Calcium-Doped Boron Nitride Aerogel Enables Infrared Stealth at High Temperature Up to 1300 °C
Corresponding Author: Xuetong Zhang
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 18
Abstract
Boron nitride (BN) aerogels, composed of nanoscale BN building units together with plenty of air in between these nanoscale building units, are ultralight ceramic materials with excellent thermal/electrical insulation, great chemical stability and high-temperature oxidation resistance, which offer considerable advantages for various applications under extreme conditions. However, previous BN aerogels cannot resist high temperature above 900 °C in air atmosphere, and high-temperature oxidation resistance enhancement for BN aerogels is still a great challenge. Herein, a calcium-doped BN (Ca-BN) aerogel with enhanced high-temperature stability (up to ~ 1300 °C in air) was synthesized by introducing Ca atoms into crystal structure of BN building blocks via high-temperature reaction between calcium phosphate and melamine diborate architecture. Such Ca-BN aerogels could resist the burning of butane flame (~ 1300 °C) and keep their megashape and microstructure very well. Furthermore, Ca-BN aerogel serves as thermal insulation layer, together with Al foil serving as both low-infrared-emission layer and high-infrared-reflection layer, forming a combination structure that can effectively hide high-temperature target (heated by butane flame). Such successful chemical doping of metal element into crystal structure of BN may be helpful in the future design and fabrication of advanced BN aerogel materials, and further extending their possible applications to extremely high-temperature environments.
Highlights:
1 A calcium-doped boron nitride (Ca-BN) aerogel was synthesized by introducing Ca into crystal structure of BN building blocks.
2 The aerogels exhibited superior high-temperature stability and could resist the burning of butane flame (~1300 °C) in air atmosphere.
3 Ca-BN aerogel, together with Al foil, can effectively hide thermal target at high temperature up to 1300 °C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Pan, J. Wang, Boron nitride aerogels consisting of varied superstructures. Nanoscale Adv. 2, 149–155 (2020). https://doi.org/10.1039/c9na00702d
- M. Rousseas, A.P. Goldstein, W. Mickelson, M.A. Worsley, L. Woo et al., Synthesis of highly crystalline sp2-bonded boron nitride aerogels. ACS Nano 7, 8540–8546 (2013). https://doi.org/10.1021/nn402452p
- X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019). https://doi.org/10.1126/science.aav7304
- H. Cheng, Y. Huang, G. Shi, L. Jiang, L. Qu, Graphene-based functional architectures: Sheets regulation and macrostructure construction toward actuators and power generators. Acc. Chem. Res. 50, 1663–1671 (2017). https://doi.org/10.1021/acs.accounts.7b00131
- Z. Li, Z. Liu, H. Sun, C. Gao, Superstructured assembly of nanocarbons: Fullerenes, nanotubes, and graphene. Chem. Rev. 115, 7046–7117 (2015). https://doi.org/10.1021/acs.chemrev.5b00102
- Z. Liu, L. Ye, J. Xi, J. Wang, Z.-G. Feng, Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog. Poly. Sci. 118, 101408 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101408
- Z.Y. Wu, H.W. Liang, B.C. Hu, S.H. Yu, Emerging carbon-nanofiber aerogels: Chemosynthesis versus biosynthesis. Angew. Chem. Int. Ed. 57, 15646–15662 (2018). https://doi.org/10.1002/anie.201802663
- W. Luo, Y. Wang, E. Hitz, Y. Lin, B. Yang et al., Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Adv. Funct. Mater. 27, 201701450 (2017). https://doi.org/10.1002/adfm.201701450
- Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 45, 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
- G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe et al., Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018). https://doi.org/10.1039/c8cs00084k
- J. Shen, Y. Zhu, H. Jiang, C. Li, 2d nanosheets-based novel architectures: synthesis, assembly and applications. Nano Today 11, 483–520 (2016). https://doi.org/10.1016/j.nantod.2016.07.005
- Y. Du, X. Zhang, J. Wang, Z. Liu, K. Zhang et al., Reaction-spun transparent silica aerogel fibers. ACS Nano 1, 11919–11928 (2020). https://doi.org/10.1021/acsnano.0c05016
- A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4266 (2002). https://doi.org/10.1021/cr0101306
- G. Li, M. Zhu, W. Gong, R. Du, A. Eychmüller et al., Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1000 °C. Adv. Funct. Mater. 29, 201900188 (2019). https://doi.org/10.1002/adfm.201900188
- B. Wang, G. Li, L. Xu, J. Liao, X. Zhang, Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano 14, 16590–16599 (2020). https://doi.org/10.1021/acsnano.0c05931
- Y. Xue, P. Dai, M. Zhou, X. Wang, A. Pakdel et al., Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano 11, 558–568 (2017). https://doi.org/10.1021/acsnano.6b06601
- J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 13, 7860–7870 (2019). https://doi.org/10.1021/acsnano.9b02182
- J. Lin, X. Yuan, G. Li, Y. Huang, W. Wang et al., Self-assembly of porous boron nitride microfibers into ultralight multifunctional foams of large sizes. ACS Appl. Mater. Interfaces 9, 44732–44739 (2017). https://doi.org/10.1021/acsami.7b16198
- Z. Liu, C. Shao, B. Jin, Z. Zhang, Y. Zhao et al., Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature 574, 394–398 (2019). https://doi.org/10.1038/s41586-019-1645-x
- S. Prasad, A. Gaddam, A. Jana, S. Kant, P.K. Sinha et al., Structure and stability of high CaO- and P2O5-containing silicate and borosilicate bioactive glasses. J. Phys. Chem. B 123, 7558–7569 (2019). https://doi.org/10.1021/acs.jpcb.9b02455
- H. Chen, Z. Yang, Z. Zhang, Z. Chen, M. Chi et al., Construction of a nanoporous highly crystalline hexagonal boron nitride from an amorphous precursor for catalytic dehydrogenation. Ang. Chem. Int. Ed. 58, 10626–10630 (2019). https://doi.org/10.1002/anie.201904996
- N.M. Bobkova, N.V. Suprun, Transparent glazes with reduced concentration of B2O3. Glass Ceram. 53, 362–363 (1996). https://doi.org/10.1007/bf01129672
- C. Schwarze, A. Gupta, T. Hickel, R. Darvishi Kamachali, Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling. Phys. Rev. B 95, 174101 (2017)
- C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11, 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
- X. Zhang, F. Wang, L. Dou, X. Cheng, Y. Si et al., Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 degrees C. ACS Nano 14, 15616–15625 (2020). https://doi.org/10.1021/acsnano.0c06423
- R. Menzel, S. Barg, M. Miranda, D.B. Anthony, S.M. Bawaked et al., Joule heating characteristics of emulsion-templated graphene aerogels. Adv. Funct. Mater. 25, 28–35 (2015). https://doi.org/10.1002/adfm.201401807
- G. Li, X. Zhang, J. Wang, J. Fang, Correction: From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J. Mater. Chem. A 5, 10722 (2017). https://doi.org/10.1039/c7ta90099f
- J.F. Poco, J.H. Satcher, L.W. Hrubesh, Synthesis of high porosity, monolithic alumina aerogels. J. Non-Cryst. Solid. 285, 57–64 (2001). https://doi.org/10.1016/s0022-3093(01)00432-x
- L. Yuan, X. Weng, W. Du, J. Xie, L. Deng, Optical and magnetic properties of Al/Fe3O4 core–shell low infrared emissivity pigments. J. Alloy. Compound. 583, 492–497 (2014). https://doi.org/10.1016/j.jallcom.2013.08.133
- H. Jin, X. Zhou, T. Xu, C. Dai, Y. Gu et al., Ultralight and hydrophobic palygorskite-based aerogels with prominent thermal insulation and flame retardancy. ACS Appl. Mater. Interfaces 12, 11815–11824 (2020). https://doi.org/10.1021/acsami.9b20923
- W. Fan, X. Zhang, Y. Zhang, Y. Zhang, T. Liu, Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compost. Sci. Technol. 173, 47–52 (2019). https://doi.org/10.1016/j.compscitech.2019.01.025
- H. Yang, C. Li, X. Yue, J. Huo, F. Ye et al., New bn/sioc aerogel composites fabricated by the sol-gel method with excellent thermal insulation performance at high temperature. Mater. Design. 185, 108217 (2020). https://doi.org/10.1016/j.matdes.2019.108217
- A. Choe, J. Yeom, Y. Kwon, Y. Lee, Y.-E. Shin et al., Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater. Horiz. 7, 3258–3265 (2020). https://doi.org/10.1039/d0mh01405b
- J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
- H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light: Sci Appl (2020). https://doi.org/10.1038/s41377-020-0300-5
- L. Li, M. Shi, X. Liu, X. Jin, Y. Cao et al., Ultrathin titanium carbide (mxene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 31, 2103181 (2021). https://doi.org/10.1002/adfm.202101381
- Q. Liao, P. Zhang, H. Yao, H. Cheng, C. Li et al., Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance. Adv. Sci. 7, 1903125 (2020)
- X. Yan, G. Xu, Corrosion and mechanical properties of polyurethane/Al composite coatings with low infrared emissivity. J. Alloy. Compound. 491, 649–653 (2010). https://doi.org/10.1016/j.jallcom.2009.11.030
- X. Shi, R. Zhang, K. Ruan, T. Ma, Y. Guo et al., Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 82, 239–249 (2021). https://doi.org/10.1016/j.jmst.2021.01.018
- H. Yan, X. Dai, K. Ruan, S. Zhang, X. Shi et al., Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybrid Mater. 4, 36–50 (2021). https://doi.org/10.1007/s42114-021-00208-1
References
J. Pan, J. Wang, Boron nitride aerogels consisting of varied superstructures. Nanoscale Adv. 2, 149–155 (2020). https://doi.org/10.1039/c9na00702d
M. Rousseas, A.P. Goldstein, W. Mickelson, M.A. Worsley, L. Woo et al., Synthesis of highly crystalline sp2-bonded boron nitride aerogels. ACS Nano 7, 8540–8546 (2013). https://doi.org/10.1021/nn402452p
X. Xu, Q. Zhang, M. Hao, Y. Hu, Z. Lin et al., Double-negative-index ceramic aerogels for thermal superinsulation. Science 363, 723–727 (2019). https://doi.org/10.1126/science.aav7304
H. Cheng, Y. Huang, G. Shi, L. Jiang, L. Qu, Graphene-based functional architectures: Sheets regulation and macrostructure construction toward actuators and power generators. Acc. Chem. Res. 50, 1663–1671 (2017). https://doi.org/10.1021/acs.accounts.7b00131
Z. Li, Z. Liu, H. Sun, C. Gao, Superstructured assembly of nanocarbons: Fullerenes, nanotubes, and graphene. Chem. Rev. 115, 7046–7117 (2015). https://doi.org/10.1021/acs.chemrev.5b00102
Z. Liu, L. Ye, J. Xi, J. Wang, Z.-G. Feng, Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog. Poly. Sci. 118, 101408 (2021). https://doi.org/10.1016/j.progpolymsci.2021.101408
Z.Y. Wu, H.W. Liang, B.C. Hu, S.H. Yu, Emerging carbon-nanofiber aerogels: Chemosynthesis versus biosynthesis. Angew. Chem. Int. Ed. 57, 15646–15662 (2018). https://doi.org/10.1002/anie.201802663
W. Luo, Y. Wang, E. Hitz, Y. Lin, B. Yang et al., Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Adv. Funct. Mater. 27, 201701450 (2017). https://doi.org/10.1002/adfm.201701450
Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 45, 3989–4012 (2016). https://doi.org/10.1039/c5cs00869g
G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe et al., Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018). https://doi.org/10.1039/c8cs00084k
J. Shen, Y. Zhu, H. Jiang, C. Li, 2d nanosheets-based novel architectures: synthesis, assembly and applications. Nano Today 11, 483–520 (2016). https://doi.org/10.1016/j.nantod.2016.07.005
Y. Du, X. Zhang, J. Wang, Z. Liu, K. Zhang et al., Reaction-spun transparent silica aerogel fibers. ACS Nano 1, 11919–11928 (2020). https://doi.org/10.1021/acsnano.0c05016
A.C. Pierre, G.M. Pajonk, Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4266 (2002). https://doi.org/10.1021/cr0101306
G. Li, M. Zhu, W. Gong, R. Du, A. Eychmüller et al., Boron nitride aerogels with super-flexibility ranging from liquid nitrogen temperature to 1000 °C. Adv. Funct. Mater. 29, 201900188 (2019). https://doi.org/10.1002/adfm.201900188
B. Wang, G. Li, L. Xu, J. Liao, X. Zhang, Nanoporous boron nitride aerogel film and its smart composite with phase change materials. ACS Nano 14, 16590–16599 (2020). https://doi.org/10.1021/acsnano.0c05931
Y. Xue, P. Dai, M. Zhou, X. Wang, A. Pakdel et al., Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures. ACS Nano 11, 558–568 (2017). https://doi.org/10.1021/acsnano.6b06601
J. Wang, D. Liu, Q. Li, C. Chen, Z. Chen et al., Lightweight, superelastic yet thermoconductive boron nitride nanocomposite aerogel for thermal energy regulation. ACS Nano 13, 7860–7870 (2019). https://doi.org/10.1021/acsnano.9b02182
J. Lin, X. Yuan, G. Li, Y. Huang, W. Wang et al., Self-assembly of porous boron nitride microfibers into ultralight multifunctional foams of large sizes. ACS Appl. Mater. Interfaces 9, 44732–44739 (2017). https://doi.org/10.1021/acsami.7b16198
Z. Liu, C. Shao, B. Jin, Z. Zhang, Y. Zhao et al., Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature 574, 394–398 (2019). https://doi.org/10.1038/s41586-019-1645-x
S. Prasad, A. Gaddam, A. Jana, S. Kant, P.K. Sinha et al., Structure and stability of high CaO- and P2O5-containing silicate and borosilicate bioactive glasses. J. Phys. Chem. B 123, 7558–7569 (2019). https://doi.org/10.1021/acs.jpcb.9b02455
H. Chen, Z. Yang, Z. Zhang, Z. Chen, M. Chi et al., Construction of a nanoporous highly crystalline hexagonal boron nitride from an amorphous precursor for catalytic dehydrogenation. Ang. Chem. Int. Ed. 58, 10626–10630 (2019). https://doi.org/10.1002/anie.201904996
N.M. Bobkova, N.V. Suprun, Transparent glazes with reduced concentration of B2O3. Glass Ceram. 53, 362–363 (1996). https://doi.org/10.1007/bf01129672
C. Schwarze, A. Gupta, T. Hickel, R. Darvishi Kamachali, Phase-field study of ripening and rearrangement of precipitates under chemomechanical coupling. Phys. Rev. B 95, 174101 (2017)
C. Jia, L. Li, Y. Liu, B. Fang, H. Ding et al., Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nat. Commun. 11, 3732 (2020). https://doi.org/10.1038/s41467-020-17533-6
X. Zhang, F. Wang, L. Dou, X. Cheng, Y. Si et al., Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 degrees C. ACS Nano 14, 15616–15625 (2020). https://doi.org/10.1021/acsnano.0c06423
R. Menzel, S. Barg, M. Miranda, D.B. Anthony, S.M. Bawaked et al., Joule heating characteristics of emulsion-templated graphene aerogels. Adv. Funct. Mater. 25, 28–35 (2015). https://doi.org/10.1002/adfm.201401807
G. Li, X. Zhang, J. Wang, J. Fang, Correction: From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J. Mater. Chem. A 5, 10722 (2017). https://doi.org/10.1039/c7ta90099f
J.F. Poco, J.H. Satcher, L.W. Hrubesh, Synthesis of high porosity, monolithic alumina aerogels. J. Non-Cryst. Solid. 285, 57–64 (2001). https://doi.org/10.1016/s0022-3093(01)00432-x
L. Yuan, X. Weng, W. Du, J. Xie, L. Deng, Optical and magnetic properties of Al/Fe3O4 core–shell low infrared emissivity pigments. J. Alloy. Compound. 583, 492–497 (2014). https://doi.org/10.1016/j.jallcom.2013.08.133
H. Jin, X. Zhou, T. Xu, C. Dai, Y. Gu et al., Ultralight and hydrophobic palygorskite-based aerogels with prominent thermal insulation and flame retardancy. ACS Appl. Mater. Interfaces 12, 11815–11824 (2020). https://doi.org/10.1021/acsami.9b20923
W. Fan, X. Zhang, Y. Zhang, Y. Zhang, T. Liu, Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compost. Sci. Technol. 173, 47–52 (2019). https://doi.org/10.1016/j.compscitech.2019.01.025
H. Yang, C. Li, X. Yue, J. Huo, F. Ye et al., New bn/sioc aerogel composites fabricated by the sol-gel method with excellent thermal insulation performance at high temperature. Mater. Design. 185, 108217 (2020). https://doi.org/10.1016/j.matdes.2019.108217
A. Choe, J. Yeom, Y. Kwon, Y. Lee, Y.-E. Shin et al., Stimuli-responsive micro/nanoporous hairy skin for adaptive thermal insulation and infrared camouflage. Mater. Horiz. 7, 3258–3265 (2020). https://doi.org/10.1039/d0mh01405b
J. Lyu, Z. Liu, X. Wu, G. Li, D. Fang et al., Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13, 2236–2245 (2019). https://doi.org/10.1021/acsnano.8b08913
H. Zhu, Q. Li, C. Zheng, Y. Hong, Z. Xu et al., High-temperature infrared camouflage with efficient thermal management. Light: Sci Appl (2020). https://doi.org/10.1038/s41377-020-0300-5
L. Li, M. Shi, X. Liu, X. Jin, Y. Cao et al., Ultrathin titanium carbide (mxene) films for high-temperature thermal camouflage. Adv. Funct. Mater. 31, 2103181 (2021). https://doi.org/10.1002/adfm.202101381
Q. Liao, P. Zhang, H. Yao, H. Cheng, C. Li et al., Reduced graphene oxide-based spectrally selective absorber with an extremely low thermal emittance and high solar absorptance. Adv. Sci. 7, 1903125 (2020)
X. Yan, G. Xu, Corrosion and mechanical properties of polyurethane/Al composite coatings with low infrared emissivity. J. Alloy. Compound. 491, 649–653 (2010). https://doi.org/10.1016/j.jallcom.2009.11.030
X. Shi, R. Zhang, K. Ruan, T. Ma, Y. Guo et al., Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J. Mater. Sci. Technol. 82, 239–249 (2021). https://doi.org/10.1016/j.jmst.2021.01.018
H. Yan, X. Dai, K. Ruan, S. Zhang, X. Shi et al., Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybrid Mater. 4, 36–50 (2021). https://doi.org/10.1007/s42114-021-00208-1