Multi-Bandgap Monolithic Metal Nanowire Percolation Network Sensor Integration by Reversible Selective Laser-Induced Redox
Corresponding Author: Seung Hwan Ko
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 49
Abstract
Active electronics are usually composed of semiconductor and metal electrodes which are connected by multiple vacuum deposition steps and photolithography patterning. However, the presence of interface of dissimilar material between semiconductor and metal electrode makes various problems in electrical contacts and mechanical failure. The ideal electronics should not have defective interfaces of dissimilar materials. In this study, we developed a novel method to fabricate active electronic components in a monolithic seamless fashion where both metal and semiconductor can be prepared from the same monolith material without creating a semiconductor–metal interface by reversible selective laser-induced redox (rSLIR) method. Furthermore, rSLIR can control the oxidation state of transition metal (Cu) to yield semiconductors with two different bandgap states (Cu2O and CuO with bandgaps of 2.1 and 1.2 eV, respectively), which may allow multifunctional sensors with multiple bandgaps from the same materials. This novel method enables the seamless integration of single-phase Cu, Cu2O, and CuO, simultaneously while allowing reversible, selective conversion between oxidation states by simply shining laser light. Moreover, we fabricated a flexible monolithic metal–semiconductor–metal multispectral photodetector that can detect multiple wavelengths. The unique monolithic characteristics of rSLIR process can provide next-generation electronics fabrication method overcoming the limitation of conventional photolithography methods.
Highlights:
1 A three single-phase Cu, Cu2O, and CuO monolithic nanowire network was successfully fabricated by reversible selective laser-induced redox (rSLIR)
2 Monolithic metal–semiconductor–metal multispectral photodetectors with Cu nanowire (CuNW) as an electrode and Cu2ONW/CuONW having different bandgaps were suggested.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000). https://doi.org/10.1126/science.288.5465.462
- E. Lee, Y.S. Yoon, D.J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3(10), 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
- A.S. Agnihotri, A. Varghese, M. Nidhin, Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl. Surf. Sci. Adv. 4, 100072 (2021). https://doi.org/10.1016/j.apsadv.2021.100072
- Y.H. Ting, J.Y. Chen, C.W. Huang, T.K. Huang, C.Y. Hsieh et al., Observation of resistive switching behavior in crossbar core-shell Ni/NiO nanowires memristor. Small 14(6), 1703153 (2018). https://doi.org/10.1002/smll.201703153
- K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai et al., Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett. 10(4), 1359–1363 (2010). https://doi.org/10.1021/nl9042906
- J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan et al., Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). https://doi.org/10.1002/adma.201202146
- I.A. Kuznetsov, M.J. Greenfield, Y.U. Mehta, W. Merchan-Merchan, G. Salkar et al., Increasing the solar cell power output by coating with transition metal-oxide nanorods. Appl. Energy 88(11), 4218–4221 (2011). https://doi.org/10.1016/j.apenergy.2011.04.033
- B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering et al., Binary copper oxide semiconductors: from materials towards devices. Phys. Status Solidi B 249(8), 1487–1509 (2012). https://doi.org/10.1002/pssb.201248128
- M.A. Rafea, N. Roushdy, Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by silar technique. J. Phys. D-Appl. Phys. 42(1), 015413 (2009). https://doi.org/10.1088/0022-3727/42/1/015413
- L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao et al., Multifunctional CuO nanowire devices: P-type field effect transistors and CO gas sensors. Nanotechnology 20(8), 085203 (2009). https://doi.org/10.1088/0957-4484/20/8/085203
- R. Khan, R. Ahmad, P. Rai, L.W. Jang, J.H. Yun et al., Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors. Sens. Actuators B Chem. 203, 471–476 (2014). https://doi.org/10.1016/j.snb.2014.06.128
- A. Li, H.H. Song, W.B. Wan, J.S. Zhou, X.H. Chen, Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries. Electrochim. Acta 132, 42–48 (2014). https://doi.org/10.1016/j.electacta.2014.03.123
- A. Bhaumik, A. Haque, P. Karnati, M.F.N. Taufique, R. Patel et al., Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films 572, 126–133 (2014). https://doi.org/10.1016/j.tsf.2014.09.056
- M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz et al., Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158(5), E45–E49 (2011). https://doi.org/10.1149/1.3561636
- Z.P. Zhu, Z.Y. Liu, S.J. Liu, H.X. Niu, T.D. Hu et al., No reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Appl. Catal. B Environ. 26(1), 25–35 (2000). https://doi.org/10.1016/S0926-3373(99)00144-7
- M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara et al., Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 3, 357–358 (1998). https://doi.org/10.1039/a707440i
- R. Kas, R. Kortlever, A. Milbrat, M.T. Koper, G. Mul et al., Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16(24), 12194–12201 (2014). https://doi.org/10.1039/c4cp01520g
- M.E. Grigore, E.R. Biscu, A.M. Holban, M.C. Gestal, A.M. Grumezescu, Methods of synthesis, properties and biomedical applications of cuo nanoparticles. Pharmaceuticals 9(4), 75 (2016). https://doi.org/10.3390/ph9040075
- S.A. Akintelu, A.S. Folorunso, F.A. Folorunso, A.K. Oyebamiji, Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6(7), e04508 (2020). https://doi.org/10.1016/j.heliyon.2020.e04508
- S.M. Bergin, Y.H. Chen, A.R. Rathmell, P. Charbonneau, Z.Y. Li et al., The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4(6), 1996–2004 (2012). https://doi.org/10.1039/c2nr30126a
- N.N. Jason, W. Shen, W. Cheng, Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015). https://doi.org/10.1021/acsami.5b04522
- J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), e1905527 (2020). https://doi.org/10.1002/adma.201905527
- S. Han, S. Hong, J. Yeo, D. Kim, B. Kang et al., Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv. Mater. 27(41), 6397–6403 (2015). https://doi.org/10.1002/adma.201503244
- H. Kwon, J. Kim, K. Ko, M.J. Matthews, J. Suh et al., Laser-induced digital oxidation for copper-based flexible photodetectors. Appl. Surf. Sci. 540, 148333 (2021). https://doi.org/10.1016/j.apsusc.2020.148333
- S. Back, B. Kang, Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer. Opt. Laser Eng. 101, 78–84 (2018). https://doi.org/10.1016/j.optlaseng.2017.09.027
- H. Du, T. Wan, B. Qu, F. Cao, Q. Lin et al., Engineering silver nanowire networks: from transparent electrodes to resistive switching devices. ACS Appl. Mater. Interfaces 9(24), 20762–20770 (2017). https://doi.org/10.1021/acsami.7b04839
- D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee et al., Laser-material interactions for flexible applications. Adv. Mater. 29(26), 1606586 (2017). https://doi.org/10.1002/adma.201606586
- J.H. Shin, J.H. Park, J. Seo, T.H. Im, J.C. Kim et al., A flash-induced robust Cu electrode on glass substrates and its application for thin-film muleds. Adv. Mater. 33(13), e2007186 (2021). https://doi.org/10.1002/adma.202007186
- C. Zhang, Y. Xie, H. Deng, T. Tumlin, C. Zhang et al., Monolithic and flexible ZnS/SnO2 ultraviolet photodetectors with lateral graphene electrodes. Small 13(18), 1604197 (2017). https://doi.org/10.1002/smll.201604197
- G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
- G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
- G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
- P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
- S. Smidstrup, A. Pedersen, K. Stokbro, H. Jonsson, Improved initial guess for minimum energy path calculations. J. Chem. Phys. 140(21), 214106 (2014). https://doi.org/10.1063/1.4878664
- D. Sheppard, R. Terrell, G. Henkelman, Optimization methods for finding minimum energy paths. J. Chem. Phys. 128(13), 134106 (2008). https://doi.org/10.1063/1.2841941
- N. Ashburn, Y. Zheng, S. Thampy, S. Dillon, Y.J. Chabal et al., Integrated experimental-theoretical approach to determine reliable molecular reaction mechanisms on transition-metal oxide surfaces. ACS Appl. Mater. Interfaces 11(33), 30460–30469 (2019). https://doi.org/10.1021/acsami.9b09700
- F. Fievet, J. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion. 32–33, 198–205 (1989). https://doi.org/10.1016/0167-2738(89)90222-1
- J.H. Park, S. Han, D. Kim, B.K. You, D.J. Joe et al., Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater. 27(29), 1701138 (2017). https://doi.org/10.1002/adfm.201701138
- H. Amekura, O.A. Plaksin, K. Kono, Y. Takeda, N. Kishimoto, Production of Cu2O nanoparticles in SiO2 by ion implantation and two-step annealing at different oxygen pressures. J. Phys. D-Appl. Phys. 39(16), 3659–3664 (2006). https://doi.org/10.1088/0022-3727/39/16/020
- L.L.S. Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker et al., Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of cu thin films on SiO2/Si substrates. Thin Solid Films 520(20), 6368–6374 (2012). https://doi.org/10.1016/j.tsf.2012.06.043
- M.Z. Su, J. Cao, X. Tian, Y.L. Zhang, H.B. Zhao, Mechanism and kinetics of Cu2O oxidation in chemical looping with oxygen uncoupling. Proc. Combust. Inst. 37(4), 4371–4378 (2019). https://doi.org/10.1016/j.proci.2018.06.162
- D. Kim, J. Kwon, J. Jung, K. Kim, H. Lee et al., A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics. Small Methods 2(7), 1800077 (2018). https://doi.org/10.1002/smtd.201800077
- D. Kim, J. Bang, P. Won, Y. Kim, J. Jung et al., Biocompatible cost-effective electrophysiological monitoring with oxidation-free Cu–Au core–shell nanowire. Adv. Mater. Technol. 5(12), 2000661 (2020). https://doi.org/10.1002/admt.202000661
- J. Pak, I. Lee, K. Cho, J.K. Kim, H. Jeong et al., Intrinsic optoelectronic characteristics of MoS2 phototransistors via a fully transparent van der Waals heterostructure. ACS Nano 13(8), 9638–9646 (2019). https://doi.org/10.1021/acsnano.9b04829
References
Y. Tokura, N. Nagaosa, Orbital physics in transition-metal oxides. Science 288(5465), 462–468 (2000). https://doi.org/10.1126/science.288.5465.462
E. Lee, Y.S. Yoon, D.J. Kim, Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. ACS Sens. 3(10), 2045–2060 (2018). https://doi.org/10.1021/acssensors.8b01077
A.S. Agnihotri, A. Varghese, M. Nidhin, Transition metal oxides in electrochemical and bio sensing: a state-of-art review. Appl. Surf. Sci. Adv. 4, 100072 (2021). https://doi.org/10.1016/j.apsadv.2021.100072
Y.H. Ting, J.Y. Chen, C.W. Huang, T.K. Huang, C.Y. Hsieh et al., Observation of resistive switching behavior in crossbar core-shell Ni/NiO nanowires memristor. Small 14(6), 1703153 (2018). https://doi.org/10.1002/smll.201703153
K. Nagashima, T. Yanagida, K. Oka, M. Taniguchi, T. Kawai et al., Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. Nano Lett. 10(4), 1359–1363 (2010). https://doi.org/10.1021/nl9042906
J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan et al., Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24(38), 5166–5180 (2012). https://doi.org/10.1002/adma.201202146
I.A. Kuznetsov, M.J. Greenfield, Y.U. Mehta, W. Merchan-Merchan, G. Salkar et al., Increasing the solar cell power output by coating with transition metal-oxide nanorods. Appl. Energy 88(11), 4218–4221 (2011). https://doi.org/10.1016/j.apenergy.2011.04.033
B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering et al., Binary copper oxide semiconductors: from materials towards devices. Phys. Status Solidi B 249(8), 1487–1509 (2012). https://doi.org/10.1002/pssb.201248128
M.A. Rafea, N. Roushdy, Determination of the optical band gap for amorphous and nanocrystalline copper oxide thin films prepared by silar technique. J. Phys. D-Appl. Phys. 42(1), 015413 (2009). https://doi.org/10.1088/0022-3727/42/1/015413
L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao et al., Multifunctional CuO nanowire devices: P-type field effect transistors and CO gas sensors. Nanotechnology 20(8), 085203 (2009). https://doi.org/10.1088/0957-4484/20/8/085203
R. Khan, R. Ahmad, P. Rai, L.W. Jang, J.H. Yun et al., Glucose-assisted synthesis of Cu2O shuriken-like nanostructures and their application as nonenzymatic glucose biosensors. Sens. Actuators B Chem. 203, 471–476 (2014). https://doi.org/10.1016/j.snb.2014.06.128
A. Li, H.H. Song, W.B. Wan, J.S. Zhou, X.H. Chen, Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries. Electrochim. Acta 132, 42–48 (2014). https://doi.org/10.1016/j.electacta.2014.03.123
A. Bhaumik, A. Haque, P. Karnati, M.F.N. Taufique, R. Patel et al., Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films 572, 126–133 (2014). https://doi.org/10.1016/j.tsf.2014.09.056
M. Le, M. Ren, Z. Zhang, P.T. Sprunger, R.L. Kurtz et al., Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J. Electrochem. Soc. 158(5), E45–E49 (2011). https://doi.org/10.1149/1.3561636
Z.P. Zhu, Z.Y. Liu, S.J. Liu, H.X. Niu, T.D. Hu et al., No reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Appl. Catal. B Environ. 26(1), 25–35 (2000). https://doi.org/10.1016/S0926-3373(99)00144-7
M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara et al., Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem. Commun. 3, 357–358 (1998). https://doi.org/10.1039/a707440i
R. Kas, R. Kortlever, A. Milbrat, M.T. Koper, G. Mul et al., Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys. Chem. Chem. Phys. 16(24), 12194–12201 (2014). https://doi.org/10.1039/c4cp01520g
M.E. Grigore, E.R. Biscu, A.M. Holban, M.C. Gestal, A.M. Grumezescu, Methods of synthesis, properties and biomedical applications of cuo nanoparticles. Pharmaceuticals 9(4), 75 (2016). https://doi.org/10.3390/ph9040075
S.A. Akintelu, A.S. Folorunso, F.A. Folorunso, A.K. Oyebamiji, Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6(7), e04508 (2020). https://doi.org/10.1016/j.heliyon.2020.e04508
S.M. Bergin, Y.H. Chen, A.R. Rathmell, P. Charbonneau, Z.Y. Li et al., The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4(6), 1996–2004 (2012). https://doi.org/10.1039/c2nr30126a
N.N. Jason, W. Shen, W. Cheng, Copper nanowires as conductive ink for low-cost draw-on electronics. ACS Appl. Mater. Interfaces 7(30), 16760–16766 (2015). https://doi.org/10.1021/acsami.5b04522
J. Shin, B. Jeong, J. Kim, V.B. Nam, Y. Yoon et al., Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32(2), e1905527 (2020). https://doi.org/10.1002/adma.201905527
S. Han, S. Hong, J. Yeo, D. Kim, B. Kang et al., Nanorecycling: monolithic integration of copper and copper oxide nanowire network electrode through selective reversible photothermochemical reduction. Adv. Mater. 27(41), 6397–6403 (2015). https://doi.org/10.1002/adma.201503244
H. Kwon, J. Kim, K. Ko, M.J. Matthews, J. Suh et al., Laser-induced digital oxidation for copper-based flexible photodetectors. Appl. Surf. Sci. 540, 148333 (2021). https://doi.org/10.1016/j.apsusc.2020.148333
S. Back, B. Kang, Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer. Opt. Laser Eng. 101, 78–84 (2018). https://doi.org/10.1016/j.optlaseng.2017.09.027
H. Du, T. Wan, B. Qu, F. Cao, Q. Lin et al., Engineering silver nanowire networks: from transparent electrodes to resistive switching devices. ACS Appl. Mater. Interfaces 9(24), 20762–20770 (2017). https://doi.org/10.1021/acsami.7b04839
D.J. Joe, S. Kim, J.H. Park, D.Y. Park, H.E. Lee et al., Laser-material interactions for flexible applications. Adv. Mater. 29(26), 1606586 (2017). https://doi.org/10.1002/adma.201606586
J.H. Shin, J.H. Park, J. Seo, T.H. Im, J.C. Kim et al., A flash-induced robust Cu electrode on glass substrates and its application for thin-film muleds. Adv. Mater. 33(13), e2007186 (2021). https://doi.org/10.1002/adma.202007186
C. Zhang, Y. Xie, H. Deng, T. Tumlin, C. Zhang et al., Monolithic and flexible ZnS/SnO2 ultraviolet photodetectors with lateral graphene electrodes. Small 13(18), 1604197 (2017). https://doi.org/10.1002/smll.201604197
G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169–11186 (1996). https://doi.org/10.1103/physrevb.54.11169
G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758
P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994). https://doi.org/10.1103/physrevb.50.17953
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
S. Smidstrup, A. Pedersen, K. Stokbro, H. Jonsson, Improved initial guess for minimum energy path calculations. J. Chem. Phys. 140(21), 214106 (2014). https://doi.org/10.1063/1.4878664
D. Sheppard, R. Terrell, G. Henkelman, Optimization methods for finding minimum energy paths. J. Chem. Phys. 128(13), 134106 (2008). https://doi.org/10.1063/1.2841941
N. Ashburn, Y. Zheng, S. Thampy, S. Dillon, Y.J. Chabal et al., Integrated experimental-theoretical approach to determine reliable molecular reaction mechanisms on transition-metal oxide surfaces. ACS Appl. Mater. Interfaces 11(33), 30460–30469 (2019). https://doi.org/10.1021/acsami.9b09700
F. Fievet, J. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion. 32–33, 198–205 (1989). https://doi.org/10.1016/0167-2738(89)90222-1
J.H. Park, S. Han, D. Kim, B.K. You, D.J. Joe et al., Plasmonic-tuned flash Cu nanowelding with ultrafast photochemical-reducing and interlocking on flexible plastics. Adv. Funct. Mater. 27(29), 1701138 (2017). https://doi.org/10.1002/adfm.201701138
H. Amekura, O.A. Plaksin, K. Kono, Y. Takeda, N. Kishimoto, Production of Cu2O nanoparticles in SiO2 by ion implantation and two-step annealing at different oxygen pressures. J. Phys. D-Appl. Phys. 39(16), 3659–3664 (2006). https://doi.org/10.1088/0022-3727/39/16/020
L.L.S. Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker et al., Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of cu thin films on SiO2/Si substrates. Thin Solid Films 520(20), 6368–6374 (2012). https://doi.org/10.1016/j.tsf.2012.06.043
M.Z. Su, J. Cao, X. Tian, Y.L. Zhang, H.B. Zhao, Mechanism and kinetics of Cu2O oxidation in chemical looping with oxygen uncoupling. Proc. Combust. Inst. 37(4), 4371–4378 (2019). https://doi.org/10.1016/j.proci.2018.06.162
D. Kim, J. Kwon, J. Jung, K. Kim, H. Lee et al., A transparent and flexible capacitive-force touch pad from high-aspect-ratio copper nanowires with enhanced oxidation resistance for applications in wearable electronics. Small Methods 2(7), 1800077 (2018). https://doi.org/10.1002/smtd.201800077
D. Kim, J. Bang, P. Won, Y. Kim, J. Jung et al., Biocompatible cost-effective electrophysiological monitoring with oxidation-free Cu–Au core–shell nanowire. Adv. Mater. Technol. 5(12), 2000661 (2020). https://doi.org/10.1002/admt.202000661
J. Pak, I. Lee, K. Cho, J.K. Kim, H. Jeong et al., Intrinsic optoelectronic characteristics of MoS2 phototransistors via a fully transparent van der Waals heterostructure. ACS Nano 13(8), 9638–9646 (2019). https://doi.org/10.1021/acsnano.9b04829