Monolayer Graphitic Carbon Nitride as Metal-Free Catalyst with Enhanced Performance in Photo- and Electro-Catalysis
Corresponding Author: Jin‑Ho Choy
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 55
Abstract
The exfoliation of bulk graphitic carbon nitride (g-C3N4) into monolayer has been intensively studied to induce maximum surface area for fundamental studies, but ended in failure to realize chemically and physically well-defined monolayer of g-C3N4 mostly due to the difficulty in reducing the layer thickness down to an atomic level. It has, therefore, remained as a challenging issue in two-dimensional (2D) chemistry and physics communities. In this study, an “atomic monolayer of g-C3N4 with perfect two-dimensional limit” was successfully prepared by the chemically well-defined two-step routes. The atomically resolved monolayer of g-C3N4 was also confirmed by spectroscopic and microscopic analyses. In addition, the experimental Cs-HRTEM image was collected, for the first time, which was in excellent agreement with the theoretically simulated; the evidence of monolayer of g-C3N4 in the perfect 2D limit becomes now clear from the HRTEM image of orderly hexagonal symmetry with a cavity formed by encirclement of three adjacent heptazine units. Compared to bulk g-C3N4, the present g-C3N4 monolayer showed significantly higher photocatalytic generation of H2O2 and H2, and electrocatalytic oxygen reduction reaction. In addition, its photocatalytic efficiency for H2O2 production was found to be the best for any known g-C3N4 nanomaterials, underscoring the remarkable advantage of monolayer formation in optimizing the catalyst performance of g-C3N4.
Highlights:
1 The g-C3N4 monolayer in the perfect 2D limit was successfully realized, for the first time, by the well-defined chemical strategy based on the bottom-up process.
2 The most striking evidence was made from Cs–high resolution transmission electron microscopy measurements by observing directly the atomic structure of g-C3N4 unit cell, which was again supported by the corresponding high resolution transmission electron microscopy image simulation results.
3 We demonstrated that the newly prepared g-C3N4 monolayer showed outstanding photocatalytic activity for H2O2 generation as well as excellent electrocatalytic activity for oxygen reduction reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
- A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
- J.K. Lee, E.K. Lee, W.J. Joo, Y. Jang, B.S. Kim et al., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181), 286–289 (2014). https://doi.org/10.1126/science.1252268
- A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
- M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten et al., High-speed plasmonic modulator in a single metal layer. Science 358(6363), 630–632 (2017). https://doi.org/10.1126/science.aan5953
- J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). https://doi.org/10.1126/science.1194975
- D.A. Iranzo, S. Nanot, E.J.C. Dias, I. Epstein, C. Peng et al., Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360(6386), 291–295 (2018). https://doi.org/10.1126/science.aar8438
- P. Rivera, K.L. Seyler, H. Yu, J.R. Schaibley, J. Yan et al., Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351(6274), 688–691 (2016). https://doi.org/10.1126/science.aac7820
- M. Humayun, H. Ullah, L. Shu, X. Ao, A.A. Tahir et al., Plasmon assisted highly efficient visible light catalytic CO2 reduction over the noble metal decorated Sr-incorporated g-C3N4. Nano-Micro Lett. 13, 209 (2021). https://doi.org/10.1007/s40820-021-00736-x
- N. Kim, T.H. Gu, D. Shin, X. Jin, H. Shin et al., Lattice engineering to simultaneously control the defect/stacking structures of layered double hydroxide nanosheets to optimize their energy functionalities. ACS Nano 15(5), 8306–8318 (2021). https://doi.org/10.1021/acsnano.0c09217
- T.H. Gu, X. Jin, S.J. Park, M.G. Kim, S.J. Hwang, Molecular-level control of the intersheet distance and electronic coupling between 2D semiconducting and metallic nanosheets: establishing design rules for high-performance hybrid photocatalysts. Adv. Sci. 8(7), 2004530 (2021). https://doi.org/10.1002/advs.202004530
- F.K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick et al., Functional carbon nitride materials — design strategies for electrochemical devices. Nat. Rev. Mater. 2, 17030 (2017). https://doi.org/10.1038/natrevmats.2017.30
- M. Zelisko, Y. Hanlumyuang, S. Yang, Y. Liu, C. Lei et al., Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun. 5, 4284 (2014). https://doi.org/10.1038/ncomms5284
- S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25(17), 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
- P. Niu, L. Zhang, G. Liu, H. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22(22), 4763–4770 (2012). https://doi.org/10.1002/adfm.201200922
- Y. Yu, Q. Zhou, J. Wang, The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission. Chem. Commun. 52, 3396–3399 (2016). https://doi.org/10.1039/C5CC10258H
- J.T. Yin, Z. Li, Y. Cai, Q.F. Zhang, W. Chen, Ultrathin graphitic carbon nitride nanosheets with remarkable photocatalytic hydrogen production under visible LED irradiation. Chem. Commun. 53(16), 9430–9433 (2017). https://doi.org/10.1039/C7CC04204C
- H. Zhao, H. Yu, X. Quan, S. Chen, H. Zhao et al., Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation. RSC Adv. 4(2), 624–628 (2014). https://doi.org/10.1039/C3RA45776A
- Q. Lin, L. Li, S. Liang, M. Liu, J. Bi et al., Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl. Catal. B 163, 135–142 (2015). https://doi.org/10.1016/j.apcatb.2014.07.053
- H. Zhao, H. Yu, X. Quan, S. Chen, Y. Zhang et al., Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl. Catal. B 152–153, 46–50 (2014). https://doi.org/10.1016/j.apcatb.2014.01.023
- J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 1(46), 14766–14772 (2013). https://doi.org/10.1039/C3TA13188B
- X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan et al., Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135(1), 18–21 (2013). https://doi.org/10.1021/ja308249k
- J.M. Cowley, A.F. Moodie, The scattering of electrons by atoms and crystals. Acta Crystallogr. 10, 609–619 (1957). https://doi.org/10.1107/S0365110X57002194
- J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth et al., The structure of suspended graphene sheets. Nature 446, 60–63 (2007). https://doi.org/10.1038/nature05545
- M. Xing, W. Xu, C. Dong, Y. Bai, J. Zeng et al., Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4(6), 1359–1372 (2018). https://doi.org/10.1016/j.chempr.2018.03.002
- H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen et al., Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B 174–175, 445–454 (2015). https://doi.org/10.1016/j.apcatb.2015.03.037
- L.W. Hobbs, J.N. Chapman, A.J. Craven, (ed). Proc. 25th Scottish Univ. Sch. Phys. 413, (1983).
- D.C. Bell, C.J. Russo, D.V. Kolmykov, 40 keV atomic resolution TEM. Ultramicroscopy 114, 31–37 (2012). https://doi.org/10.1016/j.ultramic.2011.12.001
- G. Algara-Siller, N. Severin, S.Y. Chong, T. Björkman, R.G. Palgrave et al., Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. Angew. Chem. Int. Ed. 53(29), 7450–7455 (2014). https://doi.org/10.1002/anie.201402191
- R. Egerton, Beam-induced motion of adatoms in the transmission electron microscope. Microsc. Microanal. 19(2), 479 (2013). https://doi.org/10.1017/S1431927612014274
- E. Kroke, M. Schwarz, E. Hroath-Bordon, P. Kroll, B. Noll et al., Tri-s-triazine derivatives. Part I From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 26(5), 508–512 (2002). https://doi.org/10.1039/B111062B
- G.P. Mane, S.N. Talapaneni, K.S. Lakhi, H. Ilbeygi, U. Ravon et al., Highly ordered nitrogen-rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angew. Chem. Int. Ed. 56(29), 8481–8485 (2017). https://doi.org/10.1002/anie.201702386
- G. Constantinescu, A. Kuc, T. Heine, Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104 (2013). https://doi.org/10.1103/PhysRevLett.111.036104
- N.H. Kwon, S.J. Shin, X. Jin, Y. Jung, G.S. Hwang et al., Monolayered g-C3N4 nanosheet as an emerging cationic building block for bifunctional 2D superlattice hybrid catalysts with controlled defect structures. Appl. Catal. B Environ. 277, 119191 (2020). https://doi.org/10.1016/j.apcatb.2020.119191
- Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto et al., Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4(3), 774–780 (2014). https://doi.org/10.1021/cs401208c
- Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa et al., Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 5(5), 3058–3066 (2015). https://doi.org/10.1021/acscatal.5b00408
- S. Li, G. Dong, R. Hailili, L. Yang, Y. Li et al., Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B Environ. 190, 26–35 (2016). https://doi.org/10.1016/j.apcatb.2016.03.004
- L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin et al., Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 14(9), 1703142 (2018). https://doi.org/10.1002/smll.201703142
- Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Appl. Catal. B Environ. 232, 19–25 (2018). https://doi.org/10.1016/j.apcatb.2018.03.035
- S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 26(18), 2925–2930 (2014). https://doi.org/10.1002/adma.201305608
- X. Jin, J. Lim, N.S. Lee, S.J. Hwang, A powerful role of exfoliated metal oxide 2D nanosheets as additives for improving electrocatalyst functionality of graphene. Electrochim. Acta 235, 720–729 (2017). https://doi.org/10.1016/j.electacta.2017.03.134
- A.R. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 3(1), 66–98 (2020). https://doi.org/10.1021/acsaem.9b01965
References
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004). https://doi.org/10.1126/science.1102896
A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849
J.K. Lee, E.K. Lee, W.J. Joo, Y. Jang, B.S. Kim et al., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344(6181), 286–289 (2014). https://doi.org/10.1126/science.1252268
A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499, 419–425 (2013). https://doi.org/10.1038/nature12385
M. Ayata, Y. Fedoryshyn, W. Heni, B. Baeuerle, A. Josten et al., High-speed plasmonic modulator in a single metal layer. Science 358(6363), 630–632 (2017). https://doi.org/10.1126/science.aan5953
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568–571 (2011). https://doi.org/10.1126/science.1194975
D.A. Iranzo, S. Nanot, E.J.C. Dias, I. Epstein, C. Peng et al., Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360(6386), 291–295 (2018). https://doi.org/10.1126/science.aar8438
P. Rivera, K.L. Seyler, H. Yu, J.R. Schaibley, J. Yan et al., Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351(6274), 688–691 (2016). https://doi.org/10.1126/science.aac7820
M. Humayun, H. Ullah, L. Shu, X. Ao, A.A. Tahir et al., Plasmon assisted highly efficient visible light catalytic CO2 reduction over the noble metal decorated Sr-incorporated g-C3N4. Nano-Micro Lett. 13, 209 (2021). https://doi.org/10.1007/s40820-021-00736-x
N. Kim, T.H. Gu, D. Shin, X. Jin, H. Shin et al., Lattice engineering to simultaneously control the defect/stacking structures of layered double hydroxide nanosheets to optimize their energy functionalities. ACS Nano 15(5), 8306–8318 (2021). https://doi.org/10.1021/acsnano.0c09217
T.H. Gu, X. Jin, S.J. Park, M.G. Kim, S.J. Hwang, Molecular-level control of the intersheet distance and electronic coupling between 2D semiconducting and metallic nanosheets: establishing design rules for high-performance hybrid photocatalysts. Adv. Sci. 8(7), 2004530 (2021). https://doi.org/10.1002/advs.202004530
F.K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W. Schnick et al., Functional carbon nitride materials — design strategies for electrochemical devices. Nat. Rev. Mater. 2, 17030 (2017). https://doi.org/10.1038/natrevmats.2017.30
M. Zelisko, Y. Hanlumyuang, S. Yang, Y. Liu, C. Lei et al., Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets. Nat. Commun. 5, 4284 (2014). https://doi.org/10.1038/ncomms5284
S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25(17), 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
P. Niu, L. Zhang, G. Liu, H. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22(22), 4763–4770 (2012). https://doi.org/10.1002/adfm.201200922
Y. Yu, Q. Zhou, J. Wang, The ultra-rapid synthesis of 2D graphitic carbon nitride nanosheets via direct microwave heating for field emission. Chem. Commun. 52, 3396–3399 (2016). https://doi.org/10.1039/C5CC10258H
J.T. Yin, Z. Li, Y. Cai, Q.F. Zhang, W. Chen, Ultrathin graphitic carbon nitride nanosheets with remarkable photocatalytic hydrogen production under visible LED irradiation. Chem. Commun. 53(16), 9430–9433 (2017). https://doi.org/10.1039/C7CC04204C
H. Zhao, H. Yu, X. Quan, S. Chen, H. Zhao et al., Atomic single layer graphitic-C3N4: fabrication and its high photocatalytic performance under visible light irradiation. RSC Adv. 4(2), 624–628 (2014). https://doi.org/10.1039/C3RA45776A
Q. Lin, L. Li, S. Liang, M. Liu, J. Bi et al., Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities. Appl. Catal. B 163, 135–142 (2015). https://doi.org/10.1016/j.apcatb.2014.07.053
H. Zhao, H. Yu, X. Quan, S. Chen, Y. Zhang et al., Fabrication of atomic single layer graphitic-C3N4 and its high performance of photocatalytic disinfection under visible light irradiation. Appl. Catal. B 152–153, 46–50 (2014). https://doi.org/10.1016/j.apcatb.2014.01.023
J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis. J. Mater. Chem. A 1(46), 14766–14772 (2013). https://doi.org/10.1039/C3TA13188B
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan et al., Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135(1), 18–21 (2013). https://doi.org/10.1021/ja308249k
J.M. Cowley, A.F. Moodie, The scattering of electrons by atoms and crystals. Acta Crystallogr. 10, 609–619 (1957). https://doi.org/10.1107/S0365110X57002194
J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth et al., The structure of suspended graphene sheets. Nature 446, 60–63 (2007). https://doi.org/10.1038/nature05545
M. Xing, W. Xu, C. Dong, Y. Bai, J. Zeng et al., Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem 4(6), 1359–1372 (2018). https://doi.org/10.1016/j.chempr.2018.03.002
H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen et al., Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B 174–175, 445–454 (2015). https://doi.org/10.1016/j.apcatb.2015.03.037
L.W. Hobbs, J.N. Chapman, A.J. Craven, (ed). Proc. 25th Scottish Univ. Sch. Phys. 413, (1983).
D.C. Bell, C.J. Russo, D.V. Kolmykov, 40 keV atomic resolution TEM. Ultramicroscopy 114, 31–37 (2012). https://doi.org/10.1016/j.ultramic.2011.12.001
G. Algara-Siller, N. Severin, S.Y. Chong, T. Björkman, R.G. Palgrave et al., Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. Angew. Chem. Int. Ed. 53(29), 7450–7455 (2014). https://doi.org/10.1002/anie.201402191
R. Egerton, Beam-induced motion of adatoms in the transmission electron microscope. Microsc. Microanal. 19(2), 479 (2013). https://doi.org/10.1017/S1431927612014274
E. Kroke, M. Schwarz, E. Hroath-Bordon, P. Kroll, B. Noll et al., Tri-s-triazine derivatives. Part I From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 26(5), 508–512 (2002). https://doi.org/10.1039/B111062B
G.P. Mane, S.N. Talapaneni, K.S. Lakhi, H. Ilbeygi, U. Ravon et al., Highly ordered nitrogen-rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angew. Chem. Int. Ed. 56(29), 8481–8485 (2017). https://doi.org/10.1002/anie.201702386
G. Constantinescu, A. Kuc, T. Heine, Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104 (2013). https://doi.org/10.1103/PhysRevLett.111.036104
N.H. Kwon, S.J. Shin, X. Jin, Y. Jung, G.S. Hwang et al., Monolayered g-C3N4 nanosheet as an emerging cationic building block for bifunctional 2D superlattice hybrid catalysts with controlled defect structures. Appl. Catal. B Environ. 277, 119191 (2020). https://doi.org/10.1016/j.apcatb.2020.119191
Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto et al., Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4(3), 774–780 (2014). https://doi.org/10.1021/cs401208c
Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa et al., Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 5(5), 3058–3066 (2015). https://doi.org/10.1021/acscatal.5b00408
S. Li, G. Dong, R. Hailili, L. Yang, Y. Li et al., Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B Environ. 190, 26–35 (2016). https://doi.org/10.1016/j.apcatb.2016.03.004
L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin et al., Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 14(9), 1703142 (2018). https://doi.org/10.1002/smll.201703142
Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Appl. Catal. B Environ. 232, 19–25 (2018). https://doi.org/10.1016/j.apcatb.2018.03.035
S. Chen, J. Duan, M. Jaroniec, S.Z. Qiao, Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 26(18), 2925–2930 (2014). https://doi.org/10.1002/adma.201305608
X. Jin, J. Lim, N.S. Lee, S.J. Hwang, A powerful role of exfoliated metal oxide 2D nanosheets as additives for improving electrocatalyst functionality of graphene. Electrochim. Acta 235, 720–729 (2017). https://doi.org/10.1016/j.electacta.2017.03.134
A.R. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 3(1), 66–98 (2020). https://doi.org/10.1021/acsaem.9b01965