Stable Zn Metal Anodes with Limited Zn-Doping in MgF2 Interphase for Fast and Uniformly Ionic Flux
Corresponding Author: Joong Kee Lee
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 46
Abstract
The practical applications of aqueous Zn metal batteries are currently restricted by the inherent drawbacks of Zn such as the hydrogen evolution reaction, sluggish kinetics, and dendrite formation. To address these problems, herein, a limitedly Zn-doped MgF2 interphase comprising an upper region of pure, porous MgF2 and a lower region of gradient Zn-doped MgF2 is achieved via radio frequency sputtering technique. The porous MgF2 region is a polar insulator whose high corrosion resistance facilitates the de-solvation of the solvated Zn ions and suppression of hydrogen evolution, resulting in Zn metal electrodes with a low interfacial resistance. The Zn-doped MgF2 region facilitates fast transfer kinetics and homogeneous deposition of Zn ions owing to the interfacial polarization between the Zn dopant and MgF2 matrix, and the high concentration of the Zn dopant on the surface of the metal substrate as fine nuclei. Consequently, a symmetric cell incorporating the proposed Zn metal exhibits low overpotentials of ~ 27.2 and ~ 99.7 mV without Zn dendrites over 250 to 8000 cycles at current densities of 1.0 and 10.0 mA cm−2, respectively. The developed Zn/MnO2 full cell exhibits superior capacity retentions of 97.5% and 84.0% with average Coulombic efficiencies of 99.96% after 1000 and 3000 cycles, respectively.
Highlights:
1 A limitedly Zn-doped MgF2 passivation layer consisting of a porous pure MgF2- and gradient Zn-doped MgF2-regions was developed for stable Zn metal anodes with excellent reversibility to 8000 cycles at 10.0 mA cm−2.
2 The MgF2 region facilitates facile de-solvation of Zn ions and effective hydrogen evolution reaction suppression.
3 The Zn-doped MgF2 region enhances transfer kinetics and homogeneous deposition of Zn ions by interfacial polarization between Zn dopant and MgF2 matrix, and high concentration of the Zn dopant as fine nuclei.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Li, H. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
- L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
- N. Xu, J.A. Wilsone, Y.D. Wang, T. Su, Y. Wei et al., Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. App. Catal. B Environ. 272, 118953 (2020). https://doi.org/10.1016/j.apcatb.2020.118953
- J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60(13), 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
- T.H. Wu, Y. Zhang, Z.D. Althouse, N. Liu, Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater. Today Nano 6, 100032 (2019). https://doi.org/10.1016/j.mtnano.2019.100032
- H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
- F. Pawlek, D. Rogalla, The electrical resistivity of silver, copper, aluminium, and zinc as a function of purity in the range 4–298 K. Cryogenics 6(1), 14–20 (1966). https://doi.org/10.1016/S0011-2275(96)90056-9
- J. Shin, J. Lee, Y. Park, J.W. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/D0SC00022A
- Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/D1EE00308A
- J.Y. Kim, G. Liu, G.Y. Shim, H. Kim, J.K. Lee, Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 30(36), 2004210 (2020). https://doi.org/10.1002/adfm.202004210
- Y. Yu, Y. Yin, J. Ma, Z. Chang, T. Sun et al., Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries. Energy Storage Mater. 18, 382–388 (2019). https://doi.org/10.1016/j.ensm.2019.01.009
- J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behavior and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/D0EE02162H
- N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
- Y. Yu, X. Zhang, In situ coupling of colloidal silica and Li salt anion toward stable Li anode for long-cycle-life Li-O2 batteries. Matter 1(4), 881–892 (2019). https://doi.org/10.1016/j.matt.2019.06.002
- F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
- W. Dong, J.L. Shi, T.S. Wang, Y.X. Yin, C.R. Wang et al., 3D zinc@carbon fiber composite framework anode for aqueous Zn-MnO2 batteries. RSC Adv. 8(34), 19157–19163 (2018). https://doi.org/10.1039/C8RA03226B
- J.F. Parker, C.N. Chervin, E.S. Nelson, D.R. Rolison, J.W. Long, Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling. Energy Environ. Sci. 7(3), 1117–1124 (2014). https://doi.org/10.1039/C3EE43754J
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
- P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
- L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- V. Georgieva, A.F. Voter, A. Bogaerts, Understanding the surface diffusion processes during magnetron sputter-deposition of complex oxide Mg-Al-O thin films. Cryst. Growth Des. 11(6), 2553–2558 (2011). https://doi.org/10.1021/cg200318h
- B.G. Priyadarshini, S. Aich, M. Chakraborty, Substrate bias voltage and deposition temperature dependence on properties of rf-magnetron sputtered titanium films on silicon (100). Bull. Mater. Sci. 37, 1691–1700 (2014). https://doi.org/10.1007/s12034-014-0722-x
- S. Abdin, A. Huber, G. Morillot, C. Val, Properties of nickel films prepared by R.F. sputtering and interdiffusion analysis of Ta2N-Ni films. Act. Passiv. Electron. Compon. 7, 159–162 (1980). https://doi.org/10.1155/APEC.7.159
- M.S. Al-Busaidi, P. Bailey, T.C.Q. Noakes, M.D. Cropper, Influence of ion assisted deposition on interface broadening in Fe/Al multilayers investigated by medium energy ion scattering. Vacuum 83(12), 1454–1458 (2009). https://doi.org/10.1016/j.vacuum.2009.06.002
- J.M. Li, Shrunk lattice structure and interdiffusion characteristics of 5 nm thick Al2O3 ultrathin films sputtered on silicon. Nanotechnology 19, 035604 (2008). https://doi.org/10.1088/0957-4484/19/03/035604
- T. Prodromakis, C. Papavassiliou, Engineering the Maxwell-Wagner polarization effect. Appl. Surf. Sci. 255(15), 6989–6994 (2009). https://doi.org/10.1016/j.apsusc.2009.03.030
- P. Zou, R. Zhang, L. Yao, J. Qin, K. Kisslinger et al., Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration. Adv. Energy Mater. 11(31), 2100982 (2021). https://doi.org/10.1002/aenm.202100982
- Z. Luo, S. Li, L. Yang, Y. Tian, L. Xu et al., Interfacially redistributed charge for robust lithium metal anode. Nano Energy 87, 106212 (2021). https://doi.org/10.1016/j.nanoen.2021.106212
- V. Kanchana, G. Vaitheeswaran, M. Rajagopalan, High-pressure structural phase transitions in magnesium fluoride studied by electronic structure calculations. J. Alloys Compd. 352, 60–65 (2003). https://doi.org/10.1016/S0925-8388(02)01158-1
- M. Pimon, J. Gugler, P. Mohn, G.A. Kazakov, N. Mauser et al., DFT calculation of 299thorium-doped magnesium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 32, 255503 (2020). https://doi.org/10.1088/1361-648X/ab7c90
- F.O.L. Johansson, P. Ahlberg, U. Jansson, S.L. Zhang, A. Lindblad et al., Minimizing sputter-induced damage during deposition of WS2 onto graphene. Appl. Phys. Lett. 110, 091601 (2017). https://doi.org/10.1063/1.4977709
- H. Aboulfadl, I. Gallino, R. Busch, F. Mucklich, Atomic scale analysis of phase formation and diffusion kinetics in Ag/Al multilayer thin films. J. Appl. Phys. 120, 195306 (2016). https://doi.org/10.1063/1.4968013
- H.J. Jung, R. Koutavarapu, S. Lee, J.H. Kim, H.C. Choi et al., Enhanced photocatalytic degradation of lindane using metal-semiconductor Zn@ZnO and ZnO/Ag nanostructures. J. Environ. Sci. 74, 107–115 (2018). https://doi.org/10.1016/j.jes.2018.02.014
- K.C.S. Reddy, D. Karthik, D. Bhanupriya, K. Ganesh, M. Ramakrishna et al., Broad band antireflective coatings using novel in-situ synthesis of hollow MgF2 nanoparticles. Sol. Energy Mater. Sol. Cells 176, 259–265 (2018). https://doi.org/10.1016/j.solmat.2017.12.010
- J.M. Hernandez-Lopez, A. Nemcova, X.L. Zhong, H. Liu, M.A. Arenas et al., Formation of barrier-type anodic films on ZE41 magnesium alloy in a fluoride/glycerol electrolyte. Electrochim. Acta 138, 124–131 (2014). https://doi.org/10.1016/j.electacta.2014.05.147
- W. Jia, Y. Wang, S. Qu, Z. Yao, Y. Liu et al., ZnF2 coated three dimensional Li-Ni composite anode for improved performance. J. Materiomics 5(2), 176–184 (2019). https://doi.org/10.1016/j.jmat.2019.02.008
- Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15(7), 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
- J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference number in polymer electrolytes. Polymer 28(13), 2324–2328 (1987). https://doi.org/10.1016/0032-3861(87)90394-6
- K. Pozyczka, M. Marzantowicz, J.R. Dygas, F. Krok, Ionic conductivity and lithium transference number of poly(ethylene oxide): LiTFSI system. Electrochim. Acta 227, 127–135 (2017). https://doi.org/10.1016/j.electacta.2016.12.172
- C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2(4), 540–560 (2020). https://doi.org/10.1002/cey2.67
- T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120 (2004). https://doi.org/10.1149/1.1763141
- C. Yan, H.R. Li, X. Chen, X.Q. Zhang, X.B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141(23), 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
- K. Xu, A.V. Cresce, U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26(13), 11538–11543 (2010). https://doi.org/10.1021/la1009994
- A.S. Keefe, S. Buteau, I.G. Hill, J.R. Dahn, Temperature dependent EIS studies separating charge transfer impedance from contact impedance in lithium-ion symmetric cells. J. Electrochem. Soc. 166, A3272 (2019). https://doi.org/10.1149/2.0541914jes
- Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
- L. Wang, P. Han, Z. Zhang, C. Zhang, B. Xu, Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study. Comput. Mater. Sci. 77, 281–285 (2013). https://doi.org/10.1016/j.commatsci.2013.04.031
- K.R. Babu, C.B. Lingam, S. Auluck, S.P. Tewari, G. Vaitheeswaran, Structural, thermodynamic and optical properties of MgF2 studied from first-principles theory. J. Solid State Chem. 184(2), 343–350 (2011). https://doi.org/10.1016/j.jssc.2010.11.025
- Y. Yu, G. Huang, J. Wang, K. Li, J. Ma et al., In situ designing a gradient Li+ capture and quasi-spontaneous diffusion anode protection layer toward long-life Li-O2 batteries. Adv. Mater. 32(38), 2004157 (2020). https://doi.org/10.1002/adma.202004157
- Y. Chen, Q. Zhao, Y. Wang, W. Liu, P. Qing et al., A dendrite-free Zn@CuxZny composite anode for rechargeable aqueous batteries. Electrochim. Acta 399, 139334 (2021). https://doi.org/10.1016/j.electacta.2021.139334
- Y. Wang, Y. Chen, W. Liu, X. Ni, P. Qing et al., Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9(13), 8452–8461 (2021). https://doi.org/10.1039/D0TA12177K
- T. Chen, Y. Wang, Y. Yang, F. Huang, M. Zhu et al., Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv. Funct. Mater. 31(24), 2101607 (2021). https://doi.org/10.1002/adfm.202101607
- H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/D0TA00748J
- Y. Zhao, Y. Zhu, X. Zhang, Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat 2(2), 237–260 (2020). https://doi.org/10.1002/inf2.12042
- M. Halim, G. Liu, R.E.A. Ardhi, C. Hudaya, O. Wijaya et al., Pseudocapacitive characteristics of low-carbon silicon oxycarbide for lithium-ion capacitors. ACS Appl. Mater. Interfaces 9(24), 20566–20576 (2017). https://doi.org/10.1021/acsami.7b04069
- J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5(1), 1700322 (2018). https://doi.org/10.1002/advs.201700322
- J. Betz, J.P. Brinkmann, R. Nolle, C. Lurenbaum, M. Kolek et al., Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 9(21), 1900574 (2019). https://doi.org/10.1002/aenm.201900574
- C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016). https://doi.org/10.1016/j.mattod.2015.10.009
References
Y. Li, H. Dai, Recent advances in zinc-air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
L.E. Blanc, D. Kundu, L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries. Joule 4(4), 771–799 (2020). https://doi.org/10.1016/j.joule.2020.03.002
N. Xu, J.A. Wilsone, Y.D. Wang, T. Su, Y. Wei et al., Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. App. Catal. B Environ. 272, 118953 (2020). https://doi.org/10.1016/j.apcatb.2020.118953
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60(13), 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
T.H. Wu, Y. Zhang, Z.D. Althouse, N. Liu, Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Mater. Today Nano 6, 100032 (2019). https://doi.org/10.1016/j.mtnano.2019.100032
H. Jia, Z. Wang, B. Tawiah, Y. Wang, C.Y. Chan et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy 70, 104523 (2020). https://doi.org/10.1016/j.nanoen.2020.104523
F. Pawlek, D. Rogalla, The electrical resistivity of silver, copper, aluminium, and zinc as a function of purity in the range 4–298 K. Cryogenics 6(1), 14–20 (1966). https://doi.org/10.1016/S0011-2275(96)90056-9
J. Shin, J. Lee, Y. Park, J.W. Choi, Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 11(8), 2028–2044 (2020). https://doi.org/10.1039/D0SC00022A
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui et al., In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14(6), 3609–3620 (2021). https://doi.org/10.1039/D1EE00308A
J.Y. Kim, G. Liu, G.Y. Shim, H. Kim, J.K. Lee, Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 30(36), 2004210 (2020). https://doi.org/10.1002/adfm.202004210
Y. Yu, Y. Yin, J. Ma, Z. Chang, T. Sun et al., Designing a self-healing protective film on a lithium metal anode for long-cycle-life lithium-oxygen batteries. Energy Storage Mater. 18, 382–388 (2019). https://doi.org/10.1016/j.ensm.2019.01.009
J. Hao, X. Li, X. Zeng, D. Li, J. Mao et al., Deeply understanding the Zn anode behavior and corresponding improvement strategies in different aqueous Zn-based batteries. Energy Environ. Sci. 13(11), 3917–3949 (2020). https://doi.org/10.1039/D0EE02162H
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei et al., Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 138(39), 12894–12901 (2016). https://doi.org/10.1021/jacs.6b05958
Y. Yu, X. Zhang, In situ coupling of colloidal silica and Li salt anion toward stable Li anode for long-cycle-life Li-O2 batteries. Matter 1(4), 881–892 (2019). https://doi.org/10.1016/j.matt.2019.06.002
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun et al., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018). https://doi.org/10.1038/s41563-018-0063-z
W. Dong, J.L. Shi, T.S. Wang, Y.X. Yin, C.R. Wang et al., 3D zinc@carbon fiber composite framework anode for aqueous Zn-MnO2 batteries. RSC Adv. 8(34), 19157–19163 (2018). https://doi.org/10.1039/C8RA03226B
J.F. Parker, C.N. Chervin, E.S. Nelson, D.R. Rolison, J.W. Long, Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling. Energy Environ. Sci. 7(3), 1117–1124 (2014). https://doi.org/10.1039/C3EE43754J
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/C9EE03545A
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen et al., Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33(12), 2007406 (2021). https://doi.org/10.1002/adma.202007406
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
V. Georgieva, A.F. Voter, A. Bogaerts, Understanding the surface diffusion processes during magnetron sputter-deposition of complex oxide Mg-Al-O thin films. Cryst. Growth Des. 11(6), 2553–2558 (2011). https://doi.org/10.1021/cg200318h
B.G. Priyadarshini, S. Aich, M. Chakraborty, Substrate bias voltage and deposition temperature dependence on properties of rf-magnetron sputtered titanium films on silicon (100). Bull. Mater. Sci. 37, 1691–1700 (2014). https://doi.org/10.1007/s12034-014-0722-x
S. Abdin, A. Huber, G. Morillot, C. Val, Properties of nickel films prepared by R.F. sputtering and interdiffusion analysis of Ta2N-Ni films. Act. Passiv. Electron. Compon. 7, 159–162 (1980). https://doi.org/10.1155/APEC.7.159
M.S. Al-Busaidi, P. Bailey, T.C.Q. Noakes, M.D. Cropper, Influence of ion assisted deposition on interface broadening in Fe/Al multilayers investigated by medium energy ion scattering. Vacuum 83(12), 1454–1458 (2009). https://doi.org/10.1016/j.vacuum.2009.06.002
J.M. Li, Shrunk lattice structure and interdiffusion characteristics of 5 nm thick Al2O3 ultrathin films sputtered on silicon. Nanotechnology 19, 035604 (2008). https://doi.org/10.1088/0957-4484/19/03/035604
T. Prodromakis, C. Papavassiliou, Engineering the Maxwell-Wagner polarization effect. Appl. Surf. Sci. 255(15), 6989–6994 (2009). https://doi.org/10.1016/j.apsusc.2009.03.030
P. Zou, R. Zhang, L. Yao, J. Qin, K. Kisslinger et al., Ultrahigh-rate and long-life zinc-metal anodes enabled by self-accelerated cation migration. Adv. Energy Mater. 11(31), 2100982 (2021). https://doi.org/10.1002/aenm.202100982
Z. Luo, S. Li, L. Yang, Y. Tian, L. Xu et al., Interfacially redistributed charge for robust lithium metal anode. Nano Energy 87, 106212 (2021). https://doi.org/10.1016/j.nanoen.2021.106212
V. Kanchana, G. Vaitheeswaran, M. Rajagopalan, High-pressure structural phase transitions in magnesium fluoride studied by electronic structure calculations. J. Alloys Compd. 352, 60–65 (2003). https://doi.org/10.1016/S0925-8388(02)01158-1
M. Pimon, J. Gugler, P. Mohn, G.A. Kazakov, N. Mauser et al., DFT calculation of 299thorium-doped magnesium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 32, 255503 (2020). https://doi.org/10.1088/1361-648X/ab7c90
F.O.L. Johansson, P. Ahlberg, U. Jansson, S.L. Zhang, A. Lindblad et al., Minimizing sputter-induced damage during deposition of WS2 onto graphene. Appl. Phys. Lett. 110, 091601 (2017). https://doi.org/10.1063/1.4977709
H. Aboulfadl, I. Gallino, R. Busch, F. Mucklich, Atomic scale analysis of phase formation and diffusion kinetics in Ag/Al multilayer thin films. J. Appl. Phys. 120, 195306 (2016). https://doi.org/10.1063/1.4968013
H.J. Jung, R. Koutavarapu, S. Lee, J.H. Kim, H.C. Choi et al., Enhanced photocatalytic degradation of lindane using metal-semiconductor Zn@ZnO and ZnO/Ag nanostructures. J. Environ. Sci. 74, 107–115 (2018). https://doi.org/10.1016/j.jes.2018.02.014
K.C.S. Reddy, D. Karthik, D. Bhanupriya, K. Ganesh, M. Ramakrishna et al., Broad band antireflective coatings using novel in-situ synthesis of hollow MgF2 nanoparticles. Sol. Energy Mater. Sol. Cells 176, 259–265 (2018). https://doi.org/10.1016/j.solmat.2017.12.010
J.M. Hernandez-Lopez, A. Nemcova, X.L. Zhong, H. Liu, M.A. Arenas et al., Formation of barrier-type anodic films on ZE41 magnesium alloy in a fluoride/glycerol electrolyte. Electrochim. Acta 138, 124–131 (2014). https://doi.org/10.1016/j.electacta.2014.05.147
W. Jia, Y. Wang, S. Qu, Z. Yao, Y. Liu et al., ZnF2 coated three dimensional Li-Ni composite anode for improved performance. J. Materiomics 5(2), 176–184 (2019). https://doi.org/10.1016/j.jmat.2019.02.008
Y. An, Y. Tian, S. Xiong, J. Feng, Y. Qian, Scalable and controllable synthesis of interface-engineered nanoporous host for dendrite-free and high rate zinc metal batteries. ACS Nano 15(7), 11828–11842 (2021). https://doi.org/10.1021/acsnano.1c02928
J. Evans, C.A. Vincent, P.G. Bruce, Electrochemical measurement of transference number in polymer electrolytes. Polymer 28(13), 2324–2328 (1987). https://doi.org/10.1016/0032-3861(87)90394-6
K. Pozyczka, M. Marzantowicz, J.R. Dygas, F. Krok, Ionic conductivity and lithium transference number of poly(ethylene oxide): LiTFSI system. Electrochim. Acta 227, 127–135 (2017). https://doi.org/10.1016/j.electacta.2016.12.172
C. Xie, Y. Li, Q. Wang, D. Sun, Y. Tang et al., Issues and solutions toward zinc anode in aqueous zinc-ion batteries: a mini review. Carbon Energy 2(4), 540–560 (2020). https://doi.org/10.1002/cey2.67
T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120 (2004). https://doi.org/10.1149/1.1763141
C. Yan, H.R. Li, X. Chen, X.Q. Zhang, X.B. Cheng et al., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 141(23), 9422–9429 (2019). https://doi.org/10.1021/jacs.9b05029
K. Xu, A.V. Cresce, U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 26(13), 11538–11543 (2010). https://doi.org/10.1021/la1009994
A.S. Keefe, S. Buteau, I.G. Hill, J.R. Dahn, Temperature dependent EIS studies separating charge transfer impedance from contact impedance in lithium-ion symmetric cells. J. Electrochem. Soc. 166, A3272 (2019). https://doi.org/10.1149/2.0541914jes
Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33(11), 2007388 (2021). https://doi.org/10.1002/adma.202007388
L. Wang, P. Han, Z. Zhang, C. Zhang, B. Xu, Effects of thickness on the structural, electronic, and optical properties of MgF2 thin films: the first-principles study. Comput. Mater. Sci. 77, 281–285 (2013). https://doi.org/10.1016/j.commatsci.2013.04.031
K.R. Babu, C.B. Lingam, S. Auluck, S.P. Tewari, G. Vaitheeswaran, Structural, thermodynamic and optical properties of MgF2 studied from first-principles theory. J. Solid State Chem. 184(2), 343–350 (2011). https://doi.org/10.1016/j.jssc.2010.11.025
Y. Yu, G. Huang, J. Wang, K. Li, J. Ma et al., In situ designing a gradient Li+ capture and quasi-spontaneous diffusion anode protection layer toward long-life Li-O2 batteries. Adv. Mater. 32(38), 2004157 (2020). https://doi.org/10.1002/adma.202004157
Y. Chen, Q. Zhao, Y. Wang, W. Liu, P. Qing et al., A dendrite-free Zn@CuxZny composite anode for rechargeable aqueous batteries. Electrochim. Acta 399, 139334 (2021). https://doi.org/10.1016/j.electacta.2021.139334
Y. Wang, Y. Chen, W. Liu, X. Ni, P. Qing et al., Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9(13), 8452–8461 (2021). https://doi.org/10.1039/D0TA12177K
T. Chen, Y. Wang, Y. Yang, F. Huang, M. Zhu et al., Heterometallic seed-mediated zinc deposition on inkjet printed silver nanoparticles toward foldable and heat-resistant zinc batteries. Adv. Funct. Mater. 31(24), 2101607 (2021). https://doi.org/10.1002/adfm.202101607
H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/D0TA00748J
Y. Zhao, Y. Zhu, X. Zhang, Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat 2(2), 237–260 (2020). https://doi.org/10.1002/inf2.12042
M. Halim, G. Liu, R.E.A. Ardhi, C. Hudaya, O. Wijaya et al., Pseudocapacitive characteristics of low-carbon silicon oxycarbide for lithium-ion capacitors. ACS Appl. Mater. Interfaces 9(24), 20566–20576 (2017). https://doi.org/10.1021/acsami.7b04069
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5(1), 1700322 (2018). https://doi.org/10.1002/advs.201700322
J. Betz, J.P. Brinkmann, R. Nolle, C. Lurenbaum, M. Kolek et al., Cross talk between transition metal cathode and Li metal anode: unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 9(21), 1900574 (2019). https://doi.org/10.1002/aenm.201900574
C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today 19(2), 109–123 (2016). https://doi.org/10.1016/j.mattod.2015.10.009