Identification of binding interactions between myeloperoxidase and its antibody using SERS
Corresponding Author: E. S. Papazoglou
Nano-Micro Letters,
Vol. 2 No. 2 (2010), Article Number: 74-82
Abstract
Surface Enhanced Raman Spectroscopy (SERS) is a widely used spectroscopic method that can dramatically increase the sensitivity of Raman spectroscopy and has demonstrated significant benefit in the identification of biological molecules. We report the use of SERS in differentiating the bound immunocomplex of myeloperoxidase (MPO) and its antibody from the unbound complex and its individual components. The SERS signal was enabled by gold nanoparticles attached to MPO, pAb and their immunocomplex at an excitation wavelength of 785 nm. The obtained SERS spectrum of MPO is in agreement with previous literature. Comparative SERS spectrum analysis of MPO, pAb, and their immunocomplex reveals the significant peak shifts and intensity variations caused by the conformational changes due to the immunocomplex formation. Several key areas have been identified which correspond to specific amino acids being shielded from undergoing resonance while new amino acid residues are made visible in the SERS spectrum of the immunocomplex and could be a result of conformational binding. Our work demonstrates the capability of SERS to identify binding events and differentiate an immunocomplex from its unbound components with direct applications in biosensors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Nie and S. R. Emory, Science 275, 1102 (1997). doi:10.1126/science.275.5303.1102
- M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974). doi:10.1016/0009-2614(74)85388-1
- D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977). doi:10.1016/S0022-0728(77)80224-6
- M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977). doi:10.1021/ja00457a071
- J. Hu, Z. Wang and J. Li, Sensors 7, 3299 (2007). doi:10.3390/s7123299
- M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue and S. Yamada, J. Phys. Chem. B 108, 11660 (2004). doi:10.1021/jp0490150
- P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982). doi:10.1021/j100214a025
- K. Kneipp, R. R. Dasari and Y. Wang, Appl. Spectrosc. 48, 951 (1994). doi:10.1366/0003702944029776
- K. Stubenrauch, U. Wessels, R. Vogel and J. Schleypen, Analy. Biochem. 390, 189 (2009). doi:10.1016/j.ab.2009.04.021
- H. W. Zhao, C. Z. Huang, L. P. Wu, S. F. Shen and Z. H. Qin, Anal. Lett. 42, 1495 (2009). doi:10.1080/00032710902961099
- K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari and M. S. Feld, Appl. Spectrosc. 56, 150 (2002). doi:10.1366/0003702021954557
- L. J. Goeller and M. R. Riley, Appl. Spectrosc. 61, 679 (2007). doi:10.1366/000370207781393217
- A. K. Kalkan and S. J. Fonash, Appl. Phys. Lett. 89, 233103 (2006). doi:10.1063/1.2399369
- E. J. Bjerneld, Z. Foldes-Papp, M. Kall and R. Rigler, The J. Phys. Chem. B 106, 1213 (2002). doi:10.1021/jp012268y
- T. E. Rohr, T. Cotton, N. Fan and P. J. Tarcha, Anal. Biochem. 182, 388 (1989). doi:10.1016/0003-2697(89)90613-1
- M. L. Zhang, C. Q. Yi, X. Fan, K. Q. Peng, N. B. Wong, M. S. Yang, R. Q. Zhang and S. T. Lee, Appl. Phys. lett. 92, 043116 (2008). doi:10.1063/1.2833695
- S. R. Hawi, S. Rochanakij, F. Adar, W. B. Campbell and K. Nithipatikom, Anal. Biochem. 259, 212 (1998). doi:10.1006/abio.1998.2661
- X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi and Y. Ozaki, J. Raman Spectrosc. 29, 739 (1998). doi:10.1002/(SICI)1097-4555(199808)29:8<739::AID-JRS289>3.0.CO;2-S
- J. Merlie, D. Fagan, J. Mudd and P. Needleman, J. Biol. Chem. 263, 3550 (1988).
- S. Kimura and M. Ikeda-Saito, Protein. Struct. Funct. Genet. 3, 113 (1988). doi:10.1002/prot.340030206
- P. M. Marie-Madeleine CALS, Ghislaine BRIGNON, Patricia ANGLADE and Bruno Ribadeau DUMAS, Eur. J. Biochem. 198, 733 (1991).
- J. Zeng and R. E. Fenna, J. Molecular Bio. 226, 185 (1992). doi:10.1016/0022-2836(92)90133-5
- S. S. Sibbett and J. K. Hurst, Biochem. 23, 3007 (1984). doi:10.1021/bi00308a025
- G. Frens, Nature: Physical Science 241, 20 (1973).
- W. Haiss, N. T. K. Thanh, J. Aveyard and D. G. Fernig, Anal. Chem. 79, 4215 (2007). doi:10.1021/ac07 02084
- S. H. Park, J. H. Im, J. W. Im, B. H. Chun and J. H. Kim, Microchemical Journal 63, 71 (1999). doi:10.1006/mchj.1999.1769
- F. M. Liu and M. Green, J. Mater. Chem. 14, 1526 (2004). doi:10.1039/b400488b
- G. T. Babcock, R. T. Ingle, W. A. Oertling, J. C. Davis, B. A. Averill, C. L. Hulse, D. J. Stufkens, B. G. J. M. Bolscher and R. Wever, BBA-Protein Struct. M. 828, 58 (1985).
- G. J. Puppels, H. S. Garritsen, G. M. Segers-Nolten, F. F. de Mul and J. Greve, Biophys. J. 60, 1046 (1991). doi:10.10 16/S0006-3495(91)82142-7
- N. M. Sijtsema, Thesis, University of Twente, 1997.
- C. Otto, N. M. Sijtsema and J. Greve, Eur. Biophys. J. 27, 582 (1998). doi:10.1007/s0024900 50169
- S. D. Zbylut and J. R. Kincaid, J. Am. Chem. Soc. 124, 6751 (2002). doi:10.1021/ja01 2578u
- A. M. Ahern and R. L. Garrell, Langmuir 7, 254 (1991). doi:10.1021/la00050a009
- Q. M. Yu and G. Golden, Langmuir 23, 8659 (2007). doi:10.1021/la7007073
- S. Brogioni, A. Feis, M. P. Marzocchi, M. Zederbauer, P. G. Furtmüller, C. Obinger and G. Smulevich, J. Raman Spectrosc. 37, 263 (2006) doi:10.1002/jrs.1442
References
S. Nie and S. R. Emory, Science 275, 1102 (1997). doi:10.1126/science.275.5303.1102
M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974). doi:10.1016/0009-2614(74)85388-1
D. L. Jeanmaire and R. P. Van Duyne, J. Electroanal. Chem. 84, 1 (1977). doi:10.1016/S0022-0728(77)80224-6
M. G. Albrecht and J. A. Creighton, J. Am. Chem. Soc. 99, 5215 (1977). doi:10.1021/ja00457a071
J. Hu, Z. Wang and J. Li, Sensors 7, 3299 (2007). doi:10.3390/s7123299
M. Suzuki, Y. Niidome, Y. Kuwahara, N. Terasaki, K. Inoue and S. Yamada, J. Phys. Chem. B 108, 11660 (2004). doi:10.1021/jp0490150
P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982). doi:10.1021/j100214a025
K. Kneipp, R. R. Dasari and Y. Wang, Appl. Spectrosc. 48, 951 (1994). doi:10.1366/0003702944029776
K. Stubenrauch, U. Wessels, R. Vogel and J. Schleypen, Analy. Biochem. 390, 189 (2009). doi:10.1016/j.ab.2009.04.021
H. W. Zhao, C. Z. Huang, L. P. Wu, S. F. Shen and Z. H. Qin, Anal. Lett. 42, 1495 (2009). doi:10.1080/00032710902961099
K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari and M. S. Feld, Appl. Spectrosc. 56, 150 (2002). doi:10.1366/0003702021954557
L. J. Goeller and M. R. Riley, Appl. Spectrosc. 61, 679 (2007). doi:10.1366/000370207781393217
A. K. Kalkan and S. J. Fonash, Appl. Phys. Lett. 89, 233103 (2006). doi:10.1063/1.2399369
E. J. Bjerneld, Z. Foldes-Papp, M. Kall and R. Rigler, The J. Phys. Chem. B 106, 1213 (2002). doi:10.1021/jp012268y
T. E. Rohr, T. Cotton, N. Fan and P. J. Tarcha, Anal. Biochem. 182, 388 (1989). doi:10.1016/0003-2697(89)90613-1
M. L. Zhang, C. Q. Yi, X. Fan, K. Q. Peng, N. B. Wong, M. S. Yang, R. Q. Zhang and S. T. Lee, Appl. Phys. lett. 92, 043116 (2008). doi:10.1063/1.2833695
S. R. Hawi, S. Rochanakij, F. Adar, W. B. Campbell and K. Nithipatikom, Anal. Biochem. 259, 212 (1998). doi:10.1006/abio.1998.2661
X. Dou, Y. Yamaguchi, H. Yamamoto, S. Doi and Y. Ozaki, J. Raman Spectrosc. 29, 739 (1998). doi:10.1002/(SICI)1097-4555(199808)29:8<739::AID-JRS289>3.0.CO;2-S
J. Merlie, D. Fagan, J. Mudd and P. Needleman, J. Biol. Chem. 263, 3550 (1988).
S. Kimura and M. Ikeda-Saito, Protein. Struct. Funct. Genet. 3, 113 (1988). doi:10.1002/prot.340030206
P. M. Marie-Madeleine CALS, Ghislaine BRIGNON, Patricia ANGLADE and Bruno Ribadeau DUMAS, Eur. J. Biochem. 198, 733 (1991).
J. Zeng and R. E. Fenna, J. Molecular Bio. 226, 185 (1992). doi:10.1016/0022-2836(92)90133-5
S. S. Sibbett and J. K. Hurst, Biochem. 23, 3007 (1984). doi:10.1021/bi00308a025
G. Frens, Nature: Physical Science 241, 20 (1973).
W. Haiss, N. T. K. Thanh, J. Aveyard and D. G. Fernig, Anal. Chem. 79, 4215 (2007). doi:10.1021/ac07 02084
S. H. Park, J. H. Im, J. W. Im, B. H. Chun and J. H. Kim, Microchemical Journal 63, 71 (1999). doi:10.1006/mchj.1999.1769
F. M. Liu and M. Green, J. Mater. Chem. 14, 1526 (2004). doi:10.1039/b400488b
G. T. Babcock, R. T. Ingle, W. A. Oertling, J. C. Davis, B. A. Averill, C. L. Hulse, D. J. Stufkens, B. G. J. M. Bolscher and R. Wever, BBA-Protein Struct. M. 828, 58 (1985).
G. J. Puppels, H. S. Garritsen, G. M. Segers-Nolten, F. F. de Mul and J. Greve, Biophys. J. 60, 1046 (1991). doi:10.10 16/S0006-3495(91)82142-7
N. M. Sijtsema, Thesis, University of Twente, 1997.
C. Otto, N. M. Sijtsema and J. Greve, Eur. Biophys. J. 27, 582 (1998). doi:10.1007/s0024900 50169
S. D. Zbylut and J. R. Kincaid, J. Am. Chem. Soc. 124, 6751 (2002). doi:10.1021/ja01 2578u
A. M. Ahern and R. L. Garrell, Langmuir 7, 254 (1991). doi:10.1021/la00050a009
Q. M. Yu and G. Golden, Langmuir 23, 8659 (2007). doi:10.1021/la7007073
S. Brogioni, A. Feis, M. P. Marzocchi, M. Zederbauer, P. G. Furtmüller, C. Obinger and G. Smulevich, J. Raman Spectrosc. 37, 263 (2006) doi:10.1002/jrs.1442