Reactive wetting behaviors of Sn/Cu systems: A molecular dynamics study
Corresponding Author: C. C. Hwang
Nano-Micro Letters,
Vol. 2 No. 2 (2010), Article Number: 60-67
Abstract
Influences of temperature and Sn-Cu droplet’s composition on reactive wettings of Cu(100), Cu(110), and Cu(111) surfaces were analyzed, by using molecular dynamics (MD) calculations. As a result, the spreading on Cu(110)(Cu(100)) has the fastest (slowest) wetting kinetics. A higher temperature or a diluter Cu content in the Sn-Cu alloy droplet results in a higher wettability. Moreover, this work has addressed a theory for positioning the interface separating the liquidus and solidus alloys in the spreading film to confirm the hypothesis that the reactive wetting will come to the end when the interface saturates with the temperature-dependent solidus weight fraction of Cu.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000). doi:10.1016/S0927-796X(00)00010-3
- K. J. R. Wassink and M. M. F. Verguld, Manufacturing Techniques for Surface Mounted Assemblies GB-Port Erin, British Isles: Electrochemical Publications Ltd., 1995.
- C. Iwamoto and S. Tanaka, Acta. Mater. 41, 749 (2002). doi:10.1016/S1359-6454(01)00388-3
- M. F. Arenas, M. He and V. L. Acoff, J. Electron. Mater. 35, 1530 (2006). doi:10.1007/s11664-006-0144-7
- M. F. Arenas and V. L. Acoff, J. Electron. Mater. 33, 1452 (2004). doi:10.1007/s11664-004-0086-x
- S. Amore, E. Ricci, T. Lanata and R. Novakovic, J. Alloys Compd. 452, 161 (2008). doi:10.1016/j.jallcom.2007.01.178
- G. Drath, S. Sauerwald and Z. Anorg, Chemistry 162, 301 (1927).
- J. Lee, W. Shimoda and T. Tanaka, Mater. Trans. 45, 2864 (2004). doi:10.2320/matertrans.45.2864
- H. K. Kim and K. N. Tuv, Phys. Rev. B 53, 16027 (1996). doi:10.1103/PhysRevB.53.16027
- K. Suganuma, K. Niihara, T. Shoutoku and Y. Nakamura, J. Mater. Res. 13, 2859 (1998). doi:10.1557/JMR.1998.0391
- J. W. Jang, P. G. Kim and K. N. Tu, J. Mater. Res. 14, 3895 (1999). doi:10.1557/JMR.1999.0527
- T. Takemoto and M. Miyazaki, Mater. Trans. 42, 745 (2001). doi:10.2320/matertrans.42.745
- C. B. Lee, S. B. Jung, Y. E. Shin and C. C. Shur, Mater. Trans. 42, 751 (2001). doi:10.2320/matertrans.42.751
- T. Takao and H. Hasegawa, Mater. Trans. 45, 747 (2004). doi:10.2320/matertrans.45.747
- H. Wang, F. Wang, F. Gao, X. Ma and Y. Qian, J. Alloys Compd. 433, 302 (2007). doi:10.1016/j.jallcom.2006.06.076
- M. J. Rizvi, C. Bailey, Y. C. Chan and H. Lu, J. Alloys Compd. 438, 116 (2007). doi:10.1016/j.jallcom.2006.08.048
- H. Ma, H. Xie and L. Wang, J. Mater. Sci. Technol. 23, 81 (2007). doi:10.1179/174328407X176839
- F. Yost, E. O’Tool, Acta. Mater. 46, 5143 (1998). doi:10.1016/S1359-6454(98)00146-3
- J. A. Warren, W. J. Boettinger and A. R. Roosen, Acta. Mater. 46, 3247 (1998). doi:10.1016/S1359-6454(97)00487-4
- A. Mortensen, B. Drevet and N. Eustathopoulos, Scr. Mater. 45, 953 (2001). doi:10.1016/S1359-6462(01)01117-4
- E. B. Webb III, G. S. Grest and D. R. Heine, Phys. Rev. Lett. 91, 236102 (2003). doi:10.1103/PhysRevLett.91.236102
- E. B. Webb III, G. S. Grest, D. R. Heine and J. J. Hoyt, Acta. Mater. 53, 3163 (2005). doi:10.1016/j.actamat.2005.03.021
- M. I. Baskes, Phys. Rev. B 46, 2727 (1992). doi:10.1103/PhysRevB.46.2727
- J. F. Aguilar, R. Ravelo and M. I. Baskes, Modelling Simul. Mater. Sci. Eng. 8, 335 (2000). doi:10.1088/0965-0393/8/3/313
- H. Dong, L. Fan, K. Moon, C. P. Wong and M. I. Baskes, Modelling Simul. Mater. Sci. Eng. 13, 1279 (2005). doi:10.1088/0965-0393/13/8/006.
- D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
- D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic, San Diego, 1996.
References
M. Abtew and G. Selvaduray, Mater. Sci. Eng. 27, 95 (2000). doi:10.1016/S0927-796X(00)00010-3
K. J. R. Wassink and M. M. F. Verguld, Manufacturing Techniques for Surface Mounted Assemblies GB-Port Erin, British Isles: Electrochemical Publications Ltd., 1995.
C. Iwamoto and S. Tanaka, Acta. Mater. 41, 749 (2002). doi:10.1016/S1359-6454(01)00388-3
M. F. Arenas, M. He and V. L. Acoff, J. Electron. Mater. 35, 1530 (2006). doi:10.1007/s11664-006-0144-7
M. F. Arenas and V. L. Acoff, J. Electron. Mater. 33, 1452 (2004). doi:10.1007/s11664-004-0086-x
S. Amore, E. Ricci, T. Lanata and R. Novakovic, J. Alloys Compd. 452, 161 (2008). doi:10.1016/j.jallcom.2007.01.178
G. Drath, S. Sauerwald and Z. Anorg, Chemistry 162, 301 (1927).
J. Lee, W. Shimoda and T. Tanaka, Mater. Trans. 45, 2864 (2004). doi:10.2320/matertrans.45.2864
H. K. Kim and K. N. Tuv, Phys. Rev. B 53, 16027 (1996). doi:10.1103/PhysRevB.53.16027
K. Suganuma, K. Niihara, T. Shoutoku and Y. Nakamura, J. Mater. Res. 13, 2859 (1998). doi:10.1557/JMR.1998.0391
J. W. Jang, P. G. Kim and K. N. Tu, J. Mater. Res. 14, 3895 (1999). doi:10.1557/JMR.1999.0527
T. Takemoto and M. Miyazaki, Mater. Trans. 42, 745 (2001). doi:10.2320/matertrans.42.745
C. B. Lee, S. B. Jung, Y. E. Shin and C. C. Shur, Mater. Trans. 42, 751 (2001). doi:10.2320/matertrans.42.751
T. Takao and H. Hasegawa, Mater. Trans. 45, 747 (2004). doi:10.2320/matertrans.45.747
H. Wang, F. Wang, F. Gao, X. Ma and Y. Qian, J. Alloys Compd. 433, 302 (2007). doi:10.1016/j.jallcom.2006.06.076
M. J. Rizvi, C. Bailey, Y. C. Chan and H. Lu, J. Alloys Compd. 438, 116 (2007). doi:10.1016/j.jallcom.2006.08.048
H. Ma, H. Xie and L. Wang, J. Mater. Sci. Technol. 23, 81 (2007). doi:10.1179/174328407X176839
F. Yost, E. O’Tool, Acta. Mater. 46, 5143 (1998). doi:10.1016/S1359-6454(98)00146-3
J. A. Warren, W. J. Boettinger and A. R. Roosen, Acta. Mater. 46, 3247 (1998). doi:10.1016/S1359-6454(97)00487-4
A. Mortensen, B. Drevet and N. Eustathopoulos, Scr. Mater. 45, 953 (2001). doi:10.1016/S1359-6462(01)01117-4
E. B. Webb III, G. S. Grest and D. R. Heine, Phys. Rev. Lett. 91, 236102 (2003). doi:10.1103/PhysRevLett.91.236102
E. B. Webb III, G. S. Grest, D. R. Heine and J. J. Hoyt, Acta. Mater. 53, 3163 (2005). doi:10.1016/j.actamat.2005.03.021
M. I. Baskes, Phys. Rev. B 46, 2727 (1992). doi:10.1103/PhysRevB.46.2727
J. F. Aguilar, R. Ravelo and M. I. Baskes, Modelling Simul. Mater. Sci. Eng. 8, 335 (2000). doi:10.1088/0965-0393/8/3/313
H. Dong, L. Fan, K. Moon, C. P. Wong and M. I. Baskes, Modelling Simul. Mater. Sci. Eng. 13, 1279 (2005). doi:10.1088/0965-0393/13/8/006.
D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic, San Diego, 1996.