Fabrication of High-Density Out-of-Plane Microneedle Arrays with Various Heights and Diverse Cross-Sectional Shapes
Corresponding Author: Maesoon Im
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 24
Abstract
Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface. This work presents a novel but simple method to fabricate high-density silicon (Si) microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs. The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching (DRIE) steps. First, a photoresist layer was patterned on a Si substrate to define areas to be etched, which will eventually determine the final location and shape of each individual microneedle. Then, the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate. Subsequently, the photoresist was removed for more isotropic etching; the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures. Depending on diverse photomask designs, the 2nd DRIE formed arrays of microneedles that have various height distributions, as well as diverse cross-sectional shapes across the substrate. With these simple steps, high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm−2 on a Si wafer. Insertion tests showed a small force as low as ~ 172 µN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain. To demonstrate a feasibility of drug delivery application, we also implemented silk microneedle arrays using molding processes. The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery, neuroprosthetic devices, and so on.
Highlights:
1 High-density out-of-plane microneedle arrays were fabricated with a single photolithography and two deep reactive ion etching (DRIE) steps in anisotropic and isotropic modes, respectively.
2 Microneedles in various heights were monolithically created by the identical DRIE processes and scanning electron microscopy images showed extremely sharp sub-micron (~145-nm-wide) tip.
3 Diverse cross-sectional shapes of microneedles were implemented by altering photomask patterns.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Van Damme, F. Oosterhuis-Kafeja, M. Van der Wielen, Y. Almagor, O. Sharon et al., Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 27(3), 454–459 (2009). https://doi.org/10.1016/j.vaccine.2008.10.077
- T. Waghule, G. Singhvi, S.K. Dubey, M.M. Pandey, G. Gupta et al., Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacotherapy 109, 1249–1258 (2019). https://doi.org/10.1016/j.biopha.2018.10.078
- Y. Hasegawa, Y. Yasuda, K. Taniguchi, M. Shikida, Fabrication method with high-density, high-height microneedle using microindentation method for drug delivery system. Microsys. Technol. 26, 765–773 (2020). https://doi.org/10.1007/s00542-019-04571-4
- Y. Lee, S.R. Dugansani, S.H. Jeon, S.H. Hwang, J.-H. Kim et al., Drug-delivery system based on salmon DNA nano- and micro-scale structures. Sci. Rep. 7, 9724 (2017). https://doi.org/10.1038/s41598-017-09904-9
- M. Bok, Y. Lee, D. Park, S. Shin, Z.-J. Zhao et al., Microneedles integrated with a triboelectric nanogenerator: an electrically active drug delivery system. Nanoscale 10, 13502–13510 (2018). https://doi.org/10.1039/c8nr02192a
- W.-G. Bae, H. Ko, J.-Y. So, H. Yi, C.-H. Lee et al., Snake fang-inspired stamping patch for transdermal delivery of liquid formulations. Sci. Transl. Med. 11(503), eaaw3329 (2019). https://doi.org/10.1126/scitranslmed.aaw3329
- Y. Gao, M. Hou, R. Yang, L. Zhang, Z. Xu et al., PEGDA/PVP microneedles with tailorable matrix constitutions for controllable transdermal drug delivery. Macromol. Mater. Eng. 303(12), 1800233 (2018). https://doi.org/10.1002/mame.201800233
- C.J.W. Bolton, O. Howells, G.J. Blayney, P.F. Eng, J.C. Birchall et al., Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip 20(15), 2788 (2020). https://doi.org/10.1039/d0lc00567c
- E. Kim, G. Erdos, S. Huang, T.W. Kenniston, S.C. Balmert et al., Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 55, 102743 (2020). https://doi.org/10.1016/j.ebiom.2020.102743
- M.D. Shin, S. Shukla, Y.H. Chung, V. Beiss, S.K. Chan et al., COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15, 646–655 (2020). https://doi.org/10.1038/s41565-020-0737-y
- K.J. Lee, S.H. Park, J.Y. Lee, H.C. Joo, E.H. Jang et al., Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. J. Con. Release 192(28), 174–181 (2014). https://doi.org/10.1016/j.jconrel.2014.07.007
- J. Yu, Y. Zhang, Y. Ye, R. DiSanto, W. Sun et al., Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. PNAS 112(27), 8260–8265 (2015). https://doi.org/10.1073/pnas.1505405112
- K. Lee, H.B. Song, W. Cho, J.H. Kim, J.H. Kim et al., Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery. Acta Biomater. 80(15), 48–57 (2018). https://doi.org/10.1016/j.actbio.2018.09.039
- J. Tang, J. Wang, K. Huang, Y. Ye, T. Su et al., Cardiac cell-integrated microneedle patch for treating myocardial infarction. Sci. Adv. 4(11), eaat9365 (2018). https://doi.org/10.1126/sciadv.aat9365
- Y. Cao, E. Lim, M. Xu, J.-K. Weng, B. Marelli, Precision delivery of multiscale payloads to tissue-specific targets in plants. Adv. Sci. 7(13), 1903551 (2020). https://doi.org/10.1002/advs.201903551
- R. Paul, A.C. Saville, J.C. Hansel, Y. Ye, C. Ball et al., Extraction of plant DNA by microneedle patch for rapid detection of plant diseases. ACS Nano 13(6), 6540–6549 (2019). https://doi.org/10.1021/acsnano.9b00193
- A. Vázquez-Guardado, Y. Yang, A.J. Bandodkar, J.A. Rogers, Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020). https://doi.org/10.1038/s41593-020-00739-8
- G. Charvet, L. Rousseau, O. Billoint, S. Gharbi, J.-P. Rostaing et al., BioMEATM: a versatile high-density 3D microelectrode array system using integrated electronics. Biosens. Bioelectron. 25(8), 1889–1896 (2010). https://doi.org/10.1016/j.bios.2010.01.001
- R.A. Normann, E. Fernandez, Clinical applications of penetrating neural interfaces and Utah electrode array technologies. J. Neural Eng. 13(6), 061003 (2016). https://doi.org/10.1088/1741-2560/13/6/061003
- R. Wang, X. Jiang, W. Wang, Z. Li, A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens. Actuators B Chem. 244, 750–758 (2017). https://doi.org/10.1016/j.snb.2017.01.052
- X. Chen, F. Wang, E. Fernandez, P.R. Roelfsema, Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370(6521), 1191–1196 (2020). https://doi.org/10.1126/science.abd7435
- Z. Xiang, J. Liu, C. Lee, A flexible three-dimensional electrode mesh: an enabling technology for wireless brain-computer interface prostheses. Microsyst. Nanoeng. 2, 16012 (2016). https://doi.org/10.1038/micronano.2016.12
- H.A.C. Wark, R. Sharma, K.S. Mathews, E. Fernandez, J. Yoo et al., A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J. Neural Eng. 10(4), 045003 (2013). https://doi.org/10.1088/1741-2560/10/4/045003
- S. Micera, J. Carpaneto, S. Raspopovic, Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3, 48–68 (2010). https://doi.org/10.1109/RBME.2010.2085429
- S.Y. Yang, E.D. O’Cearbhaill, G.C. Sisk, K.M. Park, W.K. Cho et al., A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Comm. 4, 1702 (2013). https://doi.org/10.1038/ncomms2715
- M. Chiaranairungroj, A. Pimpin, W. Srituravanich, Fabrication of high-density microneedle masters towards the commercialisation of dissolving microneedles. Micro Nano Lett. 13(3), 284–288 (2018). https://doi.org/10.1049/mnl.2017.0596
- P. Makvandi, M. Kirkby, A.R.J. Hutton, M. Shabani, C.K.Y. Yiu et al., Engineering microneedle patches for improved penetration: Analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 13, 93 (2021). https://doi.org/10.1007/s40820-021-00611-9
- R.T. Narayanan, D. Udvary, M. Oberlaender, Cell type-specific structural organization of the six layers in rat barrel cortex. Front. Neuroanat. 11, 91 (2017). https://doi.org/10.3389/fnana.2017.00091
- S. Raspopovic, M. Capogrosso, J. Badia, X. Navarro, S. Micera, Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 20(3), 395–404 (2012). https://doi.org/10.1109/TNSRE.2012.2189021
- R. Bhandari, S. Negi, L. Rieth, R.A. Normann, F. Solzbacher, A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sens. Actuators A Phys. 145–146, 123–130 (2008). https://doi.org/10.1016/j.sna.2007.10.072
- K.-W. Lee, Y. Watanabe, C. Kigure, T. Fukushima, M. Koyanagi et al., Pillar-shaped stimulus electrode array for high-efficiency stimulation of fully implantable epiretinal prosthesis. J. Micromech. Microeng. 22(10), 105015 (2012). https://doi.org/10.1088/0960-1317/22/10/105015
- H. Yu, W. Xiong, H. Zhang, W. Wang, Z. Li, A parylene self-locking cuff electrode for peripheral nerve stimulation and recording. J. Microelectromech. Syst. 23(5), 1025–1035 (2014). https://doi.org/10.1109/JMEMS.2014.2333733
- M.A. Lebedev, M.A.L. Nicolelis, Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006). https://doi.org/10.1016/j.tins.2006.07.004
- P.J. Rousche, R.A. Normann, A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20, 413–422 (1992). https://doi.org/10.1007/BF02368133
- R.C. Kelly, M.A. Smith, J.M. Samonds, A. Kohn, A.B. Bonds et al., Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J. Neurosci. 27(2), 261–264 (2007). https://doi.org/10.1523/JNEUROSCI.4906-06.2007
- A. Obaid, Y.-W. Wu, M. Hanna, W. Nix, J. Ding et al., Ultra-sensitive measurement of brain penetration with microscale probes for brain machine interface considerations. bioRxiv (2018). https://doi.org/10.1101/454520
- P. Khanna, K. Luongo, J.A. Strom, S. Bhansali, Sharpening of hollow silicon microneedles to reduce skin penetration force. J. Micromech. Microeng. 20(4), 045011 (2010). https://doi.org/10.1088/0960-1317/20/4/045011
- A. Boonma, R.J. Narayan, Y.-S. Lee, Analytical modeling and evaluation of microneedles apparatus with deformable soft tissues for biomedical applications. Comput. Aided Des. Appl. 10(1), 139–157 (2013). https://doi.org/10.3722/cadaps.2013.139-157
- B. Vandekerckhove, J. Missinne, K. Vonck, P. Bauwens, R. Verplancke et al., Technological challenges in the development of optogenetic closed-loop therapy approaches in epilepsy and related network disorders of the brain. Micromachines 12(1), 38 (2021). https://doi.org/10.3390/mi12010038
- D.J. Edell, V.V. Toi, V.M. McNeil, L.D. Clark, Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans. Biomed. Eng. 39(6), 635–643 (1992). https://doi.org/10.1109/10.141202
- C.S. Bjornsson, S.J. Oh, Y.A. Al-Kofahi, Y.J. Lim, K.L. Smith et al., Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J. Neural Eng. 3(3), 196–207 (2006). https://doi.org/10.1088/1741-2560/3/3/002
- A.A. Sharp, A.M. Ortega, D. Restrepo, D. Curran-Everett, K. Gall, In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales. IEEE Trans. Biomed. Eng. 56(1), 45–53 (2009). https://doi.org/10.1109/TBME.2008.2003261
- Y. Li, H. Zhang, R. Yang, Y. Laffitte, U. Schmill et al., Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsys. Nanoeng. 5, 41 (2017). https://doi.org/10.1038/s41378-019-0077-y
- R. Khilwani, P.J. Gilgunn, T.D.Y. Kozai, X.C. Ong, E. Korkmaz et al., Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization. Biomed. Microdev. 18, 97 (2016). https://doi.org/10.1007/s10544-016-0125-4
- J.W. Salatino, K.A. Ludwig, T.D.Y. Kozai, E.K. Purcell, Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017). https://doi.org/10.1038/s41551-017-0154-1
- S. Aoyagi, K. Okuda, T. Takahashi, M. Suzuki, Effect of microneedle cross-sectional shape on puncture resistance—investigation of polygonal and star-shaped cross sections –. J. Robotics Mechatronics 32(2), 371–381 (2020). https://doi.org/10.20965/jrm.2020.p0371
- R. Bhandari, S. Negi, L. Rieth, F. Solzbacher, A wafer-scale etching technique for high aspect ratio implantable MEMS structures. Sens. Actuators A Phys. 162(1), 130–136 (2010). https://doi.org/10.1016/j.sna.2010.06.011
- N. Roxhed, T.C. Gasser, P. Griss, G.A. Holzapfel, G. Stemme, Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J. Microelectromech. Syst. 16(6), 1429–1440 (2007). https://doi.org/10.1109/JMEMS.2007.907461
- K. Lee, H.C. Lee, D.-S. Lee, H. Jung, Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 22(4), 483–486 (2010). https://doi.org/10.1002/adma.200902418
- J. Lee, S.H. Park, I.H. Seo, K.J. Lee, W. Ryu, Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. Eur. J. Pharm. Biopharm. 94, 11–19 (2015). https://doi.org/10.1016/j.ejpb.2015.04.024
- H. Wang, Z. Xiang, C.-F. Hu, G. Pastorin, W. Fang et al., Microneedle array integrated with CNT nanofilters for controlled and selective drug delivery. J. Microelectromech. Syst. 23(5), 1036–1044 (2014). https://doi.org/10.1109/JMEMS.2014.2339212
- N. Roxhed, P. Griss, G. Stemme, A method for tapered deep reactive ion etching using a modified Bosch process. J. Micromech. Microeng. 17(5), 1087–1092 (2007). https://doi.org/10.1088/0960-1317/17/5/031
- R. Nagarajan, L. Ebin, L. Dayong, S.C. Seng, K. Prasad, Development of a novel deep silicon tapered via etch process for through-silicon interconnection in 3-D integrated systems. Proc. 56th Electronic Components and Tech. Conf. (San Diego, CA, USA) 383–387 (2006). http://doi.org/https://doi.org/10.1109/ECTC.2006.1645674
- R.F. Figueroa, S. Spiesshoefer, S.L. Burkett, L. Schaper, Control of sidewall slope in silicon vias using SF6/O2 plasma etching in a conventional reactive ion etching tool. J. Vac. Sci. Technol. B 23(5), 2226–2231 (2005). https://doi.org/10.1116/1.2041654
- Z. Xiang, J. Liu, C. Lee, A flexible three-dimensional electrode mesh: An enabling technology for wireless brain–computer interface prostheses. Microsyst. Nanoeng. 2, 16012 (2016). https://doi.org/10.1038/micronano.2016.12
- R. Li, Y. Lamy, W.F.A. Besling, F. Roozeboom, P.M. Sarro, Continuous deep reactive ion etching of tapered via holes for three-dimensional integration. J. Micromech. Microeng. 18, 125023 (2008). https://doi.org/10.1088/0960-1317/18/12/125023
- S. Seok, B. Lee, J. Kim, H. Kim, K. Chun, A new compensation method for the footing effect in MEMS fabrication. J. Micromech. Microeng. 15, 1791–1796 (2005). https://doi.org/10.1088/0960-1317/15/10/001
- E.M. Maynard, Visual prostheses. Annu. Rev. Biomed. Eng. 3, 145–168 (2001). https://doi.org/10.1146/annurev.bioeng.3.1.145
- D. Boinagrov, S. Pangratz-Fuehrer, G. Goetz, D. Palanker, Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes. J. Neural Eng. 11(2), 026008 (2014). https://doi.org/10.1088/1741-2560/11/2/026008
- M. Im, S.I. Fried, Indirect activation elicits strong correlations between light and electrical responses in ON but not OFF retinal ganglion cells. J. Physiol. 593(16), 3577–3596 (2015). https://doi.org/10.1113/JP270606
- M. Im, S.I. Fried, Temporal properties of network-mediated responses to repetitive stimuli are dependent upon retinal ganglion cell type. J. Neural Eng. 13(2), 025002 (2016). https://doi.org/10.1088/1741-2560/13/2/025002
- Z. Chen, Y. Lin, W. Lee, L. Ren, B. Liu et al., Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 10(35), 29338–29346 (2018). https://doi.org/10.1021/acsami.8b09563
- Z. Fekete, A. Németh, G. Márton, I. Ulbert, A. Pongrácz, Experimental study on the mechanical interaction between silicon neural microprobes and rat dura mater during insertion. J. Mater. Sci. Mater. Med. 26, 70 (2015). https://doi.org/10.1007/s10856-015-5401-y
- M. Im, H. Im, J.-H. Lee, J.-B. Yoon, Y.-K. Choi, A robust superhydrophobic and superoleophobic surface with inver-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 6(7), 1401–1404 (2010). https://doi.org/10.1039/B925970H
- H. Seong, S.G. Higgins, J. Penders, J.P.K. Armstrong, S.W. Crowder et al., Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 14(5), 5371–5381 (2020). https://doi.org/10.1021/acsnano.9b08689
- J.-H. Park, M.G. Allen, M.R. Prausnitz, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 104(1), 51–66 (2005). https://doi.org/10.1016/j.jconrel.2005.02.002
- M. Mahmood, S. Kwon, H. Kim, Y.-S. Kim, P. Siriaraya et al., Wireless soft scalp electronics and virtual reality system for motor imagery-based brain-machine interfaces. Adv. Sci. 8(19), 2101129 (2021). https://doi.org/10.1002/advs.202101129
- S. Aoyagi, H. Izumi, M. Fukuda, Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens. Actuators A Phys. 143(1), 20–28 (2008). https://doi.org/10.1016/j.sna.2007.06.007
- F. Ceyssens, M. Welkenhuysen, R. Puers, Anisotropic etching in (3 1 1) Si to fabricate sharp resorbable polymer microneedles carrying neural electrode arrays. J. Micromech. Microeng. 29(2), 027001 (2019). https://doi.org/10.1088/1361-6439/AAF43A
- X. Hong, Z. Wu, L. Chen, F. Wu, L. Wei et al., Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett. 6, 191–199 (2014). https://doi.org/10.5101/nml140021r
- T. Someya, M. Amagai, Toward a new generation of smart skins. Nat. Biotechnol. 37, 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1
References
P. Van Damme, F. Oosterhuis-Kafeja, M. Van der Wielen, Y. Almagor, O. Sharon et al., Safety and efficacy of a novel microneedle device for dose sparing intradermal influenza vaccination in healthy adults. Vaccine 27(3), 454–459 (2009). https://doi.org/10.1016/j.vaccine.2008.10.077
T. Waghule, G. Singhvi, S.K. Dubey, M.M. Pandey, G. Gupta et al., Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacotherapy 109, 1249–1258 (2019). https://doi.org/10.1016/j.biopha.2018.10.078
Y. Hasegawa, Y. Yasuda, K. Taniguchi, M. Shikida, Fabrication method with high-density, high-height microneedle using microindentation method for drug delivery system. Microsys. Technol. 26, 765–773 (2020). https://doi.org/10.1007/s00542-019-04571-4
Y. Lee, S.R. Dugansani, S.H. Jeon, S.H. Hwang, J.-H. Kim et al., Drug-delivery system based on salmon DNA nano- and micro-scale structures. Sci. Rep. 7, 9724 (2017). https://doi.org/10.1038/s41598-017-09904-9
M. Bok, Y. Lee, D. Park, S. Shin, Z.-J. Zhao et al., Microneedles integrated with a triboelectric nanogenerator: an electrically active drug delivery system. Nanoscale 10, 13502–13510 (2018). https://doi.org/10.1039/c8nr02192a
W.-G. Bae, H. Ko, J.-Y. So, H. Yi, C.-H. Lee et al., Snake fang-inspired stamping patch for transdermal delivery of liquid formulations. Sci. Transl. Med. 11(503), eaaw3329 (2019). https://doi.org/10.1126/scitranslmed.aaw3329
Y. Gao, M. Hou, R. Yang, L. Zhang, Z. Xu et al., PEGDA/PVP microneedles with tailorable matrix constitutions for controllable transdermal drug delivery. Macromol. Mater. Eng. 303(12), 1800233 (2018). https://doi.org/10.1002/mame.201800233
C.J.W. Bolton, O. Howells, G.J. Blayney, P.F. Eng, J.C. Birchall et al., Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip 20(15), 2788 (2020). https://doi.org/10.1039/d0lc00567c
E. Kim, G. Erdos, S. Huang, T.W. Kenniston, S.C. Balmert et al., Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development. EBioMedicine 55, 102743 (2020). https://doi.org/10.1016/j.ebiom.2020.102743
M.D. Shin, S. Shukla, Y.H. Chung, V. Beiss, S.K. Chan et al., COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15, 646–655 (2020). https://doi.org/10.1038/s41565-020-0737-y
K.J. Lee, S.H. Park, J.Y. Lee, H.C. Joo, E.H. Jang et al., Perivascular biodegradable microneedle cuff for reduction of neointima formation after vascular injury. J. Con. Release 192(28), 174–181 (2014). https://doi.org/10.1016/j.jconrel.2014.07.007
J. Yu, Y. Zhang, Y. Ye, R. DiSanto, W. Sun et al., Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. PNAS 112(27), 8260–8265 (2015). https://doi.org/10.1073/pnas.1505405112
K. Lee, H.B. Song, W. Cho, J.H. Kim, J.H. Kim et al., Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery. Acta Biomater. 80(15), 48–57 (2018). https://doi.org/10.1016/j.actbio.2018.09.039
J. Tang, J. Wang, K. Huang, Y. Ye, T. Su et al., Cardiac cell-integrated microneedle patch for treating myocardial infarction. Sci. Adv. 4(11), eaat9365 (2018). https://doi.org/10.1126/sciadv.aat9365
Y. Cao, E. Lim, M. Xu, J.-K. Weng, B. Marelli, Precision delivery of multiscale payloads to tissue-specific targets in plants. Adv. Sci. 7(13), 1903551 (2020). https://doi.org/10.1002/advs.201903551
R. Paul, A.C. Saville, J.C. Hansel, Y. Ye, C. Ball et al., Extraction of plant DNA by microneedle patch for rapid detection of plant diseases. ACS Nano 13(6), 6540–6549 (2019). https://doi.org/10.1021/acsnano.9b00193
A. Vázquez-Guardado, Y. Yang, A.J. Bandodkar, J.A. Rogers, Recent advances in neurotechnologies with broad potential for neuroscience research. Nat. Neurosci. 23, 1522–1536 (2020). https://doi.org/10.1038/s41593-020-00739-8
G. Charvet, L. Rousseau, O. Billoint, S. Gharbi, J.-P. Rostaing et al., BioMEATM: a versatile high-density 3D microelectrode array system using integrated electronics. Biosens. Bioelectron. 25(8), 1889–1896 (2010). https://doi.org/10.1016/j.bios.2010.01.001
R.A. Normann, E. Fernandez, Clinical applications of penetrating neural interfaces and Utah electrode array technologies. J. Neural Eng. 13(6), 061003 (2016). https://doi.org/10.1088/1741-2560/13/6/061003
R. Wang, X. Jiang, W. Wang, Z. Li, A microneedle electrode array on flexible substrate for long-term EEG monitoring. Sens. Actuators B Chem. 244, 750–758 (2017). https://doi.org/10.1016/j.snb.2017.01.052
X. Chen, F. Wang, E. Fernandez, P.R. Roelfsema, Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex. Science 370(6521), 1191–1196 (2020). https://doi.org/10.1126/science.abd7435
Z. Xiang, J. Liu, C. Lee, A flexible three-dimensional electrode mesh: an enabling technology for wireless brain-computer interface prostheses. Microsyst. Nanoeng. 2, 16012 (2016). https://doi.org/10.1038/micronano.2016.12
H.A.C. Wark, R. Sharma, K.S. Mathews, E. Fernandez, J. Yoo et al., A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J. Neural Eng. 10(4), 045003 (2013). https://doi.org/10.1088/1741-2560/10/4/045003
S. Micera, J. Carpaneto, S. Raspopovic, Control of hand prostheses using peripheral information. IEEE Rev. Biomed. Eng. 3, 48–68 (2010). https://doi.org/10.1109/RBME.2010.2085429
S.Y. Yang, E.D. O’Cearbhaill, G.C. Sisk, K.M. Park, W.K. Cho et al., A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Comm. 4, 1702 (2013). https://doi.org/10.1038/ncomms2715
M. Chiaranairungroj, A. Pimpin, W. Srituravanich, Fabrication of high-density microneedle masters towards the commercialisation of dissolving microneedles. Micro Nano Lett. 13(3), 284–288 (2018). https://doi.org/10.1049/mnl.2017.0596
P. Makvandi, M. Kirkby, A.R.J. Hutton, M. Shabani, C.K.Y. Yiu et al., Engineering microneedle patches for improved penetration: Analysis, skin models and factors affecting needle insertion. Nano-Micro Lett. 13, 93 (2021). https://doi.org/10.1007/s40820-021-00611-9
R.T. Narayanan, D. Udvary, M. Oberlaender, Cell type-specific structural organization of the six layers in rat barrel cortex. Front. Neuroanat. 11, 91 (2017). https://doi.org/10.3389/fnana.2017.00091
S. Raspopovic, M. Capogrosso, J. Badia, X. Navarro, S. Micera, Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 20(3), 395–404 (2012). https://doi.org/10.1109/TNSRE.2012.2189021
R. Bhandari, S. Negi, L. Rieth, R.A. Normann, F. Solzbacher, A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sens. Actuators A Phys. 145–146, 123–130 (2008). https://doi.org/10.1016/j.sna.2007.10.072
K.-W. Lee, Y. Watanabe, C. Kigure, T. Fukushima, M. Koyanagi et al., Pillar-shaped stimulus electrode array for high-efficiency stimulation of fully implantable epiretinal prosthesis. J. Micromech. Microeng. 22(10), 105015 (2012). https://doi.org/10.1088/0960-1317/22/10/105015
H. Yu, W. Xiong, H. Zhang, W. Wang, Z. Li, A parylene self-locking cuff electrode for peripheral nerve stimulation and recording. J. Microelectromech. Syst. 23(5), 1025–1035 (2014). https://doi.org/10.1109/JMEMS.2014.2333733
M.A. Lebedev, M.A.L. Nicolelis, Brain-machine interfaces: past, present and future. Trends Neurosci. 29(9), 536–546 (2006). https://doi.org/10.1016/j.tins.2006.07.004
P.J. Rousche, R.A. Normann, A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann. Biomed. Eng. 20, 413–422 (1992). https://doi.org/10.1007/BF02368133
R.C. Kelly, M.A. Smith, J.M. Samonds, A. Kohn, A.B. Bonds et al., Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. J. Neurosci. 27(2), 261–264 (2007). https://doi.org/10.1523/JNEUROSCI.4906-06.2007
A. Obaid, Y.-W. Wu, M. Hanna, W. Nix, J. Ding et al., Ultra-sensitive measurement of brain penetration with microscale probes for brain machine interface considerations. bioRxiv (2018). https://doi.org/10.1101/454520
P. Khanna, K. Luongo, J.A. Strom, S. Bhansali, Sharpening of hollow silicon microneedles to reduce skin penetration force. J. Micromech. Microeng. 20(4), 045011 (2010). https://doi.org/10.1088/0960-1317/20/4/045011
A. Boonma, R.J. Narayan, Y.-S. Lee, Analytical modeling and evaluation of microneedles apparatus with deformable soft tissues for biomedical applications. Comput. Aided Des. Appl. 10(1), 139–157 (2013). https://doi.org/10.3722/cadaps.2013.139-157
B. Vandekerckhove, J. Missinne, K. Vonck, P. Bauwens, R. Verplancke et al., Technological challenges in the development of optogenetic closed-loop therapy approaches in epilepsy and related network disorders of the brain. Micromachines 12(1), 38 (2021). https://doi.org/10.3390/mi12010038
D.J. Edell, V.V. Toi, V.M. McNeil, L.D. Clark, Factors influencing the biocompatibility of insertable silicon microshafts in cerebral cortex. IEEE Trans. Biomed. Eng. 39(6), 635–643 (1992). https://doi.org/10.1109/10.141202
C.S. Bjornsson, S.J. Oh, Y.A. Al-Kofahi, Y.J. Lim, K.L. Smith et al., Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. J. Neural Eng. 3(3), 196–207 (2006). https://doi.org/10.1088/1741-2560/3/3/002
A.A. Sharp, A.M. Ortega, D. Restrepo, D. Curran-Everett, K. Gall, In vivo penetration mechanics and mechanical properties of mouse brain tissue at micrometer scales. IEEE Trans. Biomed. Eng. 56(1), 45–53 (2009). https://doi.org/10.1109/TBME.2008.2003261
Y. Li, H. Zhang, R. Yang, Y. Laffitte, U. Schmill et al., Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsys. Nanoeng. 5, 41 (2017). https://doi.org/10.1038/s41378-019-0077-y
R. Khilwani, P.J. Gilgunn, T.D.Y. Kozai, X.C. Ong, E. Korkmaz et al., Ultra-miniature ultra-compliant neural probes with dissolvable delivery needles: design, fabrication and characterization. Biomed. Microdev. 18, 97 (2016). https://doi.org/10.1007/s10544-016-0125-4
J.W. Salatino, K.A. Ludwig, T.D.Y. Kozai, E.K. Purcell, Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017). https://doi.org/10.1038/s41551-017-0154-1
S. Aoyagi, K. Okuda, T. Takahashi, M. Suzuki, Effect of microneedle cross-sectional shape on puncture resistance—investigation of polygonal and star-shaped cross sections –. J. Robotics Mechatronics 32(2), 371–381 (2020). https://doi.org/10.20965/jrm.2020.p0371
R. Bhandari, S. Negi, L. Rieth, F. Solzbacher, A wafer-scale etching technique for high aspect ratio implantable MEMS structures. Sens. Actuators A Phys. 162(1), 130–136 (2010). https://doi.org/10.1016/j.sna.2010.06.011
N. Roxhed, T.C. Gasser, P. Griss, G.A. Holzapfel, G. Stemme, Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J. Microelectromech. Syst. 16(6), 1429–1440 (2007). https://doi.org/10.1109/JMEMS.2007.907461
K. Lee, H.C. Lee, D.-S. Lee, H. Jung, Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 22(4), 483–486 (2010). https://doi.org/10.1002/adma.200902418
J. Lee, S.H. Park, I.H. Seo, K.J. Lee, W. Ryu, Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds. Eur. J. Pharm. Biopharm. 94, 11–19 (2015). https://doi.org/10.1016/j.ejpb.2015.04.024
H. Wang, Z. Xiang, C.-F. Hu, G. Pastorin, W. Fang et al., Microneedle array integrated with CNT nanofilters for controlled and selective drug delivery. J. Microelectromech. Syst. 23(5), 1036–1044 (2014). https://doi.org/10.1109/JMEMS.2014.2339212
N. Roxhed, P. Griss, G. Stemme, A method for tapered deep reactive ion etching using a modified Bosch process. J. Micromech. Microeng. 17(5), 1087–1092 (2007). https://doi.org/10.1088/0960-1317/17/5/031
R. Nagarajan, L. Ebin, L. Dayong, S.C. Seng, K. Prasad, Development of a novel deep silicon tapered via etch process for through-silicon interconnection in 3-D integrated systems. Proc. 56th Electronic Components and Tech. Conf. (San Diego, CA, USA) 383–387 (2006). http://doi.org/https://doi.org/10.1109/ECTC.2006.1645674
R.F. Figueroa, S. Spiesshoefer, S.L. Burkett, L. Schaper, Control of sidewall slope in silicon vias using SF6/O2 plasma etching in a conventional reactive ion etching tool. J. Vac. Sci. Technol. B 23(5), 2226–2231 (2005). https://doi.org/10.1116/1.2041654
Z. Xiang, J. Liu, C. Lee, A flexible three-dimensional electrode mesh: An enabling technology for wireless brain–computer interface prostheses. Microsyst. Nanoeng. 2, 16012 (2016). https://doi.org/10.1038/micronano.2016.12
R. Li, Y. Lamy, W.F.A. Besling, F. Roozeboom, P.M. Sarro, Continuous deep reactive ion etching of tapered via holes for three-dimensional integration. J. Micromech. Microeng. 18, 125023 (2008). https://doi.org/10.1088/0960-1317/18/12/125023
S. Seok, B. Lee, J. Kim, H. Kim, K. Chun, A new compensation method for the footing effect in MEMS fabrication. J. Micromech. Microeng. 15, 1791–1796 (2005). https://doi.org/10.1088/0960-1317/15/10/001
E.M. Maynard, Visual prostheses. Annu. Rev. Biomed. Eng. 3, 145–168 (2001). https://doi.org/10.1146/annurev.bioeng.3.1.145
D. Boinagrov, S. Pangratz-Fuehrer, G. Goetz, D. Palanker, Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes. J. Neural Eng. 11(2), 026008 (2014). https://doi.org/10.1088/1741-2560/11/2/026008
M. Im, S.I. Fried, Indirect activation elicits strong correlations between light and electrical responses in ON but not OFF retinal ganglion cells. J. Physiol. 593(16), 3577–3596 (2015). https://doi.org/10.1113/JP270606
M. Im, S.I. Fried, Temporal properties of network-mediated responses to repetitive stimuli are dependent upon retinal ganglion cell type. J. Neural Eng. 13(2), 025002 (2016). https://doi.org/10.1088/1741-2560/13/2/025002
Z. Chen, Y. Lin, W. Lee, L. Ren, B. Liu et al., Additive manufacturing of honeybee-inspired microneedle for easy skin insertion and difficult removal. ACS Appl. Mater. Interfaces 10(35), 29338–29346 (2018). https://doi.org/10.1021/acsami.8b09563
Z. Fekete, A. Németh, G. Márton, I. Ulbert, A. Pongrácz, Experimental study on the mechanical interaction between silicon neural microprobes and rat dura mater during insertion. J. Mater. Sci. Mater. Med. 26, 70 (2015). https://doi.org/10.1007/s10856-015-5401-y
M. Im, H. Im, J.-H. Lee, J.-B. Yoon, Y.-K. Choi, A robust superhydrophobic and superoleophobic surface with inver-trapezoidal microstructures on a large transparent flexible substrate. Soft Matter 6(7), 1401–1404 (2010). https://doi.org/10.1039/B925970H
H. Seong, S.G. Higgins, J. Penders, J.P.K. Armstrong, S.W. Crowder et al., Size-tunable nanoneedle arrays for influencing stem cell morphology, gene expression, and nuclear membrane curvature. ACS Nano 14(5), 5371–5381 (2020). https://doi.org/10.1021/acsnano.9b08689
J.-H. Park, M.G. Allen, M.R. Prausnitz, Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 104(1), 51–66 (2005). https://doi.org/10.1016/j.jconrel.2005.02.002
M. Mahmood, S. Kwon, H. Kim, Y.-S. Kim, P. Siriaraya et al., Wireless soft scalp electronics and virtual reality system for motor imagery-based brain-machine interfaces. Adv. Sci. 8(19), 2101129 (2021). https://doi.org/10.1002/advs.202101129
S. Aoyagi, H. Izumi, M. Fukuda, Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sens. Actuators A Phys. 143(1), 20–28 (2008). https://doi.org/10.1016/j.sna.2007.06.007
F. Ceyssens, M. Welkenhuysen, R. Puers, Anisotropic etching in (3 1 1) Si to fabricate sharp resorbable polymer microneedles carrying neural electrode arrays. J. Micromech. Microeng. 29(2), 027001 (2019). https://doi.org/10.1088/1361-6439/AAF43A
X. Hong, Z. Wu, L. Chen, F. Wu, L. Wei et al., Hydrogel microneedle arrays for transdermal drug delivery. Nano-Micro Lett. 6, 191–199 (2014). https://doi.org/10.5101/nml140021r
T. Someya, M. Amagai, Toward a new generation of smart skins. Nat. Biotechnol. 37, 382–388 (2019). https://doi.org/10.1038/s41587-019-0079-1