single-cell gene expression profiling. BMC Genom. 18, 519 (2017). https://doi.org/10.1186/s12864-017-3893-1
- F. Rumiche, H.H. Wang, W.S. Hu, J.E. Indacochea, M.L. Wang, Anodized aluminum oxide (AAO) nanowell sensors for hydrogen detection. Sens. Actuators B Chem. 134, 869–877 (2008). https://doi.org/10.1016/j.snb.2008.06.054
- L. Zheng, P. Yu, K. Hu, F. Teng, H. Chen et al., Scalable-production, self-powered TiO2 nanowell–organic hybrid UV photodetectors with tunable performances. ACS Appl. Mater. Interfaces 8(49), 33924–33932 (2016). https://doi.org/10.1021/acsami.6b11012
- F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, R. Kling, Controlling 2D laser nano structuring over large area with double femtosecond pulses. Appl. Surf. Sci. 470, 677–686 (2019). https://doi.org/10.1016/j.apsusc.2018.11.106
- G. Giannuzzi, C. Gaudiuso, R.D. Mundo, L. Mirenghi, F. Fraggelakis et al., Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses. Appl. Surf. Sci. 494, 1055–1065 (2019). https://doi.org/10.1016/j.apsusc.2019.07.126
- A. Nakhoul, C. Maurice, M. Agoyan, A. Rudenko, F. Garrelie et al., Self-organization regimes induced by ultrafast laser on surfaces in the tens of nanometer scales. Nanomaterials 11(4), 1020 (2021). https://doi.org/10.3390/nano11041020
- A.A. Saleh, A. Rudenko, S. Reynaud, F. Pigeon, F. Garrelie et al., Sub-100 nm 2D nanopatterning on a large scale by ultrafast laser energy regulation. Nanoscale 12(12), 6609–6616 (2020). https://doi.org/10.1039/C9NR09625F
- X. Sedao, A.A. Saleh, A. Rudenko, T. Douillard, C. Esnouf et al., Self-arranged periodic nanovoids by ultrafast laser-induced near-field enhancement. ACS Photonics 5(4), 1418–1426 (2018). https://doi.org/10.1021/acsphotonics.7b01438
- A.A. Ionin, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, L.V. Seleznev et al., Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface. JETP Lett. 94, 266 (2011). https://doi.org/10.1134/S0021364011160065
- A. Rudenko, A. Abou-Saleh, F. Pigeon, C. Mauclair, F. Garrelie et al., High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces. Acta Mater. 194, 93–105 (2020). https://doi.org/10.1016/j.actamat.2020.04.058
- N.A. Inogamov, V.V. Zhakhovsky, A.Y. Faenov, V.A. Khokhlov, V.V. Shepelev et al., Spallative ablation of dielectrics by X-ray laser. Appl. Phys. A 101, 87 (2010). https://doi.org/10.1007/s00339-010-5764-3
- V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse. JETP Lett. 87, 423–427 (2008). https://doi.org/10.1134/S0021364008080079
- Y. Lei, J. Yang, C. Cong, C. Guo, Fabrication of homogenous subwavelength grating structures on metallic glass using double-pulsed femtosecond lasers. Opt. Lasers Eng. 134, 106273 (2020). https://doi.org/10.1016/j.optlaseng.2020.106273
- C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang et al., Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies. Opt. Exp. 24(11), 11558–11568 (2016). https://doi.org/10.1364/OE.24.011558
- W. Zhang, G. Cheng, X.D. Hui, Q. Feng, Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation. Appl. Phys. A 115, 1451–1455 (2014). https://doi.org/10.1007/s00339-013-8062-z
- S. Togo, T. Masahiro, M. Sayaka, W. Takeshi, W. Xinmin et al., Femtosecond and nanosecond laser irradiation for microstructure formation on bulk metallic glass. Transac. JWRI 38, 81–84 (2009)
- W.L. Johnson, Bulk glass-forming metallic alloys: science and technology. MRS Bull. 24, 42–56 (1999). https://doi.org/10.1557/S0883769400053252
- W. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960). https://doi.org/10.1038/187869b0
- G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: the smaller the better. Adv. Mater. 23(4), 461–476 (2011). https://doi.org/10.1002/adma.201002148
- L. Huang, C. Pu, R.K. Fisher, D.J.H. Mountain, Y. Gao et al., A Zr-based bulk metallic glass for future stent applications: materials properties, finite element modeling, and in vitro human vascular cell response. Acta Biomater. 25, 356–368 (2015). https://doi.org/10.1016/j.actbio.2015.07.012
- J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang et al., Thin film metallic glasses: unique properties and potential applications. Thin Solid Films 520(16), 5097–5122 (2012). https://doi.org/10.1016/j.tsf.2012.03.092
- A. Etiemble, C.D. Loughian, M. Apreutesei, C. Langlois, S. Cardinal et al., Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications. J. Alloys Comp. 707, 155–161 (2017). https://doi.org/10.1016/j.jallcom.2016.12.259
- M. Apreutesei, P. Steyer, L. Joly-Pottuz, A. Billard, J. Qiao et al., Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses. Thin Solid Films 561, 53–59 (2014). https://doi.org/10.1016/j.tsf.2013.05.177
- M. Apreutesei, P. Steyer, A. Billard, L. Joly-Pottuz, C. Esnouf, Zr–Cu thin film metallic glasses: an assessment of the thermal stability and phases’ transformation mechanisms. J. Alloys Comp. 619, 284–292 (2015). https://doi.org/10.1016/j.jallcom.2014.08.253
- J.M. Liu, Simple technique for measurements of pulsed gaussian-beam spot sizes. Opt. Lett. 7(5), 196–198 (1982). https://doi.org/10.1364/OL.7.000196
- K. Wu, E. Otoo, K. Suzuki, Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl. 12, 117–135 (2009). https://doi.org/10.1007/s10044-008-0109-y
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
- A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS-a flexible simulation tool for p-based materials modeling at the atomic, meso, and continuum scales. Comp. Phy. Commun. 271, 108171 (2022)
- D.M. Duffy, A.M. Rutherford, Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations. J. Phys.: Condens. Matter 19, 016207 (2007). https://doi.org/10.1088/0953-8984/19/1/016207
- A.M. Rutherford, D.M. Duffy, The effect of electron–ion interactions on radiation damage simulations. J. Phys.: Condens. Matter 19, 496201 (2007). https://doi.org/10.1088/0953-8984/19/49/496201
- M.I. Mendelev, Y. Sun, F. Zhang, C.Z. Wang, K.M. Ho, Development of a semi-empirical potential suitable for molecular dynamics simulation of vitrification in Cu-Zr alloys. J. Chem. Phys. 151, 214502 (2019). https://doi.org/10.1063/1.5131500
- A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul. Mater. Sci. Eng. 18, 015012 (2009). https://doi.org/10.1088/0965-0393/18/1/015012
- M. Prudent, F. Bourquard, A. Borroto, J.F. Pierson, F. Garrelie et al., Initial morphology and feedback effects on laser-induced periodic nanostructuring of thin-film metallic glasses. Nanomaterials 11(5), 1076 (2021). https://doi.org/10.3390/nano11051076
- J. Bonse, S. Gräf, Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev. 14(10), 2000215 (2020). https://doi.org/10.1002/lpor.202000215
- J.P. Colombier, A. Rudenko, E. Silaeva, H. Zhang, X. Sedao et al., Mixing periodic topographies and structural patterns on silicon surfaces mediated by ultrafast photoexcited charge carriers. Phys. Rev. Res. 2, 043080 (2020). https://doi.org/10.1103/PhysRevResearch.2.043080
- C. Wu, M.S. Christensen, J.M. Savolainen, P. Balling, L.V. Zhigilei, Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target. Phys. Rev. B 91, 035413 (2015). https://doi.org/10.1103/PhysRevB.91.035413
- A. Abou-Saleh, E.T. Karim, C. Maurice, S. Reynaud, F. Pigeon et al., Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr. Appl. Phys. A 124, 308 (2018). https://doi.org/10.1007/s00339-018-1716-0
- X.J. Han, H.R. Schober, Ransport properties and Stokes-Einstein relation in a computer-simulated glass-forming Cu33.3Zr66.7 melt. Phys. Rev. B 83, 224201 (2011). https://doi.org/10.1103/PhysRevB.83.224201
- P. Li, I.W. Chen, J.E. Penner-Hahn, X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. Phys. Rev. B 48, 10063 (1993). https://doi.org/10.1103/PhysRevB.48.10063
- R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83(3), 461–487 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
- D.A. Harrison, D. Yan, S. Blairs, The surface tension of liquid copper. J. Chem. Thermodyn. 9, 1111–1119 (1977). https://doi.org/10.1016/0021-9614(77)90112-4
- P.F. Paradis, T. Ishikawa, S. Yoda, Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int. J. Thermophys. 23, 825–842 (2002). https://doi.org/10.1023/A:1015459222027
- W. Köhler, K.I. Morozov, The soret effect in liquid mixtures–a review. J. Non-Equilib. Thermodyn. 41, 151–197 (2016). https://doi.org/10.1515/jnet-2016-0024
- R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 205(4), 938–942 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.151
- K. Yamahara, T.Z. Sholklapper, C.P. Jacobson, S.J. Visco, L.C.D. Jonghe, Ionic conductivity of stabilized zirconia networks in composite SOFC electrodes. Solid State Ion. 176, 1359–1364 (2005). https://doi.org/10.1016/j.ssi.2005.03.010
- K.E. Sickafus, H. Matzke, T. Hartmann, K. Yasuda, J.A. Valdez et al., Radiation damage effects in zirconia. J. Nuclear Mater. 274, 66–77 (1999). https://doi.org/10.1016/S0022-3115(99)00041-0
- Y.W. Chen, J. Moussi, J.L. Drury, J.C. Wataha, Zirconia in biomedical applications. Expert Rev. Med. Devices 13(10), 945–963 (2016). https://doi.org/10.1080/17434440.2016.1230017
References
J.H. Warner, A. Hoshino, K. Yamamoto, R.D. Tilley, Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Ed. 44(29), 4550–4554 (2005). https://doi.org/10.1002/anie.200501256
S.Y. Kim, A. Nunns, J. Gwyther, R.L. Davis, I. Manners et al., Large-area nanosquare arrays from shear-aligned block copolymer thin films. Nano Lett. 14(10), 5698–5705 (2014). https://doi.org/10.1021/nl502416b
P. Angenendt, L. Nyarsik, W. Szaflarski, J. Glökler, K.H. Nierhaus et al., Cell-free protein expression and functional assay in nanowell chip format. Anal. Chem. 76(7), 1844–1849 (2004). https://doi.org/10.1021/ac035114i
M. Yan, M.A. Bartlett, Micro/nanowell arrays fabricated from covalently immobilized polymer thin films on a flat substrate. Nano Lett. 2(4), 275–278 (2002). https://doi.org/10.1021/nl0156742
B. Öktem, I. Pavlov, S. Ilday, H. Kalaycıoğlu, A. Rybak et al., Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat. Photonics 7, 897–901 (2013). https://doi.org/10.1038/nphoton.2013.272
R. Wang, L. Wang, Z.T. Callaway, H. Lu, T.J. Huang et al., A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. Sens. Actuators B Chem. 240, 934–940 (2017). https://doi.org/10.1016/j.snb.2016.09.067
K. Taki, Y. Waratani, M. Ohshima, Preparation of nanowells on a PS-b-PMMA copolymer thin film by CO2 treatment. Macromol. Mater. Eng. 293(7), 589–597 (2008). https://doi.org/10.1002/mame.200700428
T. Wen, M. Wang, M. Luo, N. Yu, H. Xiong et al., A nanowell-based molecularly imprinted electrochemical sensor for highly sensitive and selective detection of 17β-estradiol in food samples. Food Chem. 297, 124968 (2019). https://doi.org/10.1016/j.foodchem.2019.124968
A.P. Amalathas, M.M. Alkaisi, Nanostructures for light trapping in thin film solar cells. Micromachines 10(9), 619 (2019). https://doi.org/10.3390/mi10090619
M. Dou, Y. Zhu, A. Liyu, Y. Liang, J. Chen et al., Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of <1000 mammalian cells. Chem. Sci. 9(34), 6944–6951 (2018). https://doi.org/10.1039/C8SC02680G
H.H. Wang, K.I. Son, B. Lee, J. Lu, C. Han, AAO nanowells: synthesis, in-situ growth study, and applications in ultra-sensitive chemical detection. MRS Online Proc. Library 951, 910 (2006). https://doi.org/10.1557/PROC-0951-E09-10
M.L. Visnapuu, T. Fazio, S. Wind, E.C. Greene, Parallel arrays of geometric nanowells for assembling curtains of DNA with controlled lateral dispersion. Langmuir 24(19), 11293–11299 (2008). https://doi.org/10.1021/la8017634
L.D. Goldstein, Y.J.J. Chen, J. Dunne, A. Mir, H. Hubschle et al., Massively parallel nanowell-based single-cell gene expression profiling. BMC Genom. 18, 519 (2017). https://doi.org/10.1186/s12864-017-3893-1
F. Rumiche, H.H. Wang, W.S. Hu, J.E. Indacochea, M.L. Wang, Anodized aluminum oxide (AAO) nanowell sensors for hydrogen detection. Sens. Actuators B Chem. 134, 869–877 (2008). https://doi.org/10.1016/j.snb.2008.06.054
L. Zheng, P. Yu, K. Hu, F. Teng, H. Chen et al., Scalable-production, self-powered TiO2 nanowell–organic hybrid UV photodetectors with tunable performances. ACS Appl. Mater. Interfaces 8(49), 33924–33932 (2016). https://doi.org/10.1021/acsami.6b11012
F. Fraggelakis, G. Mincuzzi, J. Lopez, I. Manek-Hönninger, R. Kling, Controlling 2D laser nano structuring over large area with double femtosecond pulses. Appl. Surf. Sci. 470, 677–686 (2019). https://doi.org/10.1016/j.apsusc.2018.11.106
G. Giannuzzi, C. Gaudiuso, R.D. Mundo, L. Mirenghi, F. Fraggelakis et al., Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses. Appl. Surf. Sci. 494, 1055–1065 (2019). https://doi.org/10.1016/j.apsusc.2019.07.126
A. Nakhoul, C. Maurice, M. Agoyan, A. Rudenko, F. Garrelie et al., Self-organization regimes induced by ultrafast laser on surfaces in the tens of nanometer scales. Nanomaterials 11(4), 1020 (2021). https://doi.org/10.3390/nano11041020
A.A. Saleh, A. Rudenko, S. Reynaud, F. Pigeon, F. Garrelie et al., Sub-100 nm 2D nanopatterning on a large scale by ultrafast laser energy regulation. Nanoscale 12(12), 6609–6616 (2020). https://doi.org/10.1039/C9NR09625F
X. Sedao, A.A. Saleh, A. Rudenko, T. Douillard, C. Esnouf et al., Self-arranged periodic nanovoids by ultrafast laser-induced near-field enhancement. ACS Photonics 5(4), 1418–1426 (2018). https://doi.org/10.1021/acsphotonics.7b01438
A.A. Ionin, S.I. Kudryashov, A.E. Ligachev, S.V. Makarov, L.V. Seleznev et al., Nanoscale cavitation instability of the surface melt along the grooves of one-dimensional nanorelief gratings on an aluminum surface. JETP Lett. 94, 266 (2011). https://doi.org/10.1134/S0021364011160065
A. Rudenko, A. Abou-Saleh, F. Pigeon, C. Mauclair, F. Garrelie et al., High-frequency periodic patterns driven by non-radiative fields coupled with Marangoni convection instabilities on laser-excited metal surfaces. Acta Mater. 194, 93–105 (2020). https://doi.org/10.1016/j.actamat.2020.04.058
N.A. Inogamov, V.V. Zhakhovsky, A.Y. Faenov, V.A. Khokhlov, V.V. Shepelev et al., Spallative ablation of dielectrics by X-ray laser. Appl. Phys. A 101, 87 (2010). https://doi.org/10.1007/s00339-010-5764-3
V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse. JETP Lett. 87, 423–427 (2008). https://doi.org/10.1134/S0021364008080079
Y. Lei, J. Yang, C. Cong, C. Guo, Fabrication of homogenous subwavelength grating structures on metallic glass using double-pulsed femtosecond lasers. Opt. Lasers Eng. 134, 106273 (2020). https://doi.org/10.1016/j.optlaseng.2020.106273
C. Li, G. Cheng, X. Sedao, W. Zhang, H. Zhang et al., Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies. Opt. Exp. 24(11), 11558–11568 (2016). https://doi.org/10.1364/OE.24.011558
W. Zhang, G. Cheng, X.D. Hui, Q. Feng, Abnormal ripple patterns with enhanced regularity and continuity in a bulk metallic glass induced by femtosecond laser irradiation. Appl. Phys. A 115, 1451–1455 (2014). https://doi.org/10.1007/s00339-013-8062-z
S. Togo, T. Masahiro, M. Sayaka, W. Takeshi, W. Xinmin et al., Femtosecond and nanosecond laser irradiation for microstructure formation on bulk metallic glass. Transac. JWRI 38, 81–84 (2009)
W.L. Johnson, Bulk glass-forming metallic alloys: science and technology. MRS Bull. 24, 42–56 (1999). https://doi.org/10.1557/S0883769400053252
W. Klement, R.H. Willens, P. Duwez, Non-crystalline structure in solidified gold–silicon alloys. Nature 187, 869–870 (1960). https://doi.org/10.1038/187869b0
G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: the smaller the better. Adv. Mater. 23(4), 461–476 (2011). https://doi.org/10.1002/adma.201002148
L. Huang, C. Pu, R.K. Fisher, D.J.H. Mountain, Y. Gao et al., A Zr-based bulk metallic glass for future stent applications: materials properties, finite element modeling, and in vitro human vascular cell response. Acta Biomater. 25, 356–368 (2015). https://doi.org/10.1016/j.actbio.2015.07.012
J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang et al., Thin film metallic glasses: unique properties and potential applications. Thin Solid Films 520(16), 5097–5122 (2012). https://doi.org/10.1016/j.tsf.2012.03.092
A. Etiemble, C.D. Loughian, M. Apreutesei, C. Langlois, S. Cardinal et al., Innovative Zr-Cu-Ag thin film metallic glass deposed by magnetron PVD sputtering for antibacterial applications. J. Alloys Comp. 707, 155–161 (2017). https://doi.org/10.1016/j.jallcom.2016.12.259
M. Apreutesei, P. Steyer, L. Joly-Pottuz, A. Billard, J. Qiao et al., Microstructural, thermal and mechanical behavior of co-sputtered binary Zr–Cu thin film metallic glasses. Thin Solid Films 561, 53–59 (2014). https://doi.org/10.1016/j.tsf.2013.05.177
M. Apreutesei, P. Steyer, A. Billard, L. Joly-Pottuz, C. Esnouf, Zr–Cu thin film metallic glasses: an assessment of the thermal stability and phases’ transformation mechanisms. J. Alloys Comp. 619, 284–292 (2015). https://doi.org/10.1016/j.jallcom.2014.08.253
J.M. Liu, Simple technique for measurements of pulsed gaussian-beam spot sizes. Opt. Lett. 7(5), 196–198 (1982). https://doi.org/10.1364/OL.7.000196
K. Wu, E. Otoo, K. Suzuki, Optimizing two-pass connected-component labeling algorithms. Pattern Anal. Appl. 12, 117–135 (2009). https://doi.org/10.1007/s10044-008-0109-y
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS-a flexible simulation tool for p-based materials modeling at the atomic, meso, and continuum scales. Comp. Phy. Commun. 271, 108171 (2022)
D.M. Duffy, A.M. Rutherford, Including the effects of electronic stopping and electron–ion interactions in radiation damage simulations. J. Phys.: Condens. Matter 19, 016207 (2007). https://doi.org/10.1088/0953-8984/19/1/016207
A.M. Rutherford, D.M. Duffy, The effect of electron–ion interactions on radiation damage simulations. J. Phys.: Condens. Matter 19, 496201 (2007). https://doi.org/10.1088/0953-8984/19/49/496201
M.I. Mendelev, Y. Sun, F. Zhang, C.Z. Wang, K.M. Ho, Development of a semi-empirical potential suitable for molecular dynamics simulation of vitrification in Cu-Zr alloys. J. Chem. Phys. 151, 214502 (2019). https://doi.org/10.1063/1.5131500
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul. Mater. Sci. Eng. 18, 015012 (2009). https://doi.org/10.1088/0965-0393/18/1/015012
M. Prudent, F. Bourquard, A. Borroto, J.F. Pierson, F. Garrelie et al., Initial morphology and feedback effects on laser-induced periodic nanostructuring of thin-film metallic glasses. Nanomaterials 11(5), 1076 (2021). https://doi.org/10.3390/nano11051076
J. Bonse, S. Gräf, Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser Photonics Rev. 14(10), 2000215 (2020). https://doi.org/10.1002/lpor.202000215
J.P. Colombier, A. Rudenko, E. Silaeva, H. Zhang, X. Sedao et al., Mixing periodic topographies and structural patterns on silicon surfaces mediated by ultrafast photoexcited charge carriers. Phys. Rev. Res. 2, 043080 (2020). https://doi.org/10.1103/PhysRevResearch.2.043080
C. Wu, M.S. Christensen, J.M. Savolainen, P. Balling, L.V. Zhigilei, Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target. Phys. Rev. B 91, 035413 (2015). https://doi.org/10.1103/PhysRevB.91.035413
A. Abou-Saleh, E.T. Karim, C. Maurice, S. Reynaud, F. Pigeon et al., Spallation-induced roughness promoting high spatial frequency nanostructure formation on Cr. Appl. Phys. A 124, 308 (2018). https://doi.org/10.1007/s00339-018-1716-0
X.J. Han, H.R. Schober, Ransport properties and Stokes-Einstein relation in a computer-simulated glass-forming Cu33.3Zr66.7 melt. Phys. Rev. B 83, 224201 (2011). https://doi.org/10.1103/PhysRevB.83.224201
P. Li, I.W. Chen, J.E. Penner-Hahn, X-ray-absorption studies of zirconia polymorphs. I. Characteristic local structures. Phys. Rev. B 48, 10063 (1993). https://doi.org/10.1103/PhysRevB.48.10063
R.H.J. Hannink, P.M. Kelly, B.C. Muddle, Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc. 83(3), 461–487 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01221.x
D.A. Harrison, D. Yan, S. Blairs, The surface tension of liquid copper. J. Chem. Thermodyn. 9, 1111–1119 (1977). https://doi.org/10.1016/0021-9614(77)90112-4
P.F. Paradis, T. Ishikawa, S. Yoda, Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int. J. Thermophys. 23, 825–842 (2002). https://doi.org/10.1023/A:1015459222027
W. Köhler, K.I. Morozov, The soret effect in liquid mixtures–a review. J. Non-Equilib. Thermodyn. 41, 151–197 (2016). https://doi.org/10.1515/jnet-2016-0024
R. Vaßen, M.O. Jarligo, T. Steinke, D.E. Mack, D. Stöver, Overview on advanced thermal barrier coatings. Surf. Coat. Technol. 205(4), 938–942 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.151
K. Yamahara, T.Z. Sholklapper, C.P. Jacobson, S.J. Visco, L.C.D. Jonghe, Ionic conductivity of stabilized zirconia networks in composite SOFC electrodes. Solid State Ion. 176, 1359–1364 (2005). https://doi.org/10.1016/j.ssi.2005.03.010
K.E. Sickafus, H. Matzke, T. Hartmann, K. Yasuda, J.A. Valdez et al., Radiation damage effects in zirconia. J. Nuclear Mater. 274, 66–77 (1999). https://doi.org/10.1016/S0022-3115(99)00041-0
Y.W. Chen, J. Moussi, J.L. Drury, J.C. Wataha, Zirconia in biomedical applications. Expert Rev. Med. Devices 13(10), 945–963 (2016). https://doi.org/10.1080/17434440.2016.1230017