Elastic Aerogels of Cellulose Nanofibers@Metal–Organic Frameworks for Thermal Insulation and Fire Retardancy
Corresponding Author: Chao Xu
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 9
Abstract
Metal–organic frameworks (MOFs) with high microporosity and relatively high thermal stability are potential thermal insulation and flame-retardant materials. However, the difficulties in processing and shaping MOFs have largely hampered their applications in these areas. This study outlines the fabrication of hybrid CNF@MOF aerogels by a stepwise assembly approach involving the coating and cross-linking of cellulose nanofibers (CNFs) with continuous nanolayers of MOFs. The cross-linking gives the aerogels high mechanical strength but superelasticity (80% maximum recoverable strain, high specific compression modulus of ~ 200 MPa cm3 g−1, and specific stress of ~ 100 MPa cm3 g−1). The resultant lightweight aerogels have a cellular network structure and hierarchical porosity, which render the aerogels with relatively low thermal conductivity of ~ 40 mW m−1 K−1. The hydrophobic, thermally stable MOF nanolayers wrapped around the CNFs result in good moisture resistance and fire retardancy. This study demonstrates that MOFs can be used as efficient thermal insulation and flame-retardant materials. It presents a pathway for the design of thermally insulating, superelastic fire-retardant nanocomposites based on MOFs and nanocellulose.
Highlights
1 The study reveals the great potential of metal–organic framework (MOF)-based nanocomposites in thermal insulation and fire retardancy applications.
2 A nanoengineering approach was developed to process MOFs into freestanding, mechanically strong, and elastic aerogels, which may boost the fundamental research and practical applications of MOFs in these areas.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
- Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Metal–organic frameworks as platforms for functional materials. Chem. Res. 49, 483–493 (2016). https://doi.org/10.1021/acs.accounts.5b00530
- H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.C. Zhou, Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 21, 108–121 (2018). https://doi.org/10.1016/j.mattod.2017.07.006
- Y. Chen, S. Zhang, S. Cao, S. Li, F. Chen et al., Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. Adv. Mater. 29, 1606221–1606222 (2017). https://doi.org/10.1002/adma.201606221
- H.B. Wu, X.W. Lou, Metal–organic frameworks for energy storage: batteries and supercapacitors. Sci. Adv. (2017). https://doi.org/10.1126/sciadv.aap9252
- H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A.M. Nyström, X. Zou, One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138, 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
- B.L. Huang, A.J.H. McGaughey, M. Kaviany, Thermal conductivity of metal–organic framework 5 (MOF-5): Part I. Molecular dynamics simulations. Int. J. Heat Mass. Transf. 50, 393–404 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.002
- Article
- MATH
- Google Scholar
- H. Babaei, A.J.H. McGaughey, C.E. Wilmer, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Chem. Sci. 8, 583–589 (2017). https://doi.org/10.1039/C6SC03704F
- B.P. Jelle, Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 43, 2549–2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015
- L. Sun, B. Liao, D. Sheberla, D. Kraemer, J. Zhou et al., A microporous and naturally nanostructured thermoelectric metal–organic framework with ultralow thermal conductivity. Joule 1, 168–177 (2017). https://doi.org/10.1016/j.joule.2017.07.018
- T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers. Chem. Soc. Rev. 46, 3108–3133 (2017). https://doi.org/10.1039/C7CS00041C
- B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergström, Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotech. 10, 277–283 (2015). https://doi.org/10.1038/nnano.2014.248
- C. Hu, J. Xue, L. Dong, Y. Jiang, X. Wang, L. Qu, L. Dai, Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 10, 1325–1332 (2016). https://doi.org/10.1021/acsnano.5b06710
- L. Yang, A. Mukhopadhyay, Y. Jiao, Q. Yong, L. Chen, Y. Xing, J. Hamel, H. Zhu, Ultralight, Highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale 9, 11452–11462 (2017). https://doi.org/10.1039/C7NR02243C
- A. Rizvi, R.K.M. Chu, C.B. Park, Scalable fabrication of thermally insulating mechanically resilient hierarchically porous polymer foams. ACS Appl. Mater. Interfaces 10, 38410–38417 (2018). https://doi.org/10.1021/acsami.8b11375
- N. Hüsing, U. Schubert, Aerogels–airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998). https://doi.org/10.1002/1521-3773(19980202)37:1/23.3.CO;2-9
- N.G. Dou, R.A. Jagt, C.M. Portela, J.R. Greer, A.J. Minnich, Ultralow thermal conductivity and mechanical resilience of architected nanolattices. Nano Lett. 18, 4755–4761 (2018). https://doi.org/10.1021/acs.nanolett.8b01191
- A. Dasari, Z.Z. Yu, G.P. Cai, Y.W. Mai, Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38, 1357–1387 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.006
- W. Xu, X. Wang, Y. Wu, W. Li, C. Chen, Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 363, 138–151 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.086
- X.-L. Qi, D.-D. Zhou, J. Zhang, S. Hu, M. Haranczyk, D.-Y. Wang, Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS Appl. Mater. Interfaces 11, 20325–20332 (2019). https://doi.org/10.1021/acsami.9b02357
- H. Zou, S. Wu, J. Shen, Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 108, 3893–3957 (2008). https://doi.org/10.1021/cr068035q
- J. Cai, S. Liu, J. Feng, S. Kimura, M. Wada, S. Kuga, L. Zhang, Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem. Int. Ed. 51, 2076–2079 (2012). https://doi.org/10.1002/anie.201105730
- G. Nyström, L. Roder, M.P. Fernández-Ronco, R. Mezzenga, Amyloid templated organic–inorganic hybrid aerogels. Adv. Funct. Mater. 28, 1703609 (2018). https://doi.org/10.1002/adfm.201703609
- S. Zhao, W.J. Malfait, A. Demilecamps, Y. Zhang, S. Brunner et al., Strong, Thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin. Angew. Chem. Int. Ed. 54, 14282–14286 (2015). https://doi.org/10.1002/anie.201507328
- T. Kashiwagi, F. Du, J.F. Douglas, K.I. Winey, R.H. Harris Jr., J.R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005). https://doi.org/10.1038/nmat1502
- Z.L. Yu, N. Yang, V. Apostolopoulou-Kalkavoura, B. Qin, Z.Y. Ma et al., Fire-retardant and thermally insulating phenolic–silica aerogels. Angew. Chem. Int. Ed. 57, 4538–4542 (2018). https://doi.org/10.1002/anie.201711717
- Y. Kobayashi, T. Saito, A. Isogai, Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. Int. Ed. 53, 10394–10397 (2014). https://doi.org/10.1002/anie.201405123
- S. Zhao, Z. Zhang, G. Sèbe, R. Wu, R.V.R. Virtudazo, P. Tingaut, M.M. Koebel, Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 25, 2326–2334 (2015). https://doi.org/10.1002/adfm.201404368
- K.J. De France, T. Hoare, E.D. Cranston, Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29, 4609–4631 (2017). https://doi.org/10.1021/acs.chemmater.7b00531
- J. Song, C. Chen, Z. Yang, Y. Kuang, T. Li et al., Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12, 140–147 (2017). https://doi.org/10.1021/acsnano.7b04246
- J. Zhang, Y. Cheng, M. Tebyetekerwa, S. Meng, M. Zhu, Y. Lu, “Stiff–soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv. Funct. Mater. 29, 1806407 (2019). https://doi.org/10.1002/adfm.201806407
- O. Köklükaya, F. Carosio, L. Wågberg, Superior flame-resistant cellulose nanofibril aerogels modified with hybrid layer-by-layer coatings. ACS Appl. Mater. Interfaces 9, 29082–29092 (2017). https://doi.org/10.1021/acsami.7b08018
- L. Zhu, L. Zong, X. Wu, M. Li, H. Wang, J. You, C. Li, Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12, 4462–4468 (2018). https://doi.org/10.1021/acsnano.8b00566
- S. Zhou, L. Nyholm, M. Strømme, Z. Wang, Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Acc. Chem. Res. 52, 2232–2243 (2019). https://doi.org/10.1021/acs.accounts.9b00215
- G. Nyström, A. Razaq, M. Strømme, L. Nyholm, A. Mihranyan, Ultrafast all-polymer paper-based batteries. Nano Lett. 9, 3635–3639 (2009). https://doi.org/10.1021/nl901852h
- Z. Wang, D.O. Carlsson, P. Tammela, K. Hua, P. Zhang, L. Nyholm, M. Strømme, Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9, 7563–7571 (2015). https://doi.org/10.1021/acsnano.5b02846
- S. Zhou, X. Kong, B. Zheng, F. Huo, M. Strømme, C. Xu, Cellulose nanofiber @ conductive metal–organic frameworks for high performance flexible supercapacitors. ACS Nano 13, 9578–9586 (2019). https://doi.org/10.1021/acsnano.9b04670
- C. Xu, X. Kong, S. Zhou, B. Zheng, F. Huo, M. Strømme, Interweaving metal–organic framework-templated Co–Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. J. Mater. Chem. A 6, 24050–24057 (2018). https://doi.org/10.1039/C8TA10133G
- S. Zhou, M. Strømme, C. Xu, Highly transparent, flexible and mechanically strong nanopapers of cellulose nanofibers@metal–organic frameworks. Chem. Eur. J. 25, 3515–3520 (2019). https://doi.org/10.1002/chem.201806417
- T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004). https://doi.org/10.1002/chem.200305413
- J. Liu, F. Zhang, X. Zou, G. Yu, N. Zhao, S. Fan, G. Zhu, Environmentally friendly synthesis of highly hydrophobic and stable MIL-53 MOF nanomaterials. Chem. Commun. 49, 7430–7432 (2013). https://doi.org/10.1039/c3cc42287a
- J. Warfsmann, B. Tokay, N.R. Champness, Synthesis of hydrophobic MIL-53(Al) nanoparticles in low molecular weight alcohols: systematic investigation of solvent effects. CrystEngComm 20, 4666–4675 (2018). https://doi.org/10.1039/C8CE00913A
- T. Tian, J. Velazquez-Garcia, T.D. Bennett, D. Fairen-Jimenez, Mechanically and chemically robust zif-8 monoliths with high volumetric adsorption capacity. J. Mater. Chem. A 3, 2999–3005 (2015). https://doi.org/10.1039/C4TA05116E
- K. Sumida, K. Liang, J. Reboul, I.A. Ibarra, S. Furukawa, P. Falcaro, Sol–Gel processing of metal–organic frameworks. Chem. Mater. 29, 2626–2645 (2017). https://doi.org/10.1021/acs.chemmater.6b03934
- T. Tian, Z. Zeng, D. Vulpe, M.E. Casco, G. Divitini et al., A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018). https://doi.org/10.1038/nmat5050
- M. Sánchez-Sánchez, N. Getachew, K. Diaz, M. Díaz-García, Y. Chebude, I. Diaz, Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem. 17, 1500–1509 (2015). https://doi.org/10.1039/C4GC01861C
- T. Saito, Y. Nishiyama, J.L. Putaux, M. Vignon, A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7, 1687–1691 (2006). https://doi.org/10.1021/bm060154s
- S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 345, 469–473 (2010). https://doi.org/10.1016/j.carres.2009.12.010
- Q. Cheng, C. Huang, A.P. Tomsia, Freeze Casting: freeze casting for assembling bioinspired structural materials. Adv. Mater. 29, 1703155 (2017). https://doi.org/10.1002/adma.201703155
- S. Takeshita, S. Yoda, Chitosan aerogels: transparent, flexible thermal insulators. Chem. Mater. 27, 7569–7572 (2015). https://doi.org/10.1021/acs.chemmater.5b03610
- R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: a state-of-the-art review. Energy Build. 43, 761–769 (2011). https://doi.org/10.1016/j.enbuild.2010.12.012
- X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Thermal conductivity of monolithic organic aerogels. Science 255, 971–972 (1992). https://doi.org/10.1126/science.255.5047.971
- G. Reichenauer, Aerogel, in Kirk-othmer Encyclopedia of Chemical Technology (Wiley, New York, 2008), pp. 1–41. https://doi.org/10.1002/0471238961.010518151115.a01.pub2
- V. Apostolopoulou-Kalkavoura, K. Gordeyeva, N. Lavoine, L. Bergström, Thermal conductivity of hygroscopic foams based on cellulose nanofibrils and a nonionic polyoxamer. Cellulose 25, 1117–1126 (2018). https://doi.org/10.1007/s10570-017-1633-y
- L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
- Y. Si, X. Wang, C. Yan, L. Yang, J. Yu, B. Ding, Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512–9518 (2016). https://doi.org/10.1002/adma.201603143
- Y. Si, L. Wang, X. Wang, N. Tang, J. Yu, B. Ding, Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity. Adv. Mater. 29, 1700339 (2017). https://doi.org/10.1002/adma.201700339
- M. Ghanadpour, B. Wicklein, F. Carosio, L. Wågberg, All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale 10, 4085–4095 (2018). https://doi.org/10.1039/C7NR09243A
- H.W. Liang, Q.F. Guan, L.F. Chen, Z. Zhu, W.J. Zhang, S.H. Yu, Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 51, 5101–5105 (2012). https://doi.org/10.1002/anie.201200710
- Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aas8925
- L. Su, H. Wang, M. Niu, X. Fan, M. Ma, Z. Shi, S.W. Guo, Ultralight, recoverable, and high-temperature-resistant sic nanowire aerogel. ACS Nano 12, 3103–3111 (2018). https://doi.org/10.1021/acsnano.7b08577
- X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019). https://doi.org/10.1126/science.aav7304
- Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
- A. Laachachi, M. Ferriol, M. Cochez, J.M.L. Cuesta, D. Ruch, A Comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate). Polym. Degrad. Stab. 94, 1373–1378 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.05.014
- Y. Feng, C. He, Y. Wen, X. Zhou, X. Xie, Y. Ye, Y.W. Mai, Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. Compos. Sci. Technol. 160, 42–49 (2018). https://doi.org/10.1016/j.compscitech.2018.03.009
- G. Zu, J. Shen, L. Zou, W. Wang, Y. Lian, Z. Zhang, A. Du, Nanoengineering super heat-resistant, strong alumina aerogels. Chem. Mater. 25, 4757–4764 (2013). https://doi.org/10.1021/cm402900y
References
H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013). https://doi.org/10.1126/science.1230444
Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Metal–organic frameworks as platforms for functional materials. Chem. Res. 49, 483–493 (2016). https://doi.org/10.1021/acs.accounts.5b00530
H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.C. Zhou, Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 21, 108–121 (2018). https://doi.org/10.1016/j.mattod.2017.07.006
Y. Chen, S. Zhang, S. Cao, S. Li, F. Chen et al., Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. Adv. Mater. 29, 1606221–1606222 (2017). https://doi.org/10.1002/adma.201606221
H.B. Wu, X.W. Lou, Metal–organic frameworks for energy storage: batteries and supercapacitors. Sci. Adv. (2017). https://doi.org/10.1126/sciadv.aap9252
H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A.M. Nyström, X. Zou, One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 138, 962–968 (2016). https://doi.org/10.1021/jacs.5b11720
B.L. Huang, A.J.H. McGaughey, M. Kaviany, Thermal conductivity of metal–organic framework 5 (MOF-5): Part I. Molecular dynamics simulations. Int. J. Heat Mass. Transf. 50, 393–404 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.002
Article
MATH
Google Scholar
H. Babaei, A.J.H. McGaughey, C.E. Wilmer, Chemical, thermal and mechanical stabilities of metal–organic frameworks. Chem. Sci. 8, 583–589 (2017). https://doi.org/10.1039/C6SC03704F
B.P. Jelle, Traditional, state-of-the-art and future thermal building insulation materials and solutions—properties, requirements and possibilities. Energy Build. 43, 2549–2563 (2011). https://doi.org/10.1016/j.enbuild.2011.05.015
L. Sun, B. Liao, D. Sheberla, D. Kraemer, J. Zhou et al., A microporous and naturally nanostructured thermoelectric metal–organic framework with ultralow thermal conductivity. Joule 1, 168–177 (2017). https://doi.org/10.1016/j.joule.2017.07.018
T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers. Chem. Soc. Rev. 46, 3108–3133 (2017). https://doi.org/10.1039/C7CS00041C
B. Wicklein, A. Kocjan, G. Salazar-Alvarez, F. Carosio, G. Camino, M. Antonietti, L. Bergström, Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat. Nanotech. 10, 277–283 (2015). https://doi.org/10.1038/nnano.2014.248
C. Hu, J. Xue, L. Dong, Y. Jiang, X. Wang, L. Qu, L. Dai, Scalable preparation of multifunctional fire-retardant ultralight graphene foams. ACS Nano 10, 1325–1332 (2016). https://doi.org/10.1021/acsnano.5b06710
L. Yang, A. Mukhopadhyay, Y. Jiao, Q. Yong, L. Chen, Y. Xing, J. Hamel, H. Zhu, Ultralight, Highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2. Nanoscale 9, 11452–11462 (2017). https://doi.org/10.1039/C7NR02243C
A. Rizvi, R.K.M. Chu, C.B. Park, Scalable fabrication of thermally insulating mechanically resilient hierarchically porous polymer foams. ACS Appl. Mater. Interfaces 10, 38410–38417 (2018). https://doi.org/10.1021/acsami.8b11375
N. Hüsing, U. Schubert, Aerogels–airy materials: chemistry, structure, and properties. Angew. Chem. Int. Ed. 37, 22–45 (1998). https://doi.org/10.1002/1521-3773(19980202)37:1/23.3.CO;2-9
N.G. Dou, R.A. Jagt, C.M. Portela, J.R. Greer, A.J. Minnich, Ultralow thermal conductivity and mechanical resilience of architected nanolattices. Nano Lett. 18, 4755–4761 (2018). https://doi.org/10.1021/acs.nanolett.8b01191
A. Dasari, Z.Z. Yu, G.P. Cai, Y.W. Mai, Recent developments in the fire retardancy of polymeric materials. Prog. Polym. Sci. 38, 1357–1387 (2013). https://doi.org/10.1016/j.progpolymsci.2013.06.006
W. Xu, X. Wang, Y. Wu, W. Li, C. Chen, Functionalized graphene with Co-ZIF adsorbed borate ions as an effective flame retardant and smoke suppression agent for epoxy resin. J. Hazard. Mater. 363, 138–151 (2019). https://doi.org/10.1016/j.jhazmat.2018.09.086
X.-L. Qi, D.-D. Zhou, J. Zhang, S. Hu, M. Haranczyk, D.-Y. Wang, Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS Appl. Mater. Interfaces 11, 20325–20332 (2019). https://doi.org/10.1021/acsami.9b02357
H. Zou, S. Wu, J. Shen, Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 108, 3893–3957 (2008). https://doi.org/10.1021/cr068035q
J. Cai, S. Liu, J. Feng, S. Kimura, M. Wada, S. Kuga, L. Zhang, Cellulose–silica nanocomposite aerogels by in situ formation of silica in cellulose gel. Angew. Chem. Int. Ed. 51, 2076–2079 (2012). https://doi.org/10.1002/anie.201105730
G. Nyström, L. Roder, M.P. Fernández-Ronco, R. Mezzenga, Amyloid templated organic–inorganic hybrid aerogels. Adv. Funct. Mater. 28, 1703609 (2018). https://doi.org/10.1002/adfm.201703609
S. Zhao, W.J. Malfait, A. Demilecamps, Y. Zhang, S. Brunner et al., Strong, Thermally superinsulating biopolymer–silica aerogel hybrids by cogelation of silicic acid with pectin. Angew. Chem. Int. Ed. 54, 14282–14286 (2015). https://doi.org/10.1002/anie.201507328
T. Kashiwagi, F. Du, J.F. Douglas, K.I. Winey, R.H. Harris Jr., J.R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005). https://doi.org/10.1038/nmat1502
Z.L. Yu, N. Yang, V. Apostolopoulou-Kalkavoura, B. Qin, Z.Y. Ma et al., Fire-retardant and thermally insulating phenolic–silica aerogels. Angew. Chem. Int. Ed. 57, 4538–4542 (2018). https://doi.org/10.1002/anie.201711717
Y. Kobayashi, T. Saito, A. Isogai, Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. Int. Ed. 53, 10394–10397 (2014). https://doi.org/10.1002/anie.201405123
S. Zhao, Z. Zhang, G. Sèbe, R. Wu, R.V.R. Virtudazo, P. Tingaut, M.M. Koebel, Multiscale assembly of superinsulating silica aerogels within silylated nanocellulosic scaffolds: improved mechanical properties promoted by nanoscale chemical compatibilization. Adv. Funct. Mater. 25, 2326–2334 (2015). https://doi.org/10.1002/adfm.201404368
K.J. De France, T. Hoare, E.D. Cranston, Review of hydrogels and aerogels containing nanocellulose. Chem. Mater. 29, 4609–4631 (2017). https://doi.org/10.1021/acs.chemmater.7b00531
J. Song, C. Chen, Z. Yang, Y. Kuang, T. Li et al., Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12, 140–147 (2017). https://doi.org/10.1021/acsnano.7b04246
J. Zhang, Y. Cheng, M. Tebyetekerwa, S. Meng, M. Zhu, Y. Lu, “Stiff–soft” binary synergistic aerogels with superflexibility and high thermal insulation performance. Adv. Funct. Mater. 29, 1806407 (2019). https://doi.org/10.1002/adfm.201806407
O. Köklükaya, F. Carosio, L. Wågberg, Superior flame-resistant cellulose nanofibril aerogels modified with hybrid layer-by-layer coatings. ACS Appl. Mater. Interfaces 9, 29082–29092 (2017). https://doi.org/10.1021/acsami.7b08018
L. Zhu, L. Zong, X. Wu, M. Li, H. Wang, J. You, C. Li, Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12, 4462–4468 (2018). https://doi.org/10.1021/acsnano.8b00566
S. Zhou, L. Nyholm, M. Strømme, Z. Wang, Cladophora cellulose: unique biopolymer nanofibrils for emerging energy, environmental, and life science applications. Acc. Chem. Res. 52, 2232–2243 (2019). https://doi.org/10.1021/acs.accounts.9b00215
G. Nyström, A. Razaq, M. Strømme, L. Nyholm, A. Mihranyan, Ultrafast all-polymer paper-based batteries. Nano Lett. 9, 3635–3639 (2009). https://doi.org/10.1021/nl901852h
Z. Wang, D.O. Carlsson, P. Tammela, K. Hua, P. Zhang, L. Nyholm, M. Strømme, Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9, 7563–7571 (2015). https://doi.org/10.1021/acsnano.5b02846
S. Zhou, X. Kong, B. Zheng, F. Huo, M. Strømme, C. Xu, Cellulose nanofiber @ conductive metal–organic frameworks for high performance flexible supercapacitors. ACS Nano 13, 9578–9586 (2019). https://doi.org/10.1021/acsnano.9b04670
C. Xu, X. Kong, S. Zhou, B. Zheng, F. Huo, M. Strømme, Interweaving metal–organic framework-templated Co–Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. J. Mater. Chem. A 6, 24050–24057 (2018). https://doi.org/10.1039/C8TA10133G
S. Zhou, M. Strømme, C. Xu, Highly transparent, flexible and mechanically strong nanopapers of cellulose nanofibers@metal–organic frameworks. Chem. Eur. J. 25, 3515–3520 (2019). https://doi.org/10.1002/chem.201806417
T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey, A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004). https://doi.org/10.1002/chem.200305413
J. Liu, F. Zhang, X. Zou, G. Yu, N. Zhao, S. Fan, G. Zhu, Environmentally friendly synthesis of highly hydrophobic and stable MIL-53 MOF nanomaterials. Chem. Commun. 49, 7430–7432 (2013). https://doi.org/10.1039/c3cc42287a
J. Warfsmann, B. Tokay, N.R. Champness, Synthesis of hydrophobic MIL-53(Al) nanoparticles in low molecular weight alcohols: systematic investigation of solvent effects. CrystEngComm 20, 4666–4675 (2018). https://doi.org/10.1039/C8CE00913A
T. Tian, J. Velazquez-Garcia, T.D. Bennett, D. Fairen-Jimenez, Mechanically and chemically robust zif-8 monoliths with high volumetric adsorption capacity. J. Mater. Chem. A 3, 2999–3005 (2015). https://doi.org/10.1039/C4TA05116E
K. Sumida, K. Liang, J. Reboul, I.A. Ibarra, S. Furukawa, P. Falcaro, Sol–Gel processing of metal–organic frameworks. Chem. Mater. 29, 2626–2645 (2017). https://doi.org/10.1021/acs.chemmater.6b03934
T. Tian, Z. Zeng, D. Vulpe, M.E. Casco, G. Divitini et al., A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nat. Mater. 17, 174–179 (2018). https://doi.org/10.1038/nmat5050
M. Sánchez-Sánchez, N. Getachew, K. Diaz, M. Díaz-García, Y. Chebude, I. Diaz, Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chem. 17, 1500–1509 (2015). https://doi.org/10.1039/C4GC01861C
T. Saito, Y. Nishiyama, J.L. Putaux, M. Vignon, A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7, 1687–1691 (2006). https://doi.org/10.1021/bm060154s
S.K. Papageorgiou, E.P. Kouvelos, E.P. Favvas, A.A. Sapalidis, G.E. Romanos, F.K. Katsaros, Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 345, 469–473 (2010). https://doi.org/10.1016/j.carres.2009.12.010
Q. Cheng, C. Huang, A.P. Tomsia, Freeze Casting: freeze casting for assembling bioinspired structural materials. Adv. Mater. 29, 1703155 (2017). https://doi.org/10.1002/adma.201703155
S. Takeshita, S. Yoda, Chitosan aerogels: transparent, flexible thermal insulators. Chem. Mater. 27, 7569–7572 (2015). https://doi.org/10.1021/acs.chemmater.5b03610
R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: a state-of-the-art review. Energy Build. 43, 761–769 (2011). https://doi.org/10.1016/j.enbuild.2010.12.012
X. Lu, M.C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke, R.W. Pekala, Thermal conductivity of monolithic organic aerogels. Science 255, 971–972 (1992). https://doi.org/10.1126/science.255.5047.971
G. Reichenauer, Aerogel, in Kirk-othmer Encyclopedia of Chemical Technology (Wiley, New York, 2008), pp. 1–41. https://doi.org/10.1002/0471238961.010518151115.a01.pub2
V. Apostolopoulou-Kalkavoura, K. Gordeyeva, N. Lavoine, L. Bergström, Thermal conductivity of hygroscopic foams based on cellulose nanofibrils and a nonionic polyoxamer. Cellulose 25, 1117–1126 (2018). https://doi.org/10.1007/s10570-017-1633-y
L. Qiu, J.Z. Liu, S.L.Y. Chang, Y. Wu, D. Li, Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012). https://doi.org/10.1038/ncomms2251
Y. Si, X. Wang, C. Yan, L. Yang, J. Yu, B. Ding, Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv. Mater. 28, 9512–9518 (2016). https://doi.org/10.1002/adma.201603143
Y. Si, L. Wang, X. Wang, N. Tang, J. Yu, B. Ding, Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity. Adv. Mater. 29, 1700339 (2017). https://doi.org/10.1002/adma.201700339
M. Ghanadpour, B. Wicklein, F. Carosio, L. Wågberg, All-natural and highly flame-resistant freeze-cast foams based on phosphorylated cellulose nanofibrils. Nanoscale 10, 4085–4095 (2018). https://doi.org/10.1039/C7NR09243A
H.W. Liang, Q.F. Guan, L.F. Chen, Z. Zhu, W.J. Zhang, S.H. Yu, Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 51, 5101–5105 (2012). https://doi.org/10.1002/anie.201200710
Y. Si, X. Wang, L. Dou, J. Yu, B. Ding, Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aas8925
L. Su, H. Wang, M. Niu, X. Fan, M. Ma, Z. Shi, S.W. Guo, Ultralight, recoverable, and high-temperature-resistant sic nanowire aerogel. ACS Nano 12, 3103–3111 (2018). https://doi.org/10.1021/acsnano.7b08577
X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019). https://doi.org/10.1126/science.aav7304
Y. Si, J. Yu, X. Tang, J. Ge, B. Ding, Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 5, 5802 (2014). https://doi.org/10.1038/ncomms6802
A. Laachachi, M. Ferriol, M. Cochez, J.M.L. Cuesta, D. Ruch, A Comparison of the role of boehmite (AlOOH) and alumina (Al2O3) in the thermal stability and flammability of poly(methyl methacrylate). Polym. Degrad. Stab. 94, 1373–1378 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.05.014
Y. Feng, C. He, Y. Wen, X. Zhou, X. Xie, Y. Ye, Y.W. Mai, Multi-functional interface tailoring for enhancing thermal conductivity, flame retardancy and dynamic mechanical property of epoxy/Al2O3 composites. Compos. Sci. Technol. 160, 42–49 (2018). https://doi.org/10.1016/j.compscitech.2018.03.009
G. Zu, J. Shen, L. Zou, W. Wang, Y. Lian, Z. Zhang, A. Du, Nanoengineering super heat-resistant, strong alumina aerogels. Chem. Mater. 25, 4757–4764 (2013). https://doi.org/10.1021/cm402900y