Cooperative Chloride Hydrogel Electrolytes Enabling Ultralow-Temperature Aqueous Zinc Ion Batteries by the Hofmeister Effect
Corresponding Author: Yonghang Xu
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 98
Abstract
Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety, environmental friendliness, and low cost. However, the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures. Herein, a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed. The electrochemical windows of the chloride hydrogel electrolytes are enlarged by > 1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds, which highly facilitates the operation of electrolytes at ultralow temperatures, as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry. Based on the Hofmeister effect, the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl2 and 6 M LiCl can be strongly interrupted, thus exhibiting a sufficient ionic conductivity of 1.14 mS cm−1 and a low activation energy of 0.21 eV at −50 °C. This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g−1 at −50 °C, while the capacity retention remains ~ 100% after 2000 cycles. These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries.
Highlights:
1 The electrochemical windows of the chloride hydrogel electrolytes are enlarged by >1 V under cryogenic conditions.
2 The cells based on electrolytes with high Cl− concentrations can work in more severe environments.
3 Based on the Hofmeister effect, the hydrogen-bond network of the electrolytes can be strongly interrupted by the addition of Li+.
4 The full cell with the optimized hydrogel electrolyte presents impressive electrochemical performance at –50 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597(7874), 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
- X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4(4), 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
- J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
- T. Sun, H. Du, S. Zheng, J. Shi, Z. Tao, High power and energy density aqueous proton battery operated at -90 °C. Adv. Func. Mater. 31(16), 2010127 (2021). https://doi.org/10.1002/adfm.202010127
- X. Dong, Z.W. Guo, Z.Y. Guo, Y. Wang, Y. Xia, Organic batteries operated at -70 °C. Joule 2(5), 902–913 (2018). https://doi.org/10.1016/j.joule.2018.01.017
- J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6(3), 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
- J. Holoubek, Y. Yin, M. Li, M. Yu, Y.S. Meng et al., Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem. Int. Ed. 58(52), 18892–18897 (2019). https://doi.org/10.1002/anie.201912167
- Z. Guo, T. Wang, H. Wei, Y. Long, C. Yang et al., Ice as solid electrolyte to conduct various kinds of ions. Angew. Chem. Int. Ed. 58(36), 12569–12573 (2019). https://doi.org/10.1002/anie.201907832
- Y. Sun, H. Ma, X. Zhang, B. Liu, L. Liu et al., Salty ice electrolyte with superior ionic conductivity towards low-temperature aqueous zinc ion hybrid capacitors. Adv. Func. Mater. 31(28), 2101277 (2021). https://doi.org/10.1002/adfm.202101277
- Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Conmun. 11, 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
- C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
- H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below -78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10(28), 2000968 (2020). https://doi.org/10.1002/aenm.202000968
- J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji et al., Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 ms cm−1 at -40 °C through hydrated lithium ion hopping migration. Adv. Func. Mater. 31(18), 2009438 (2021). https://doi.org/10.1002/adfm.202009438
- L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32(14), 1908121 (2020). https://doi.org/10.1002/adma.201908121
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
- H. Bi, X. Wang, H. Liu, Y. He, W. Wang et al., A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute. Adv. Mater. 32(16), 2000074 (2020). https://doi.org/10.1002/adma.202000074
- S. Dong, Y. Wang, C. Chen, L. Shen, X. Zhang, Niobium tungsten oxide in a green water-in-salt electrolyte enables ultra-stable aqueous lithium-ion capacitors. Nano-Micro Lett. 12, 168 (2020). https://doi.org/10.1007/s40820-020-00508-z
- M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Func. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
- L. Cao, D. Li, F.A. Soto, V. Ponce, B. Zhang et al., Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew. Chem. Int. 60(34), 18845–18851 (2021). https://doi.org/10.1002/anie.202107378
- J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
- C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2021). https://doi.org/10.1093/nsr/nwab177
- S. Zhao, Y. Zuo, T. Liu, S. Zhai, Y. Dai et al., Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv. Energy Mater. 11(34), 2101749 (2021). https://doi.org/10.1002/aenm.202101749
- X. Xie, H. Fu, Y. Fang, B. Lu, J. Zhou et al., Manipulating ion concentration to boost two-electron Mn4+/Mn2+ redox kinetics through a colloid electrolyte for high-capacity zinc batteries. Adv. Energy Mater. 12(5), 2102393 (2022). https://doi.org/10.1002/aenm.202102393
- Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
- S. Wu, C. Zhu, Z. He, H. Xue, Q. Fan et al., Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials. Nat. Conmun. 8, 15154 (2017). https://doi.org/10.1038/ncomms15154
- S. Wu, M. Hua, Y. Alsaid, Y. Du, Y. Ma et al., Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33(11), 2007829 (2021). https://doi.org/10.1002/adma.202007829
- Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
- Y. Liu, R. Hu, D. Zhang, J. Liu, F. Liu et al., Constructing Li-rich artificial sei layer in alloy–polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv. Mater. 33(11), 2004711 (2021). https://doi.org/10.1002/adma.202004711
- C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598(7882), 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
- T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
- N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. (2021). https://doi.org/10.1002/adma.202107899
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- C. Wall, Z. Zhao-Karger, M. Fichtner, Corrosion resistance of current collector materials in bisamide based electrolyte for magnesium batteries. ECS Electrochem. Lett. 4(1), C8–C10 (2015). https://doi.org/10.1149/2.0111501eel
- C. Yan, Y. Wang, Z. Chen, X. Deng, Hygroscopic double-layer gel polymer electrolyte toward high-performance low-temperature zinc hybrid batteries. Batteries Supercaps 4(10), 1627–1635 (2021). https://doi.org/10.1002/batt.202100113
- F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Func. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
- X. Li, L. Yuan, R. Liu, H. He, J. Hao et al., Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors. Adv. Energy Mater. 11(12), 2003010 (2021). https://doi.org/10.1002/aenm.202003010
- M. Matsumoto, S. Saito, I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416(6879), 409–413 (2002). https://doi.org/10.1038/416409a
- E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011). https://doi.org/10.1038/nature10586
- Y. Okazaki, T. Taniuchi, G. Mogami, N. Matubayasi, M. Suzuki, Comparative study on the properties of hydration water of Na- and K-halide ions by Raman OH/OD-stretching spectroscopy and dielectric relaxation data. J. Phys. Chem. A 118(16), 2922–2930 (2014). https://doi.org/10.1021/jp412804d
- S.V. Shevkunov, S.I. Lukyanov, J.M. Leyssale, C. Millot, Computer simulation of Cl-hydration in anion-water clusters. Chem. Phys. 310(1–3), 97–107 (2005). https://doi.org/10.1016/j.chemphys.2004.10.009
- A. Ramanujapuram, G. Yushin, Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv. Energy Mater. 8(35), 1802624 (2018). https://doi.org/10.1002/aenm.201802624
- N. Wang, R. Zhou, H. Li, Z. Zheng, W. Song et al., New insights into the electrochemistry of carbonyl- and amino-containing polymers for rechargeable zinc–organic batteries. ACS Energy Lett. 6(3), 1141–1147 (2021). https://doi.org/10.1021/acsenergylett.1c00139
- Z. Wang, Z. Sun, Y. Shi, F. Qi, X. Gao et al., Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries. Adv. Energy Mater. 11(28), 2100935 (2021). https://doi.org/10.1002/aenm.202100935
- A.C. Thenuwara, P.P. Shetty, N. Kondekar, S.E. Sandoval, K. Cavallaro et al., Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase. ACS Energy Lett. 5(7), 2411–2420 (2020). https://doi.org/10.1021/acsenergylett.0c01209
- M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/D1EE00030F
- Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng et al., Aqueous batteries operated at -50 °C. Angew. Chem. Int. Ed. 58(47), 16994–16999 (2019). https://doi.org/10.1002/anie.201908913
- O. Nordness, J.F. Brennecke, Ion dissociation in ionic liquids and ionic liquid solutions. Chem. Rev. 120(23), 12873–12902 (2020). https://doi.org/10.1021/acs.chemrev.0c00373
- B.L. Dewing, N.G. Bible, C.J. Ellison, M.K. Mahanthappa, Electrochemically stable, high transference number lithium bis(malonato)borate polymer solution electrolytes. Chem. Mater. 32(9), 3794–3804 (2020). https://doi.org/10.1021/acs.chemmater.9b05219
- L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
- L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
- L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55(25), 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
- F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma et al., High-voltage aqueous magnesium ion batteries. ACS Cent. Sci. 3(10), 1121–1128 (2017). https://doi.org/10.1021/acscentsci.7b00361
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/C8CC07730D
- X. Bu, L. Su, Q. Dou, S. Lei, X. Yan, A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J. Mater. Chem. A 7(13), 7541–7547 (2019). https://doi.org/10.1039/C9TA00154A
- X. Guo, Z. Zhang, J. Li, N. Luo, G.L. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6(2), 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371
References
J. He, C. Lu, H. Jiang, F. Han, X. Shi et al., Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597(7874), 57–63 (2021). https://doi.org/10.1038/s41586-021-03772-0
X. Feng, D. Ren, X. He, M. Ouyang, Mitigating thermal runaway of lithium-ion batteries. Joule 4(4), 743–770 (2020). https://doi.org/10.1016/j.joule.2020.02.010
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. 6(21), eaba4098 (2020). https://doi.org/10.1126/sciadv.aba4098
J. Yang, B. Yin, Y. Sun, H. Pan, W. Sun et al., Zinc anode for mild aqueous zinc-ion batteries: challenges, strategies, and perspectives. Nano-Micro Lett. 14, 42 (2022). https://doi.org/10.1007/s40820-021-00782-5
T. Sun, H. Du, S. Zheng, J. Shi, Z. Tao, High power and energy density aqueous proton battery operated at -90 °C. Adv. Func. Mater. 31(16), 2010127 (2021). https://doi.org/10.1002/adfm.202010127
X. Dong, Z.W. Guo, Z.Y. Guo, Y. Wang, Y. Xia, Organic batteries operated at -70 °C. Joule 2(5), 902–913 (2018). https://doi.org/10.1016/j.joule.2018.01.017
J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing et al., Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 6(3), 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z
J. Holoubek, Y. Yin, M. Li, M. Yu, Y.S. Meng et al., Exploiting mechanistic solvation kinetics for dual-graphite batteries with high power output at extremely low temperature. Angew. Chem. Int. Ed. 58(52), 18892–18897 (2019). https://doi.org/10.1002/anie.201912167
Z. Guo, T. Wang, H. Wei, Y. Long, C. Yang et al., Ice as solid electrolyte to conduct various kinds of ions. Angew. Chem. Int. Ed. 58(36), 12569–12573 (2019). https://doi.org/10.1002/anie.201907832
Y. Sun, H. Ma, X. Zhang, B. Liu, L. Liu et al., Salty ice electrolyte with superior ionic conductivity towards low-temperature aqueous zinc ion hybrid capacitors. Adv. Func. Mater. 31(28), 2101277 (2021). https://doi.org/10.1002/adfm.202101277
Q. Zhang, Y. Ma, Y. Lu, L. Li, F. Wan et al., Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Conmun. 11, 4463 (2020). https://doi.org/10.1038/s41467-020-18284-0
C. Wang, Z. Pei, Q. Meng, C. Zhang, X. Sui et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: the pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 60(2), 990–997 (2021). https://doi.org/10.1002/anie.202012030
H. Jiang, W. Shin, L. Ma, J.J. Hong, Z. Wei et al., A high-rate aqueous proton battery delivering power below -78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10(28), 2000968 (2020). https://doi.org/10.1002/aenm.202000968
J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji et al., Antifreezing zwitterionic hydrogel electrolyte with high conductivity of 12.6 ms cm−1 at -40 °C through hydrated lithium ion hopping migration. Adv. Func. Mater. 31(18), 2009438 (2021). https://doi.org/10.1002/adfm.202009438
L. Ma, S. Chen, N. Li, Z. Liu, Z. Tang et al., Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries. Adv. Mater. 32(14), 1908121 (2020). https://doi.org/10.1002/adma.201908121
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
H. Bi, X. Wang, H. Liu, Y. He, W. Wang et al., A universal approach to aqueous energy storage via ultralow-cost electrolyte with super-concentrated sugar as hydrogen-bond-regulated solute. Adv. Mater. 32(16), 2000074 (2020). https://doi.org/10.1002/adma.202000074
S. Dong, Y. Wang, C. Chen, L. Shen, X. Zhang, Niobium tungsten oxide in a green water-in-salt electrolyte enables ultra-stable aqueous lithium-ion capacitors. Nano-Micro Lett. 12, 168 (2020). https://doi.org/10.1007/s40820-020-00508-z
M. Zhu, X. Wang, H. Tang, J. Wang, Q. Hao et al., Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Func. Mater. 30(6), 1907218 (2020). https://doi.org/10.1002/adfm.201907218
L. Cao, D. Li, F.A. Soto, V. Ponce, B. Zhang et al., Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew. Chem. Int. 60(34), 18845–18851 (2021). https://doi.org/10.1002/anie.202107378
J. Gao, X. Xie, S. Liang, B. Lu, J. Zhou, Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nano-Micro Lett. 13, 69 (2021). https://doi.org/10.1007/s40820-021-00595-6
C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2021). https://doi.org/10.1093/nsr/nwab177
S. Zhao, Y. Zuo, T. Liu, S. Zhai, Y. Dai et al., Multi-functional hydrogels for flexible zinc-based batteries working under extreme conditions. Adv. Energy Mater. 11(34), 2101749 (2021). https://doi.org/10.1002/aenm.202101749
X. Xie, H. Fu, Y. Fang, B. Lu, J. Zhou et al., Manipulating ion concentration to boost two-electron Mn4+/Mn2+ redox kinetics through a colloid electrolyte for high-capacity zinc batteries. Adv. Energy Mater. 12(5), 2102393 (2022). https://doi.org/10.1002/aenm.202102393
Y. Tang, C. Liu, H. Zhu, X. Xie, J. Gao et al., Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode. Energy Storage Mater. 27, 109–116 (2020). https://doi.org/10.1016/j.ensm.2020.01.023
S. Wu, C. Zhu, Z. He, H. Xue, Q. Fan et al., Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials. Nat. Conmun. 8, 15154 (2017). https://doi.org/10.1038/ncomms15154
S. Wu, M. Hua, Y. Alsaid, Y. Du, Y. Ma et al., Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 33(11), 2007829 (2021). https://doi.org/10.1002/adma.202007829
Q. Zhou, J. Ma, S. Dong, X. Li, G. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 31(50), 1902029 (2019). https://doi.org/10.1002/adma.201902029
Y. Liu, R. Hu, D. Zhang, J. Liu, F. Liu et al., Constructing Li-rich artificial sei layer in alloy–polymer composite electrolyte to achieve high ionic conductivity for all-solid-state lithium metal batteries. Adv. Mater. 33(11), 2004711 (2021). https://doi.org/10.1002/adma.202004711
C. Yang, Q. Wu, W. Xie, X. Zhang, A. Brozena et al., Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598(7882), 590–596 (2021). https://doi.org/10.1038/s41586-021-03885-6
T. Sun, S. Zheng, H. Du, Z. Tao, Synergistic effect of cation and anion for low-temperature aqueous zinc-ion battery. Nano-Micro Lett. 13, 204 (2021). https://doi.org/10.1007/s40820-021-00733-0
N. Zhang, T. Deng, S. Zhang, C. Wang, L. Chen et al., Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. (2021). https://doi.org/10.1002/adma.202107899
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
C. Wall, Z. Zhao-Karger, M. Fichtner, Corrosion resistance of current collector materials in bisamide based electrolyte for magnesium batteries. ECS Electrochem. Lett. 4(1), C8–C10 (2015). https://doi.org/10.1149/2.0111501eel
C. Yan, Y. Wang, Z. Chen, X. Deng, Hygroscopic double-layer gel polymer electrolyte toward high-performance low-temperature zinc hybrid batteries. Batteries Supercaps 4(10), 1627–1635 (2021). https://doi.org/10.1002/batt.202100113
F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Func. Mater. 28(45), 1804975 (2018). https://doi.org/10.1002/adfm.201804975
X. Li, L. Yuan, R. Liu, H. He, J. Hao et al., Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors. Adv. Energy Mater. 11(12), 2003010 (2021). https://doi.org/10.1002/aenm.202003010
M. Matsumoto, S. Saito, I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416(6879), 409–413 (2002). https://doi.org/10.1038/416409a
E.B. Moore, V. Molinero, Structural transformation in supercooled water controls the crystallization rate of ice. Nature 479(7374), 506–508 (2011). https://doi.org/10.1038/nature10586
Y. Okazaki, T. Taniuchi, G. Mogami, N. Matubayasi, M. Suzuki, Comparative study on the properties of hydration water of Na- and K-halide ions by Raman OH/OD-stretching spectroscopy and dielectric relaxation data. J. Phys. Chem. A 118(16), 2922–2930 (2014). https://doi.org/10.1021/jp412804d
S.V. Shevkunov, S.I. Lukyanov, J.M. Leyssale, C. Millot, Computer simulation of Cl-hydration in anion-water clusters. Chem. Phys. 310(1–3), 97–107 (2005). https://doi.org/10.1016/j.chemphys.2004.10.009
A. Ramanujapuram, G. Yushin, Understanding the exceptional performance of lithium-ion battery cathodes in aqueous electrolytes at subzero temperatures. Adv. Energy Mater. 8(35), 1802624 (2018). https://doi.org/10.1002/aenm.201802624
N. Wang, R. Zhou, H. Li, Z. Zheng, W. Song et al., New insights into the electrochemistry of carbonyl- and amino-containing polymers for rechargeable zinc–organic batteries. ACS Energy Lett. 6(3), 1141–1147 (2021). https://doi.org/10.1021/acsenergylett.1c00139
Z. Wang, Z. Sun, Y. Shi, F. Qi, X. Gao et al., Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries. Adv. Energy Mater. 11(28), 2100935 (2021). https://doi.org/10.1002/aenm.202100935
A.C. Thenuwara, P.P. Shetty, N. Kondekar, S.E. Sandoval, K. Cavallaro et al., Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase. ACS Energy Lett. 5(7), 2411–2420 (2020). https://doi.org/10.1021/acsenergylett.0c01209
M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/D1EE00030F
Q. Nian, J. Wang, S. Liu, T. Sun, S. Zheng et al., Aqueous batteries operated at -50 °C. Angew. Chem. Int. Ed. 58(47), 16994–16999 (2019). https://doi.org/10.1002/anie.201908913
O. Nordness, J.F. Brennecke, Ion dissociation in ionic liquids and ionic liquid solutions. Chem. Rev. 120(23), 12873–12902 (2020). https://doi.org/10.1021/acs.chemrev.0c00373
B.L. Dewing, N.G. Bible, C.J. Ellison, M.K. Mahanthappa, Electrochemically stable, high transference number lithium bis(malonato)borate polymer solution electrolytes. Chem. Mater. 32(9), 3794–3804 (2020). https://doi.org/10.1021/acs.chemmater.9b05219
L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang et al., Building aqueous K-ion batteries for energy storage. Nat. Energy 4(6), 495–503 (2019). https://doi.org/10.1038/s41560-019-0388-0
L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang et al., Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem. Int. Ed. 55(25), 7136–7141 (2016). https://doi.org/10.1002/anie.201602397
F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma et al., High-voltage aqueous magnesium ion batteries. ACS Cent. Sci. 3(10), 1121–1128 (2017). https://doi.org/10.1021/acscentsci.7b00361
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu et al., A ZnCl2 water-in-salt electrolyte for a reversible zn metal anode. Chem. Commun. 54(100), 14097–14099 (2018). https://doi.org/10.1039/C8CC07730D
X. Bu, L. Su, Q. Dou, S. Lei, X. Yan, A low-cost “water-in-salt” electrolyte for a 2.3 V high-rate carbon-based supercapacitor. J. Mater. Chem. A 7(13), 7541–7547 (2019). https://doi.org/10.1039/C9TA00154A
X. Guo, Z. Zhang, J. Li, N. Luo, G.L. Chai et al., Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS Energy Lett. 6(2), 395–403 (2021). https://doi.org/10.1021/acsenergylett.0c02371