Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives
Corresponding Author: Shuhui Sun
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 36
Abstract
Rechargeable zinc-air batteries (ZABs) are currently receiving extensive attention because of their extremely high theoretical specific energy density, low manufacturing costs, and environmental friendliness. Exploring bifunctional catalysts with high activity and stability to overcome sluggish kinetics of oxygen reduction reaction and oxygen evolution reaction is critical for the development of rechargeable ZABs. Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts possessing prominent advantages of high metal atom utilization and electrocatalytic activity are promising candidates to promote oxygen electrocatalysis. In this work, general principles for designing atomically dispersed M-N-C are reviewed. Then, strategies aiming at enhancing the bifunctional catalytic activity and stability are presented. Finally, the challenges and perspectives of M-N-C bifunctional oxygen catalysts for ZABs are outlined. It is expected that this review will provide insights into the targeted optimization of atomically dispersed M-N-C catalysts in rechargeable ZABs.
Highlights:
1 General principles for designing atomically dispersed metal-nitrogen-carbon (M–N-C) are briefly reviewed.
2 Strategies to enhance the bifunctional catalytic performance of atomically dispersed M–N-C are summarized.
3 Challenges and perspectives of M–N-C bifunctional oxygen catalysts for Rechargeable zinc-air batteries are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Heteroatom-doped carbon catalysts for zinc-air batteries: progress, mechanism, and opportunities. Energy Environ. Sci. 13(12), 4536–4563 (2020). https://doi.org/10.1039/d0ee02800b
- M. Luo, W. Sun, B.B. Xu, H. Pan, Y. Jiang, Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 11(4), 2002762 (2021). https://doi.org/10.1002/aenm.202002762
- D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batteries Supercaps 2(9), 743–765 (2019). https://doi.org/10.1002/batt.201900052
- J. Yi, X. Liu, P. Liang, K. Wu, J. Xu et al., Non-noble iron group (Fe Co, Ni)-based oxide electrocatalysts for aqueous zinc-air batteries: recent progress, challenges, and perspectives. Organometallics 38(6), 1186–1199 (2018). https://doi.org/10.1021/acs.organomet.8b00508
- M. Khalid, P.A. Bhardwaj, A.M.B. Honorato, H. Varela, Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Catal. Sci. Technol. 10(19), 6420–6448 (2020). https://doi.org/10.1039/d0cy01408g
- M. Wu, G. Zhang, J. Qiao, N. Chen, W. Chen et al., Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy 61, 86–95 (2019). https://doi.org/10.1016/j.nanoen.2019.04.031
- M. Wu, Q. Tang, F. Dong, Y. Wang, D. Li et al., The design of Fe, N-doped hierarchically porous carbons as highly active and durable electrocatalysts for a Zn-air battery. Phys. Chem. Chem. Phys. 18(28), 18665–18669 (2016). https://doi.org/10.1039/c6cp02785g
- F. Dong, C. Liu, M. Wu, J. Guo, K. Li et al., Hierarchical porous carbon derived from coal tar pitch containing discrete Co–Nx–C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Sustain. Chem. Eng. 7(9), 8587–8596 (2019). https://doi.org/10.1021/acssuschemeng.9b00373
- T. Chen, J. Wu, C. Zhu, Z. Liu, W. Zhou et al., Rational design of iron single atom anchored on nitrogen doped carbon as a high-performance electrocatalyst for all-solid-state flexible zinc-air batteries. Chem. Eng. J. 405, 125956 (2021). https://doi.org/10.1016/j.cej.2020.125956
- C.X. Zhao, J.N. Liu, J. Wang, D. Ren, J. Yu et al., A ∆E = 0. 63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc-air batteries. Adv. Mater. 33(15), 2008606 (2021). https://doi.org/10.1002/adma.202008606
- L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12(2), 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
- T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 13(4), 1132–1153 (2020). https://doi.org/10.1039/c9ee03634b
- M. Wang, H. Ji, S. Liu, H. Sun, J. Liu et al., Single-atom scale metal vacancy engineering in heteroatom-doped carbon for rechargeable zinc-air battery with reduced overpotential. Chem. Eng. J. 393, 124702 (2020). https://doi.org/10.1016/j.cej.2020.124702
- D. Yang, H. Tan, X. Rui, Y. Yu, Electrode materials for rechargeable zinc-ion and zinc-air batteries: current status and future perspectives. Electrochem. Energy Rev. 2(3), 395–427 (2019). https://doi.org/10.1007/s41918-019-00035-5
- W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu et al., Single Co atoms anchored in porous N-doped carbon for efficient zinc−air battery cathodes. ACS Catal. 8(10), 8961–8969 (2018). https://doi.org/10.1021/acscatal.8b02556
- Y. Zhong, X. Xu, W. Wang, Z. Shao, Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc-air batteries. Batter. Supercaps 2(4), 272–289 (2018). https://doi.org/10.1002/batt.201800093
- X. Wang, Z. Liao, Y. Fu, C. Neumann, A. Turchanin et al., Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Energy Stor. Mater. 26, 157–164 (2020). https://doi.org/10.1016/j.ensm.2019.12.043
- Z.C. Yao, T. Tang, J.S. Hu, L.J. Wan, Recent advances on nonprecious-metal-based bifunctional oxygen electrocatalysts for zinc-air batteries. Energy Fuels 35(8), 6380–6401 (2021). https://doi.org/10.1021/acs.energyfuels.1c00275
- Y. Li, Q. Li, H. Wang, L. Zhang, D.P. Wilkinson et al., Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2(4), 518–538 (2019). https://doi.org/10.1007/s41918-019-00052-4
- C. Li, M. Wu, R. Liu, High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B 244, 150–158 (2019). https://doi.org/10.1016/j.apcatb.2018.11.039
- X. Zhu, D. Zhang, C.J. Chen, Q. Zhang, R.S. Liu et al., Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 71, 104597 (2020). https://doi.org/10.1016/j.nanoen.2020.104597
- X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31(49), 1905622 (2019). https://doi.org/10.1002/adma.201905622
- M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge et al., Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 32(49), 2004900 (2020). https://doi.org/10.1002/adma.202004900
- Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- Y. Wang, A. Kumar, M. Ma, Y. Jia, Y. Wang et al., Hierarchical peony-like FeCo-Nc with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 13(4), 1090–1099 (2020). https://doi.org/10.1007/s12274-020-2751-7
- K. Huang, S. Guo, R. Wang, S. Lin, N. Hussain et al., Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes. Chinese J. Catal. 41(11), 1754–1760 (2020). https://doi.org/10.1016/s1872-2067(20)63613-0
- Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 30(6), 1906081 (2019). https://doi.org/10.1002/adfm.201906081
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
- H. Han, S. Chao, Z. Bai, X. Wang, X. Yang et al., Metal-organic-framework-derived Co nanoparticles deposited on N-doped bimodal mesoporous carbon nanorods as efficient bifunctional catalysts for rechargeable zinc−air batteries. ChemElectroChem 5(14), 1868–1873 (2018). https://doi.org/10.1002/celc.201701289
- H.F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−air batteries. Adv. Funct. Mater. 28(46), 1803329 (2018). https://doi.org/10.1002/adfm.201803329
- F. Dong, Y. Cai, C. Liu, J. Liu, J. Qiao, Heteroatom (B, N and P) doped porous graphene foams for efficient oxygen reduction reaction electrocatalysis. Int. J. Hydrog. Energy 43(28), 12661–12670 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.118
- X. Li, F. Dong, N. Xu, T. Zhang, K. Li et al., Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 10(18), 15591–15601 (2018). https://doi.org/10.1021/acsami.7b18684
- C. Liu, F. Dong, Y. Wang, J. Guo, Y. Yang et al., Mesoporous carbon based non-precious metal catalysts for oxygen reduction reaction: effect of metal species and valence state. Int. J. Hydrog. Energy 45(54), 29874–29882 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.137
- M. Wu, Q. Wei, G. Zhang, J. Qiao, M. Wu et al., Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc-air batteries. Adv. Energy Mater. 8(30), 1801836 (2018). https://doi.org/10.1002/aenm.201801836
- M. Wu, G. Zhang, N. Chen, Y. Hu, T. Regier et al., Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc-air flow batteries. ACS Energy Lett. 6(4), 1153–1161 (2021). https://doi.org/10.1021/acsenergylett.1c00037
- M. Wu, G. Zhang, Y. Hu, J. Wang, T. Sun et al., Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon Energy 3(1), 176–187 (2020). https://doi.org/10.1002/cey2.52
- M. Wu, G. Zhang, H. Tong, X. Liu, L. Du et al., Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy 79, 105409 (2021). https://doi.org/10.1016/j.nanoen.2020.105409
- R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), 1805598 (2019). https://doi.org/10.1002/adma.201805598
- X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao et al., NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 31, 541–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.008
- R. Gao, Q. Chen, W. Zhang, D. Zhou, D. Ning et al., Oxygen defects-engineered LaFeO3-x nanosheets as efficient electrocatalysts for lithium-oxygen battery. J. Catal. 384, 199–207 (2020). https://doi.org/10.1016/j.jcat.2020.02.024
- R. Xu, L. Du, D. Adekoya, G. Zhang, S. Zhang et al., Well-defined nanostructures for electrochemical energy conversion and storage. Adv. Energy Mater. 11(15), 2001537 (2020). https://doi.org/10.1002/aenm.202001537
- B. Zhu, Z. Liang, D. Xia, R. Zou, Metal-organic frameworks and their derivatives for metal-air batteries. Energy Stor. Mater. 23, 757–771 (2019). https://doi.org/10.1016/j.ensm.2019.05.022
- L.H. Zhang, Y. Shi, Y. Wang, N.R. Shiju, Nanocarbon catalysts: recent understanding regarding the active sites. Adv. Sci. 7(5), 1902126 (2020). https://doi.org/10.1002/advs.201902126
- H.J. Qiu, P. Du, K. Hu, J. Gao, H. Li et al., Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 31(19), 1900843 (2019). https://doi.org/10.1002/adma.201900843
- L. Wei, E.H. Ang, Y. Yang, Y. Qin, Y. Zhang et al., Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. J. Power Sources 477, 228696 (2020). https://doi.org/10.1016/j.jpowsour.2020.228696
- D. Yang, D. Chen, Y. Jiang, E.H. Ang, Y. Feng et al., Carbon-based materials for all-solid-state zinc-air batteries. Carbon Energy 3(1), 50–65 (2020). https://doi.org/10.1002/cey2.88
- J. Sheng, S. Zhu, G. Jia, X. Liu, Y. Li, Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries. Nano Res. 14, 4541–4547 (2021). https://doi.org/10.1007/s12274-021-3369-0
- Y. Ma, H. Fan, C. Wu, M. Zhang, J. Yu et al., An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon 185, 526–535 (2021). https://doi.org/10.1016/j.carbon.2021.09.044
- J. Chen, H. Chen, T. Yu, R. Li, Y. Wang et al., Recent advances in the understanding of the surface reconstruction of oxygen evolution electrocatalysts and materials development. Electrochem. Energy Rev. 4(3), 566–600 (2021). https://doi.org/10.1007/s41918-021-00104-8
- H. Luo, W.J. Jiang, S. Niu, X. Zhang, Y. Zhang et al., Self-catalyzed growth of Co-N-C nanobrushes for efficient rechargeable Zn-air batteries. Small 16(20), 2001171 (2020). https://doi.org/10.1002/smll.202001171
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 31(30), 1901666 (2019). https://doi.org/10.1002/adma.201901666
- M. Ma, A. Kumar, D. Wang, Y. Wang, Y. Jia et al., Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B 274, 119091 (2020). https://doi.org/10.1016/j.apcatb.2020.119091
- Z. Zhang, J. Liu, A. Curcio, Y. Wang, J. Wu et al., Atomically dispersed materials for rechargeable batteries. Nano Energy 76, 105085 (2020). https://doi.org/10.1016/j.nanoen.2020.105085
- Y. Wang, B. Yu, K. Liu, X. Yang, M. Liu et al., Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal-air batteries. J. Mater. Chem. A 8(4), 2131–2139 (2020). https://doi.org/10.1039/c9ta12171d
- A.K. Worku, D.W. Ayele, N.G. Habtu, Recent advances and future perspectives in engineering of bifunctional electrocatalysts for rechargeable zinc-air batteries. Mater. Today Adv. 9, 100116 (2021). https://doi.org/10.1016/j.mtadv.2020.100116
- Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang et al., Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
- B.Q. Li, C.X. Zhao, S. Chen, J.N. Liu, X. Chen et al., Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv. Mater. 31(19), 1900592 (2019). https://doi.org/10.1002/adma.201900592
- L. Peng, L. Shang, T. Zhang, G.I.N. Waterhouse, Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc-air batteries. Adv. Energy Mater. 10(48), 2003018 (2020). https://doi.org/10.1002/aenm.202003018
- N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2(4), 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
- C. Yang, C. Shu, Z. Gan, C. Lai, J. Ma et al., Thiocyanate ion ligand-induced atomically dispersed Fe–N–S tridoped hollow catalyst for high-performance zinc-air rechargeable batteries. Energy Fuels 34(9), 11620–11627 (2020). https://doi.org/10.1021/acs.energyfuels.0c02512
- J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan et al., Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9(22), 1900149 (2019). https://doi.org/10.1002/aenm.201900149
- J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu et al., Single Fe atom on hierarchically porous S, N-Codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 15(24), 1900307 (2019). https://doi.org/10.1002/smll.201900307
- Y. Guo, P. Yuan, J. Zhang, Y. Hu, I.S. Amiinu et al., Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 12(2), 1894–1901 (2018). https://doi.org/10.1021/acsnano.7b08721
- P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
- X. Zhao, X. Li, Z. Bi, Y. Wang, H. Zhang et al., Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery. J. Energy Chem. 66, 514–524 (2022). https://doi.org/10.1016/j.jechem.2021.08.067
- H.J. Niu, A.J. Wang, L. Zhang, J.J. Feng, Bioinspired one-step pyrolysis fabrication of 3D porous Co, N, P-doped carbon nanosheets with enriched CoNx active sites as high-performance bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. ACS Appl. Energy Mater. 3(3), 2781–2790 (2020). https://doi.org/10.1021/acsaem.9b02450
- W. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao et al., Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B 260, 118198 (2020). https://doi.org/10.1016/j.apcatb.2019.118198
- B. Hu, A. Huang, X. Zhang, Z. Chen, R. Tu et al., Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 14(10), 3482–3488 (2021). https://doi.org/10.1007/s12274-021-3535-4
- S. Li, C. Cheng, X. Zhao, J. Schmidt, A. Thomas, Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem. Int. Ed. 57(7), 1856–1862 (2018). https://doi.org/10.1002/anie.201710852
- I.S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li et al., From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 28(5), 1704638 (2018). https://doi.org/10.1002/adfm.201704638
- P. Liu, D. Gao, W. Xiao, L. Ma, K. Sun et al., Self-powered water-splitting devices by core-shell NiFe@N-graphite-based Zn-air batteries. Adv. Funct. Mater. 28(14), 1706928 (2018). https://doi.org/10.1002/adfm.201706928
- C. Lai, X. Liu, C. Cao, Y. Wang, Y. Yin et al., Structural regulation of N-doped carbon nanocages as high-performance bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon 173, 715–723 (2021). https://doi.org/10.1016/j.carbon.2020.11.053
- J. Li, L. Zhang, K. Doyle-Davis, R. Li, X. Sun, Recent advances and strategies in the stabilization of single-atom catalysts for electrochemical applications. Carbon Energy 2(4), 488–520 (2020). https://doi.org/10.1002/cey2.74
- J. Guo, J. Huo, Y. Liu, W. Wu, Y. Wang et al., Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Methods 3(9), 1900159 (2019). https://doi.org/10.1002/smtd.201900159
- T. Tang, L. Ding, Z. Jiang, J.S. Hu, L.J. Wan, Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Sci. China Chem. 63(11), 1517–1542 (2020). https://doi.org/10.1007/s11426-020-9835-8
- B. Lu, Q. Liu, S. Chen, Electrocatalysis of single-atom sites: impacts of atomic coordination. ACS Catal. 10(14), 7584–7618 (2020). https://doi.org/10.1021/acscatal.0c01950
- H. Yin, H. Xia, S. Zhao, K. Li, J. Zhang et al., Atomic level dispersed metal-nitrogen-carbon catalyst toward oxygen reduction reaction: synthesis strategies and chemical environmental regulation. Energy Environ. Mater. 4(1), 5–18 (2020). https://doi.org/10.1002/eem2.12085
- X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30(11), 1706758 (2018). https://doi.org/10.1002/adma.201706758
- J.C. Li, Z. Wei, D. Liu, D. Du, Y. Lin et al., Dispersive single-atom metals anchored on functionalized nanocarbons for electrochemical reactions. Topics Curr. Chem. 377, 4 (2019). https://doi.org/10.1007/s41061-018-0229-9
- D.H. Kwak, S.B. Han, Y.W. Lee, H.S. Park, I.A. Choi et al., Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl. Catal. B 203, 889–898 (2017). https://doi.org/10.1016/j.apcatb.2016.10.084
- Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49(11), 3484–3524 (2020). https://doi.org/10.1039/c9cs00903e
- R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe–N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
- L. Zhu, D. Zheng, Z. Wang, X. Zheng, P. Fang et al., A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 30(45), 1805268 (2018). https://doi.org/10.1002/adma.201805268
- Z. Zhang, Y. Zhao, Z. Zhao, G. Huang, Y. Mei, Atomic layer deposition-derived nanomaterials: oxides, transition metal dichalcogenides, and metal-organic frameworks. Chem. Mater. 32(21), 9056–9077 (2020). https://doi.org/10.1021/acs.chemmater.9b04414
- Q. Zhang, J. Guan, Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 30(31), 2000768 (2020). https://doi.org/10.1002/adfm.202000768
- C. Liu, H. Li, F. Liu, J. Chen, Z. Yu et al., Intrinsic activity of metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis. J. Am. Chem. Soc. 142(52), 21861–21871 (2020). https://doi.org/10.1021/jacs.0c10636
- L. Zhao, Y. Zhang, L.B. Huang, X.Z. Liu, Q.H. Zhang et al., Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10(1), 1278 (2019). https://doi.org/10.1038/s41467-019-09290-y
- P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
- K. Xu, H. Bao, C. Tang, K. Maliutina, F. Li et al., Engineering hierarchical MOFs-derived Fe–N–C nanostructure with improved oxygen reduction activity for zinc-air battery: the role of iron oxide. Mater. Today Energy 18, 100500 (2020). https://doi.org/10.1016/j.mtener.2020.100500
- H. Lei, Y. Liang, G. Cen, B.T. Liu, S. Tan et al., Atomic layer deposited Al2O3 layer confinement: an efficient strategy to synthesize durable MOF-derived catalysts toward the oxygen evolution reaction. Inorg. Chem. Front. 8(6), 1432–1438 (2021). https://doi.org/10.1039/d0qi01317j
- X. Sun, S. Sun, S. Gu, Z. Liang, J. Zhang et al., High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 61, 245–250 (2019). https://doi.org/10.1016/j.nanoen.2019.04.076
- K. Zhang, Y. Zhang, Q. Zhang, Z. Liang, L. Gu et al., Metal-organic framework-derived Fe/Cu-substituted Co nanoparticles embedded in CNTs-grafted carbon polyhedron for Zn-air batteries. Carbon Energy 2(2), 283–293 (2020). https://doi.org/10.1002/cey2.35
- Q. Zhang, J. Guan, Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. J. Power Sources 471, 228446 (2020). https://doi.org/10.1016/j.jpowsour.2020.228446
- Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58(9), 2622–2626 (2019). https://doi.org/10.1002/anie.201810175
- H. Xu, D. Cheng, D. Cao, X.C. Zeng, A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1(5), 339–348 (2018). https://doi.org/10.1038/s41929-018-0063-z
- C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60(9), 4448–4463 (2021). https://doi.org/10.1002/anie.202003917
- Y. Zheng, D.S. Yang, J.M. Kweun, C. Li, K. Tan et al., Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy 30, 443–449 (2016). https://doi.org/10.1016/j.nanoen.2016.10.037
- F. Calle-Vallejo, J.I. Martinez, J. Rossmeisl, Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phys. 13(34), 15639–15643 (2011). https://doi.org/10.1039/c1cp21228a
- H. Peng, F. Liu, X. Liu, S. Liao, C. You et al., Effect of transition metals on the structure and performance of the doped carbon catalysts serived from polyaniline and melamine for ORR application. ACS Catal. 4(10), 3797–3805 (2014). https://doi.org/10.1021/cs500744x
- H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
- J. Han, X. Meng, L. Lu, J. Bian, Z. Li et al., Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 29(41), 1808872 (2019). https://doi.org/10.1002/adfm.201808872
- Z. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Sci. Adv. 7(15), 2001069 (2020). https://doi.org/10.1002/advs.202001069
- X. Luo, X. Wei, H. Wang, W. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12, 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
- Y. Wang, F.L. Hu, Y. Mi, C. Yan, S. Zhao, Single-metal-atom catalysts: an emerging platform for electrocatalytic oxygen reduction. Chem. Eng. J. 406, 127135 (2021). https://doi.org/10.1016/j.cej.2020.127135
- M. Wu, J. Qiao, K. Li, X. Zhou, Y. Liu et al., A large-scale synthesis of heteroatom (N and S) Co-doped hierarchically porous carbon (HPC) derived from polyquaternium for superior oxygen reduction reactivity. Green Chem. 18(9), 2699–2709 (2016). https://doi.org/10.1039/c5gc02625c
- M. Wu, G. Zhang, M. Wu, J. Prakash, S. Sun, Rational design of multifunctional air electrodes for rechargeable Zn-air batteries: recent progress and future perspectives. Energy Stor. Mater. 21, 253–286 (2019). https://doi.org/10.1016/j.ensm.2019.05.018
- Q. Shi, S. Hwang, H. Yang, F. Ismail, D. Su et al., Supported and coordinated single metal site electrocatalysts. Mater. Today 37, 93–111 (2020). https://doi.org/10.1016/j.mattod.2020.02.019
- C. Tang, M.M. Titirici, Q. Zhang, A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J. Energy Chem. 26(6), 1077–1093 (2017). https://doi.org/10.1016/j.jechem.2017.08.008
- Z. Zhao, Z. Yuan, Z. Fang, J. Jian, J. Li et al., In situ activating strategy to significantly boost oxygen electrocatalysis of commercial carbon cloth for flexible and rechargeable Zn-air batteries. Adv. Sci. 5(12), 1800760 (2018). https://doi.org/10.1002/advs.201800760
- X. Xiao, X. Li, Z. Wang, G. Yan, H. Guo et al., Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn-air batteries. Appl. Catal. B 265, 118603 (2020)
- Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
- X. Wang, Y. Jia, X. Mao, D. Liu, W. He et al., Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 32(16), 2000966 (2020). https://doi.org/10.1002/adma.202000966
- C. Tang, B. Wang, H.F. Wang, Q. Zhang, Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater. 29(37), 1703185 (2017). https://doi.org/10.1002/adma.201703185
- Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang et al., Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 31(13), 1803800 (2019). https://doi.org/10.1002/adma.201803800
- X. Shu, M. Yang, D. Tan, K.S. Hui, K.N. Hui et al., Recent advances in the field of carbon-based cathode electrocatalysts for Zn-air batteries. Mater. Adv. 2(1), 96–114 (2021). https://doi.org/10.1039/d0ma00745e
- F. Dong, M. Wu, G. Zhang, X. Liu, D. Rawach et al., Defect engineering of carbon-based electrocatalysts for rechargeable zinc-air batteries. Chem. Asian J. 15(22), 3737–3751 (2020). https://doi.org/10.1002/asia.202001031
- M. Wu, G. Zhang, L. Du, D. Yang, H. Yang et al., Defect electrocatalysts and alkaline electrolyte membranes in solid-state zinc-air batteries: recent advances, challenges, and future perspectives. Small Methods 5(1), 2000868 (2020). https://doi.org/10.1002/smtd.202000868
- L. Chen, W. Yang, X. Liu, L. Long, D. Li et al., Cobalt sulfide/N, S-codoped defect-rich carbon nanotubes hybrid as an excellent bi-functional oxygen electrocatalyst. Nanotechnology 30(7), 075402 (2019). https://doi.org/10.1088/1361-6528/aaf457
- J. Zhu, S. Mu, Defect engineering in the carbon-based electrocatalysts: insight into the intrinsic carbon defects. Adv. Funct. Mater. 30(25), 2001097 (2020). https://doi.org/10.1002/adfm.202001097
- C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28(32), 6845–6851 (2016). https://doi.org/10.1002/adma.201601406
- H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR. OER and HER. Energy Environ. Sci. 12(1), 322–333 (2019). https://doi.org/10.1039/c8ee03276a
- L. Zhang, J. Fischer, Y. Jia, X. Yan, W. Xu et al., Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 140(34), 10757–10763 (2018). https://doi.org/10.1021/jacs.8b04647
- K. Mao, L. Yang, X. Wang, Q. Wu, Z. Hu, Identifying iron-nitrogen/carbon active structures for oxygen reduction reaction under the effect of electrode potential. J. Phys. Chem. Lett. 11(8), 2896–2901 (2020). https://doi.org/10.1021/acs.jpclett.0c00428
- J. Zhang, Q.A. Huang, J. Wang, J. Wang, J. Zhang et al., Supported dual-atom catalysts: preparation, characterization, and potential applications. Chinese J. Catal. 41(5), 783–798 (2020). https://doi.org/10.1016/s1872-2067(20)63536-7
- X.L. Wang, L.Z. Dong, M. Qiao, Y.J. Tang, J. Liu et al., Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew. Chem. Int. Ed. 57(31), 9660–9664 (2018). https://doi.org/10.1002/anie.201803587
- D. Liu, B. Wang, H. Li, S. Huang, M. Liu et al., Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries. Nano Energy 58, 277–283 (2019). https://doi.org/10.1016/j.nanoen.2019.01.011
- C. Chen, D. Cheng, S. Liu, Z. Wang, M. Hu et al., Engineering the multiscale structure of bifunctional oxygen electrocatalyst for highly efficient and ultrastable zinc-air battery. Energy Stor. Mater. 24, 402–411 (2020). https://doi.org/10.1016/j.ensm.2019.07.028
- X. Wu, G. Meng, W. Liu, T. Li, Q. Yang et al., Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 11(1), 163–173 (2017). https://doi.org/10.1007/s12274-017-1615-2
- Y. Cheng, S. He, J.P. Veder, R.D. Marco, S.Z. Yang et al., Atomically dispersed bimetallic FeNi catalysts as highly efficient bifunctional catalysts for reversible oxygen evolution and oxygen reduction reactions. ChemElectroChem 6(13), 3478–3487 (2019). https://doi.org/10.1002/celc.201900483
- D. Yu, Y. Ma, F. Hu, C.C. Lin, L. Li et al., Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 11(30), 2101242 (2021). https://doi.org/10.1002/aenm.202101242
- Z. Meng, N. Chen, S. Cai, R. Wang, J. Wu et al., Recent advances of hierarchically porous bifunctional oxygen electrocatalysts derived from metal-organic frameworks for Zn-air batteries. Mater. Chem. Front. 5, 2649–2667 (2021). https://doi.org/10.1039/d0qm00878h
- S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee et al., Design principle of Fe-N-C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 141(5), 2035–2045 (2019). https://doi.org/10.1021/jacs.8b11129
- H.Y. Wang, C.C. Weng, Z.Y. Yuan, Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. J. Energy Chem. 56, 470–485 (2021). https://doi.org/10.1016/j.jechem.2020.08.030
- X. Chen, D.D. Ma, B. Chen, K. Zhang, R. Zou et al., Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B 267, 118720 (2020). https://doi.org/10.1016/j.apcatb.2020.118720
- Z. Li, G. Jiang, Y.P. Deng, G. Liu, D. Ren et al., Deep-breathing honeycomb-like Co-Nx-C nanopolyhedron bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. iScience 23(8), 101404 (2020). https://doi.org/10.1016/j.isci.2020.101404
- X. Gong, J. Zhu, J. Li, R. Gao, Q. Zhou et al., Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 31(8), 2008085 (2020). https://doi.org/10.1002/adfm.202008085
References
X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Heteroatom-doped carbon catalysts for zinc-air batteries: progress, mechanism, and opportunities. Energy Environ. Sci. 13(12), 4536–4563 (2020). https://doi.org/10.1039/d0ee02800b
M. Luo, W. Sun, B.B. Xu, H. Pan, Y. Jiang, Interface engineering of air electrocatalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 11(4), 2002762 (2021). https://doi.org/10.1002/aenm.202002762
D. Liu, Y. Tong, X. Yan, J. Liang, S.X. Dou, Recent advances in carbon-based bifunctional oxygen catalysts for zinc-air batteries. Batteries Supercaps 2(9), 743–765 (2019). https://doi.org/10.1002/batt.201900052
J. Yi, X. Liu, P. Liang, K. Wu, J. Xu et al., Non-noble iron group (Fe Co, Ni)-based oxide electrocatalysts for aqueous zinc-air batteries: recent progress, challenges, and perspectives. Organometallics 38(6), 1186–1199 (2018). https://doi.org/10.1021/acs.organomet.8b00508
M. Khalid, P.A. Bhardwaj, A.M.B. Honorato, H. Varela, Metallic single-atoms confined in carbon nanomaterials for the electrocatalysis of oxygen reduction, oxygen evolution, and hydrogen evolution reactions. Catal. Sci. Technol. 10(19), 6420–6448 (2020). https://doi.org/10.1039/d0cy01408g
M. Wu, G. Zhang, J. Qiao, N. Chen, W. Chen et al., Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy 61, 86–95 (2019). https://doi.org/10.1016/j.nanoen.2019.04.031
M. Wu, Q. Tang, F. Dong, Y. Wang, D. Li et al., The design of Fe, N-doped hierarchically porous carbons as highly active and durable electrocatalysts for a Zn-air battery. Phys. Chem. Chem. Phys. 18(28), 18665–18669 (2016). https://doi.org/10.1039/c6cp02785g
F. Dong, C. Liu, M. Wu, J. Guo, K. Li et al., Hierarchical porous carbon derived from coal tar pitch containing discrete Co–Nx–C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Sustain. Chem. Eng. 7(9), 8587–8596 (2019). https://doi.org/10.1021/acssuschemeng.9b00373
T. Chen, J. Wu, C. Zhu, Z. Liu, W. Zhou et al., Rational design of iron single atom anchored on nitrogen doped carbon as a high-performance electrocatalyst for all-solid-state flexible zinc-air batteries. Chem. Eng. J. 405, 125956 (2021). https://doi.org/10.1016/j.cej.2020.125956
C.X. Zhao, J.N. Liu, J. Wang, D. Ren, J. Yu et al., A ∆E = 0. 63 V bifunctional oxygen electrocatalyst enables high-rate and long-cycling zinc-air batteries. Adv. Mater. 33(15), 2008606 (2021). https://doi.org/10.1002/adma.202008606
L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12(2), 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 13(4), 1132–1153 (2020). https://doi.org/10.1039/c9ee03634b
M. Wang, H. Ji, S. Liu, H. Sun, J. Liu et al., Single-atom scale metal vacancy engineering in heteroatom-doped carbon for rechargeable zinc-air battery with reduced overpotential. Chem. Eng. J. 393, 124702 (2020). https://doi.org/10.1016/j.cej.2020.124702
D. Yang, H. Tan, X. Rui, Y. Yu, Electrode materials for rechargeable zinc-ion and zinc-air batteries: current status and future perspectives. Electrochem. Energy Rev. 2(3), 395–427 (2019). https://doi.org/10.1007/s41918-019-00035-5
W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu et al., Single Co atoms anchored in porous N-doped carbon for efficient zinc−air battery cathodes. ACS Catal. 8(10), 8961–8969 (2018). https://doi.org/10.1021/acscatal.8b02556
Y. Zhong, X. Xu, W. Wang, Z. Shao, Recent advances in metal-organic framework derivatives as oxygen catalysts for zinc-air batteries. Batter. Supercaps 2(4), 272–289 (2018). https://doi.org/10.1002/batt.201800093
X. Wang, Z. Liao, Y. Fu, C. Neumann, A. Turchanin et al., Confined growth of porous nitrogen-doped cobalt oxide nanoarrays as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Energy Stor. Mater. 26, 157–164 (2020). https://doi.org/10.1016/j.ensm.2019.12.043
Z.C. Yao, T. Tang, J.S. Hu, L.J. Wan, Recent advances on nonprecious-metal-based bifunctional oxygen electrocatalysts for zinc-air batteries. Energy Fuels 35(8), 6380–6401 (2021). https://doi.org/10.1021/acs.energyfuels.1c00275
Y. Li, Q. Li, H. Wang, L. Zhang, D.P. Wilkinson et al., Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2(4), 518–538 (2019). https://doi.org/10.1007/s41918-019-00052-4
C. Li, M. Wu, R. Liu, High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B 244, 150–158 (2019). https://doi.org/10.1016/j.apcatb.2018.11.039
X. Zhu, D. Zhang, C.J. Chen, Q. Zhang, R.S. Liu et al., Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 71, 104597 (2020). https://doi.org/10.1016/j.nanoen.2020.104597
X. Han, X. Ling, D. Yu, D. Xie, L. Li et al., Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31(49), 1905622 (2019). https://doi.org/10.1002/adma.201905622
M. Xiao, Z. Xing, Z. Jin, C. Liu, J. Ge et al., Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. Adv. Mater. 32(49), 2004900 (2020). https://doi.org/10.1002/adma.202004900
Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun et al., Engineering two-phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn-air batteries. Nano-Micro Lett. 13, 126 (2021). https://doi.org/10.1007/s40820-021-00650-2
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M = Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
Y. Wang, A. Kumar, M. Ma, Y. Jia, Y. Wang et al., Hierarchical peony-like FeCo-Nc with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 13(4), 1090–1099 (2020). https://doi.org/10.1007/s12274-020-2751-7
K. Huang, S. Guo, R. Wang, S. Lin, N. Hussain et al., Two-dimensional MOF/MOF derivative arrays on nickel foam as efficient bifunctional coupled oxygen electrodes. Chinese J. Catal. 41(11), 1754–1760 (2020). https://doi.org/10.1016/s1872-2067(20)63613-0
Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 30(6), 1906081 (2019). https://doi.org/10.1002/adfm.201906081
J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
H. Han, S. Chao, Z. Bai, X. Wang, X. Yang et al., Metal-organic-framework-derived Co nanoparticles deposited on N-doped bimodal mesoporous carbon nanorods as efficient bifunctional catalysts for rechargeable zinc−air batteries. ChemElectroChem 5(14), 1868–1873 (2018). https://doi.org/10.1002/celc.201701289
H.F. Wang, C. Tang, Q. Zhang, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−air batteries. Adv. Funct. Mater. 28(46), 1803329 (2018). https://doi.org/10.1002/adfm.201803329
F. Dong, Y. Cai, C. Liu, J. Liu, J. Qiao, Heteroatom (B, N and P) doped porous graphene foams for efficient oxygen reduction reaction electrocatalysis. Int. J. Hydrog. Energy 43(28), 12661–12670 (2018). https://doi.org/10.1016/j.ijhydene.2018.04.118
X. Li, F. Dong, N. Xu, T. Zhang, K. Li et al., Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 10(18), 15591–15601 (2018). https://doi.org/10.1021/acsami.7b18684
C. Liu, F. Dong, Y. Wang, J. Guo, Y. Yang et al., Mesoporous carbon based non-precious metal catalysts for oxygen reduction reaction: effect of metal species and valence state. Int. J. Hydrog. Energy 45(54), 29874–29882 (2019). https://doi.org/10.1016/j.ijhydene.2019.06.137
M. Wu, Q. Wei, G. Zhang, J. Qiao, M. Wu et al., Fe/Co double hydroxide/oxide nanoparticles on N-doped CNTs as highly efficient electrocatalyst for rechargeable liquid and quasi-solid-state zinc-air batteries. Adv. Energy Mater. 8(30), 1801836 (2018). https://doi.org/10.1002/aenm.201801836
M. Wu, G. Zhang, N. Chen, Y. Hu, T. Regier et al., Self-reconstruction of Co/Co2P heterojunctions confined in N-doped carbon nanotubes for zinc-air flow batteries. ACS Energy Lett. 6(4), 1153–1161 (2021). https://doi.org/10.1021/acsenergylett.1c00037
M. Wu, G. Zhang, Y. Hu, J. Wang, T. Sun et al., Graphitic-shell encapsulated FeNi alloy/nitride nanocrystals on biomass-derived N-doped carbon as an efficient electrocatalyst for rechargeable Zn-air battery. Carbon Energy 3(1), 176–187 (2020). https://doi.org/10.1002/cey2.52
M. Wu, G. Zhang, H. Tong, X. Liu, L. Du et al., Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy 79, 105409 (2021). https://doi.org/10.1016/j.nanoen.2020.105409
R. Paul, F. Du, L. Dai, Y. Ding, Z.L. Wang et al., 3D heteroatom-doped carbon nanomaterials as multifunctional metal-free catalysts for integrated energy devices. Adv. Mater. 31(13), 1805598 (2019). https://doi.org/10.1002/adma.201805598
X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao et al., NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy 31, 541–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.008
R. Gao, Q. Chen, W. Zhang, D. Zhou, D. Ning et al., Oxygen defects-engineered LaFeO3-x nanosheets as efficient electrocatalysts for lithium-oxygen battery. J. Catal. 384, 199–207 (2020). https://doi.org/10.1016/j.jcat.2020.02.024
R. Xu, L. Du, D. Adekoya, G. Zhang, S. Zhang et al., Well-defined nanostructures for electrochemical energy conversion and storage. Adv. Energy Mater. 11(15), 2001537 (2020). https://doi.org/10.1002/aenm.202001537
B. Zhu, Z. Liang, D. Xia, R. Zou, Metal-organic frameworks and their derivatives for metal-air batteries. Energy Stor. Mater. 23, 757–771 (2019). https://doi.org/10.1016/j.ensm.2019.05.022
L.H. Zhang, Y. Shi, Y. Wang, N.R. Shiju, Nanocarbon catalysts: recent understanding regarding the active sites. Adv. Sci. 7(5), 1902126 (2020). https://doi.org/10.1002/advs.201902126
H.J. Qiu, P. Du, K. Hu, J. Gao, H. Li et al., Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 31(19), 1900843 (2019). https://doi.org/10.1002/adma.201900843
L. Wei, E.H. Ang, Y. Yang, Y. Qin, Y. Zhang et al., Recent advances of transition metal based bifunctional electrocatalysts for rechargeable zinc-air batteries. J. Power Sources 477, 228696 (2020). https://doi.org/10.1016/j.jpowsour.2020.228696
D. Yang, D. Chen, Y. Jiang, E.H. Ang, Y. Feng et al., Carbon-based materials for all-solid-state zinc-air batteries. Carbon Energy 3(1), 50–65 (2020). https://doi.org/10.1002/cey2.88
J. Sheng, S. Zhu, G. Jia, X. Liu, Y. Li, Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries. Nano Res. 14, 4541–4547 (2021). https://doi.org/10.1007/s12274-021-3369-0
Y. Ma, H. Fan, C. Wu, M. Zhang, J. Yu et al., An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon 185, 526–535 (2021). https://doi.org/10.1016/j.carbon.2021.09.044
J. Chen, H. Chen, T. Yu, R. Li, Y. Wang et al., Recent advances in the understanding of the surface reconstruction of oxygen evolution electrocatalysts and materials development. Electrochem. Energy Rev. 4(3), 566–600 (2021). https://doi.org/10.1007/s41918-021-00104-8
H. Luo, W.J. Jiang, S. Niu, X. Zhang, Y. Zhang et al., Self-catalyzed growth of Co-N-C nanobrushes for efficient rechargeable Zn-air batteries. Small 16(20), 2001171 (2020). https://doi.org/10.1002/smll.202001171
P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu et al., Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 31(30), 1901666 (2019). https://doi.org/10.1002/adma.201901666
M. Ma, A. Kumar, D. Wang, Y. Wang, Y. Jia et al., Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Appl. Catal. B 274, 119091 (2020). https://doi.org/10.1016/j.apcatb.2020.119091
Z. Zhang, J. Liu, A. Curcio, Y. Wang, J. Wu et al., Atomically dispersed materials for rechargeable batteries. Nano Energy 76, 105085 (2020). https://doi.org/10.1016/j.nanoen.2020.105085
Y. Wang, B. Yu, K. Liu, X. Yang, M. Liu et al., Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal-air batteries. J. Mater. Chem. A 8(4), 2131–2139 (2020). https://doi.org/10.1039/c9ta12171d
A.K. Worku, D.W. Ayele, N.G. Habtu, Recent advances and future perspectives in engineering of bifunctional electrocatalysts for rechargeable zinc-air batteries. Mater. Today Adv. 9, 100116 (2021). https://doi.org/10.1016/j.mtadv.2020.100116
Y. Chen, S. Ji, C. Chen, Q. Peng, D. Wang et al., Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2(7), 1242–1264 (2018). https://doi.org/10.1016/j.joule.2018.06.019
B.Q. Li, C.X. Zhao, S. Chen, J.N. Liu, X. Chen et al., Framework-porphyrin-derived single-atom bifunctional oxygen electrocatalysts and their applications in Zn-air batteries. Adv. Mater. 31(19), 1900592 (2019). https://doi.org/10.1002/adma.201900592
L. Peng, L. Shang, T. Zhang, G.I.N. Waterhouse, Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc-air batteries. Adv. Energy Mater. 10(48), 2003018 (2020). https://doi.org/10.1002/aenm.202003018
N. Cheng, L. Zhang, K. Doyle-Davis, X. Sun, Single-atom catalysts: from design to application. Electrochem. Energy Rev. 2(4), 539–573 (2019). https://doi.org/10.1007/s41918-019-00050-6
C. Yang, C. Shu, Z. Gan, C. Lai, J. Ma et al., Thiocyanate ion ligand-induced atomically dispersed Fe–N–S tridoped hollow catalyst for high-performance zinc-air rechargeable batteries. Energy Fuels 34(9), 11620–11627 (2020). https://doi.org/10.1021/acs.energyfuels.0c02512
J. Wu, H. Zhou, Q. Li, M. Chen, J. Wan et al., Densely populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 9(22), 1900149 (2019). https://doi.org/10.1002/aenm.201900149
J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu et al., Single Fe atom on hierarchically porous S, N-Codoped nanocarbon derived from porphyra enable boosted oxygen catalysis for rechargeable Zn-air batteries. Small 15(24), 1900307 (2019). https://doi.org/10.1002/smll.201900307
Y. Guo, P. Yuan, J. Zhang, Y. Hu, I.S. Amiinu et al., Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-air batteries. ACS Nano 12(2), 1894–1901 (2018). https://doi.org/10.1021/acsnano.7b08721
P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong et al., Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem. Int. Ed. 56(2), 610–614 (2017). https://doi.org/10.1002/anie.201610119
X. Zhao, X. Li, Z. Bi, Y. Wang, H. Zhang et al., Boron modulating electronic structure of FeN4C to initiate high-efficiency oxygen reduction reaction and high-performance zinc-air battery. J. Energy Chem. 66, 514–524 (2022). https://doi.org/10.1016/j.jechem.2021.08.067
H.J. Niu, A.J. Wang, L. Zhang, J.J. Feng, Bioinspired one-step pyrolysis fabrication of 3D porous Co, N, P-doped carbon nanosheets with enriched CoNx active sites as high-performance bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. ACS Appl. Energy Mater. 3(3), 2781–2790 (2020). https://doi.org/10.1021/acsaem.9b02450
W. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao et al., Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B 260, 118198 (2020). https://doi.org/10.1016/j.apcatb.2019.118198
B. Hu, A. Huang, X. Zhang, Z. Chen, R. Tu et al., Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. Nano Res. 14(10), 3482–3488 (2021). https://doi.org/10.1007/s12274-021-3535-4
S. Li, C. Cheng, X. Zhao, J. Schmidt, A. Thomas, Active salt/silica-templated 2D mesoporous FeCo-Nx-carbon as bifunctional oxygen electrodes for zinc-air batteries. Angew. Chem. Int. Ed. 57(7), 1856–1862 (2018). https://doi.org/10.1002/anie.201710852
I.S. Amiinu, X. Liu, Z. Pu, W. Li, Q. Li et al., From 3D ZIF nanocrystals to Co-Nx/C nanorod array electrocatalysts for ORR, OER, and Zn-air batteries. Adv. Funct. Mater. 28(5), 1704638 (2018). https://doi.org/10.1002/adfm.201704638
P. Liu, D. Gao, W. Xiao, L. Ma, K. Sun et al., Self-powered water-splitting devices by core-shell NiFe@N-graphite-based Zn-air batteries. Adv. Funct. Mater. 28(14), 1706928 (2018). https://doi.org/10.1002/adfm.201706928
C. Lai, X. Liu, C. Cao, Y. Wang, Y. Yin et al., Structural regulation of N-doped carbon nanocages as high-performance bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon 173, 715–723 (2021). https://doi.org/10.1016/j.carbon.2020.11.053
J. Li, L. Zhang, K. Doyle-Davis, R. Li, X. Sun, Recent advances and strategies in the stabilization of single-atom catalysts for electrochemical applications. Carbon Energy 2(4), 488–520 (2020). https://doi.org/10.1002/cey2.74
J. Guo, J. Huo, Y. Liu, W. Wu, Y. Wang et al., Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Methods 3(9), 1900159 (2019). https://doi.org/10.1002/smtd.201900159
T. Tang, L. Ding, Z. Jiang, J.S. Hu, L.J. Wan, Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Sci. China Chem. 63(11), 1517–1542 (2020). https://doi.org/10.1007/s11426-020-9835-8
B. Lu, Q. Liu, S. Chen, Electrocatalysis of single-atom sites: impacts of atomic coordination. ACS Catal. 10(14), 7584–7618 (2020). https://doi.org/10.1021/acscatal.0c01950
H. Yin, H. Xia, S. Zhao, K. Li, J. Zhang et al., Atomic level dispersed metal-nitrogen-carbon catalyst toward oxygen reduction reaction: synthesis strategies and chemical environmental regulation. Energy Environ. Mater. 4(1), 5–18 (2020). https://doi.org/10.1002/eem2.12085
X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30(11), 1706758 (2018). https://doi.org/10.1002/adma.201706758
J.C. Li, Z. Wei, D. Liu, D. Du, Y. Lin et al., Dispersive single-atom metals anchored on functionalized nanocarbons for electrochemical reactions. Topics Curr. Chem. 377, 4 (2019). https://doi.org/10.1007/s41061-018-0229-9
D.H. Kwak, S.B. Han, Y.W. Lee, H.S. Park, I.A. Choi et al., Fe/N/S-doped mesoporous carbon nanostructures as electrocatalysts for oxygen reduction reaction in acid medium. Appl. Catal. B 203, 889–898 (2017). https://doi.org/10.1016/j.apcatb.2016.10.084
Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 49(11), 3484–3524 (2020). https://doi.org/10.1039/c9cs00903e
R. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen et al., Edge-site engineering of atomically dispersed Fe–N4 by selective C-N bond cleavage for enhanced oxygen reduction reaction activities. J. Am. Chem. Soc. 140(37), 11594–11598 (2018). https://doi.org/10.1021/jacs.8b07294
L. Zhu, D. Zheng, Z. Wang, X. Zheng, P. Fang et al., A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode of flexible all-solid-state zinc-air batteries. Adv. Mater. 30(45), 1805268 (2018). https://doi.org/10.1002/adma.201805268
Z. Zhang, Y. Zhao, Z. Zhao, G. Huang, Y. Mei, Atomic layer deposition-derived nanomaterials: oxides, transition metal dichalcogenides, and metal-organic frameworks. Chem. Mater. 32(21), 9056–9077 (2020). https://doi.org/10.1021/acs.chemmater.9b04414
Q. Zhang, J. Guan, Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 30(31), 2000768 (2020). https://doi.org/10.1002/adfm.202000768
C. Liu, H. Li, F. Liu, J. Chen, Z. Yu et al., Intrinsic activity of metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis. J. Am. Chem. Soc. 142(52), 21861–21871 (2020). https://doi.org/10.1021/jacs.0c10636
L. Zhao, Y. Zhang, L.B. Huang, X.Z. Liu, Q.H. Zhang et al., Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 10(1), 1278 (2019). https://doi.org/10.1038/s41467-019-09290-y
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55(36), 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
K. Xu, H. Bao, C. Tang, K. Maliutina, F. Li et al., Engineering hierarchical MOFs-derived Fe–N–C nanostructure with improved oxygen reduction activity for zinc-air battery: the role of iron oxide. Mater. Today Energy 18, 100500 (2020). https://doi.org/10.1016/j.mtener.2020.100500
H. Lei, Y. Liang, G. Cen, B.T. Liu, S. Tan et al., Atomic layer deposited Al2O3 layer confinement: an efficient strategy to synthesize durable MOF-derived catalysts toward the oxygen evolution reaction. Inorg. Chem. Front. 8(6), 1432–1438 (2021). https://doi.org/10.1039/d0qi01317j
X. Sun, S. Sun, S. Gu, Z. Liang, J. Zhang et al., High-performance single atom bifunctional oxygen catalysts derived from ZIF-67 superstructures. Nano Energy 61, 245–250 (2019). https://doi.org/10.1016/j.nanoen.2019.04.076
K. Zhang, Y. Zhang, Q. Zhang, Z. Liang, L. Gu et al., Metal-organic framework-derived Fe/Cu-substituted Co nanoparticles embedded in CNTs-grafted carbon polyhedron for Zn-air batteries. Carbon Energy 2(2), 283–293 (2020). https://doi.org/10.1002/cey2.35
Q. Zhang, J. Guan, Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. J. Power Sources 471, 228446 (2020). https://doi.org/10.1016/j.jpowsour.2020.228446
Z. Lu, B. Wang, Y. Hu, W. Liu, Y. Zhao et al., An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58(9), 2622–2626 (2019). https://doi.org/10.1002/anie.201810175
H. Xu, D. Cheng, D. Cao, X.C. Zeng, A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal. 1(5), 339–348 (2018). https://doi.org/10.1038/s41929-018-0063-z
C.X. Zhao, B.Q. Li, J.N. Liu, Q. Zhang, Intrinsic electrocatalytic activity regulation of M-N-C single-atom catalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 60(9), 4448–4463 (2021). https://doi.org/10.1002/anie.202003917
Y. Zheng, D.S. Yang, J.M. Kweun, C. Li, K. Tan et al., Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy 30, 443–449 (2016). https://doi.org/10.1016/j.nanoen.2016.10.037
F. Calle-Vallejo, J.I. Martinez, J. Rossmeisl, Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Phys. Chem. Chem. Phys. 13(34), 15639–15643 (2011). https://doi.org/10.1039/c1cp21228a
H. Peng, F. Liu, X. Liu, S. Liao, C. You et al., Effect of transition metals on the structure and performance of the doped carbon catalysts serived from polyaniline and melamine for ORR application. ACS Catal. 4(10), 3797–3805 (2014). https://doi.org/10.1021/cs500744x
H. Fei, J. Dong, Y. Feng, C.S. Allen, C. Wan et al., General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018). https://doi.org/10.1038/s41929-017-0008-y
J. Han, X. Meng, L. Lu, J. Bian, Z. Li et al., Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 29(41), 1808872 (2019). https://doi.org/10.1002/adfm.201808872
Z. Shi, W. Yang, Y. Gu, T. Liao, Z. Sun, Metal-nitrogen-doped carbon materials as highly efficient catalysts: progress and rational design. Sci. Adv. 7(15), 2001069 (2020). https://doi.org/10.1002/advs.202001069
X. Luo, X. Wei, H. Wang, W. Gu, T. Kaneko et al., Secondary-atom-doping enables robust Fe–N–C single-atom catalysts with enhanced oxygen reduction reaction. Nano-Micro Lett. 12, 163 (2020). https://doi.org/10.1007/s40820-020-00502-5
Y. Wang, F.L. Hu, Y. Mi, C. Yan, S. Zhao, Single-metal-atom catalysts: an emerging platform for electrocatalytic oxygen reduction. Chem. Eng. J. 406, 127135 (2021). https://doi.org/10.1016/j.cej.2020.127135
M. Wu, J. Qiao, K. Li, X. Zhou, Y. Liu et al., A large-scale synthesis of heteroatom (N and S) Co-doped hierarchically porous carbon (HPC) derived from polyquaternium for superior oxygen reduction reactivity. Green Chem. 18(9), 2699–2709 (2016). https://doi.org/10.1039/c5gc02625c
M. Wu, G. Zhang, M. Wu, J. Prakash, S. Sun, Rational design of multifunctional air electrodes for rechargeable Zn-air batteries: recent progress and future perspectives. Energy Stor. Mater. 21, 253–286 (2019). https://doi.org/10.1016/j.ensm.2019.05.018
Q. Shi, S. Hwang, H. Yang, F. Ismail, D. Su et al., Supported and coordinated single metal site electrocatalysts. Mater. Today 37, 93–111 (2020). https://doi.org/10.1016/j.mattod.2020.02.019
C. Tang, M.M. Titirici, Q. Zhang, A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J. Energy Chem. 26(6), 1077–1093 (2017). https://doi.org/10.1016/j.jechem.2017.08.008
Z. Zhao, Z. Yuan, Z. Fang, J. Jian, J. Li et al., In situ activating strategy to significantly boost oxygen electrocatalysis of commercial carbon cloth for flexible and rechargeable Zn-air batteries. Adv. Sci. 5(12), 1800760 (2018). https://doi.org/10.1002/advs.201800760
X. Xiao, X. Li, Z. Wang, G. Yan, H. Guo et al., Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn-air batteries. Appl. Catal. B 265, 118603 (2020)
Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9(1), 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
X. Wang, Y. Jia, X. Mao, D. Liu, W. He et al., Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 32(16), 2000966 (2020). https://doi.org/10.1002/adma.202000966
C. Tang, B. Wang, H.F. Wang, Q. Zhang, Defect engineering toward atomic Co-Nx-C in hierarchical graphene for rechargeable flexible solid Zn-air batteries. Adv. Mater. 29(37), 1703185 (2017). https://doi.org/10.1002/adma.201703185
Y. Huang, Y. Wang, C. Tang, J. Wang, Q. Zhang et al., Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 31(13), 1803800 (2019). https://doi.org/10.1002/adma.201803800
X. Shu, M. Yang, D. Tan, K.S. Hui, K.N. Hui et al., Recent advances in the field of carbon-based cathode electrocatalysts for Zn-air batteries. Mater. Adv. 2(1), 96–114 (2021). https://doi.org/10.1039/d0ma00745e
F. Dong, M. Wu, G. Zhang, X. Liu, D. Rawach et al., Defect engineering of carbon-based electrocatalysts for rechargeable zinc-air batteries. Chem. Asian J. 15(22), 3737–3751 (2020). https://doi.org/10.1002/asia.202001031
M. Wu, G. Zhang, L. Du, D. Yang, H. Yang et al., Defect electrocatalysts and alkaline electrolyte membranes in solid-state zinc-air batteries: recent advances, challenges, and future perspectives. Small Methods 5(1), 2000868 (2020). https://doi.org/10.1002/smtd.202000868
L. Chen, W. Yang, X. Liu, L. Long, D. Li et al., Cobalt sulfide/N, S-codoped defect-rich carbon nanotubes hybrid as an excellent bi-functional oxygen electrocatalyst. Nanotechnology 30(7), 075402 (2019). https://doi.org/10.1088/1361-6528/aaf457
J. Zhu, S. Mu, Defect engineering in the carbon-based electrocatalysts: insight into the intrinsic carbon defects. Adv. Funct. Mater. 30(25), 2001097 (2020). https://doi.org/10.1002/adfm.202001097
C. Tang, H.F. Wang, X. Chen, B.Q. Li, T.Z. Hou et al., Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 28(32), 6845–6851 (2016). https://doi.org/10.1002/adma.201601406
H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu et al., Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR. OER and HER. Energy Environ. Sci. 12(1), 322–333 (2019). https://doi.org/10.1039/c8ee03276a
L. Zhang, J. Fischer, Y. Jia, X. Yan, W. Xu et al., Coordination of atomic Co-Pt coupling species at carbon defects as active sites for oxygen reduction reaction. J. Am. Chem. Soc. 140(34), 10757–10763 (2018). https://doi.org/10.1021/jacs.8b04647
K. Mao, L. Yang, X. Wang, Q. Wu, Z. Hu, Identifying iron-nitrogen/carbon active structures for oxygen reduction reaction under the effect of electrode potential. J. Phys. Chem. Lett. 11(8), 2896–2901 (2020). https://doi.org/10.1021/acs.jpclett.0c00428
J. Zhang, Q.A. Huang, J. Wang, J. Wang, J. Zhang et al., Supported dual-atom catalysts: preparation, characterization, and potential applications. Chinese J. Catal. 41(5), 783–798 (2020). https://doi.org/10.1016/s1872-2067(20)63536-7
X.L. Wang, L.Z. Dong, M. Qiao, Y.J. Tang, J. Liu et al., Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system. Angew. Chem. Int. Ed. 57(31), 9660–9664 (2018). https://doi.org/10.1002/anie.201803587
D. Liu, B. Wang, H. Li, S. Huang, M. Liu et al., Distinguished Zn, Co-Nx-C-Sy active sites confined in dentric carbon for highly efficient oxygen reduction reaction and flexible Zn-air batteries. Nano Energy 58, 277–283 (2019). https://doi.org/10.1016/j.nanoen.2019.01.011
C. Chen, D. Cheng, S. Liu, Z. Wang, M. Hu et al., Engineering the multiscale structure of bifunctional oxygen electrocatalyst for highly efficient and ultrastable zinc-air battery. Energy Stor. Mater. 24, 402–411 (2020). https://doi.org/10.1016/j.ensm.2019.07.028
X. Wu, G. Meng, W. Liu, T. Li, Q. Yang et al., Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 11(1), 163–173 (2017). https://doi.org/10.1007/s12274-017-1615-2
Y. Cheng, S. He, J.P. Veder, R.D. Marco, S.Z. Yang et al., Atomically dispersed bimetallic FeNi catalysts as highly efficient bifunctional catalysts for reversible oxygen evolution and oxygen reduction reactions. ChemElectroChem 6(13), 3478–3487 (2019). https://doi.org/10.1002/celc.201900483
D. Yu, Y. Ma, F. Hu, C.C. Lin, L. Li et al., Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 11(30), 2101242 (2021). https://doi.org/10.1002/aenm.202101242
Z. Meng, N. Chen, S. Cai, R. Wang, J. Wu et al., Recent advances of hierarchically porous bifunctional oxygen electrocatalysts derived from metal-organic frameworks for Zn-air batteries. Mater. Chem. Front. 5, 2649–2667 (2021). https://doi.org/10.1039/d0qm00878h
S.H. Lee, J. Kim, D.Y. Chung, J.M. Yoo, H.S. Lee et al., Design principle of Fe-N-C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 141(5), 2035–2045 (2019). https://doi.org/10.1021/jacs.8b11129
H.Y. Wang, C.C. Weng, Z.Y. Yuan, Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. J. Energy Chem. 56, 470–485 (2021). https://doi.org/10.1016/j.jechem.2020.08.030
X. Chen, D.D. Ma, B. Chen, K. Zhang, R. Zou et al., Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe–N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl. Catal. B 267, 118720 (2020). https://doi.org/10.1016/j.apcatb.2020.118720
Z. Li, G. Jiang, Y.P. Deng, G. Liu, D. Ren et al., Deep-breathing honeycomb-like Co-Nx-C nanopolyhedron bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. iScience 23(8), 101404 (2020). https://doi.org/10.1016/j.isci.2020.101404
X. Gong, J. Zhu, J. Li, R. Gao, Q. Zhou et al., Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 31(8), 2008085 (2020). https://doi.org/10.1002/adfm.202008085