
Vol.:(0123456789)

1 3

Folic Acid Self‑Assembly Enabling Manganese 
Single‑Atom Electrocatalyst for Selective Nitrogen 
Reduction to Ammonia
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HIGHLIGHTS 

• A manganese single‑atom catalyst is developed via a facile folic acid self‑assembly strategy.

• The catalyst exhibits outstanding activity and selectivity for electrochemical reduction of nitrogen to ammonia (NRR).

• Electrocatalytic mechanism of Mn–N3 site for NRR is unveiled by a combination of experimental and computational study.

ABSTRACT Efficient and robust single‑atom catalysts (SACs) based 
on cheap and earth‑abundant elements are highly desirable for elec‑
trochemical reduction of nitrogen to ammonia (NRR) under ambi‑
ent conditions. Herein, for the first time, a Mn–N–C SAC consisting 
of isolated manganese atomic sites on ultrathin carbon nanosheets is 
developed via a template‑free folic acid self‑assembly strategy. The 
spontaneous molecular partial dissociation enables a facile fabrication 
process without being plagued by metal atom aggregation. Thanks to 
well‑exposed atomic Mn active sites anchored on two‑dimensional 
conductive carbon matrix, the catalyst exhibits excellent activity for 
NRR with high activity and selectivity, achieving a high Faradaic efficiency of 32.02% for ammonia synthesis at  − 0.45 V versus revers‑
ible hydrogen electrode. Density functional theory calculations unveil the crucial role of atomic Mn sites in promoting  N2 adsorption, 
activation and selective reduction to  NH3 by the distal mechanism. This work provides a simple synthesis process for Mn–N–C SAC and 
a good platform for understanding the structure‑activity relationship of atomic Mn sites.
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1 Introduction

Using atmospheric nitrogen  (N2) as a feedstock to arti‑
ficially produce ammonia  (NH3) is central to fertilizer 
industry and offers a potential carbon–neutral and energy‑
dense hydrogen carrier for future energy technologies [1, 
2]. Currently, the direct use of  N2 heavily relies on the 

energy‑intensive Haber–Bosch process, a century‑old 
industrial process coming at the cost of safety issues and 
 CO2 emission effect. Electrochemical reduction of  N2 
(NRR,  N2 +  6e− +  6H+  →  2NH3) is a promising nitrogen‑
fixation system that can sustainably operate under mild 
conditions [3, 4]. However, the efficient generation of  NH3 
is difficult due to the sluggish cleavage of chemically inert 
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N≡N bond [2, 3, 5, 6]. Moreover, NRR involves multi‑
ple intermediates and needs to compete with the hydro‑
gen evolution reaction (HER) in aqueous solution, which 
makes limited Faradaic efficiency (FE) for  NH3 [7–14]. 
Electrocatalysts based on precious metals like Ru and Rh 
have been experimentally and theoretically explored to 
present favorable NRR activity [6, 15–18]. From practical 
standpoint, it is significant to develop robust and selective 
electrocatalysts for NRR from cost‑effective metals. Man‑
ganese (Mn) has attracted more and more attention due to 
its low‑cost, earth‑abundant and eco‑friendly nature. How‑
ever, NRR catalyzed by Mn‑based heterogeneous electro‑
catalysts has been rarely reported due to the poor activity 
and ammonia selectivity.

Recently, single‑atom catalysts become a rising star for a 
range of electrocatalytic applications due to the integrated 
merits of maximized atom utilization efficiency, tailorable 
metal active sites and distinct catalytic properties from their 
nanoparticle equivalents [19–23]. However, the thermody‑
namically unstable nature of single metal atoms poses chal‑
lenges for preparing stable SACs. To successfully engineer 
SACs, suitable precursors (including metal and supporting 
materials), effective synthetic strategies and intriguing metal‑
support interactions are three important considerations, which 
are also intimately correlated with the exotic geometric and 
electronic structures of SACs [22, 24, 25]. As a representa‑
tive, Mn single‑atom catalysts (Mn SACs) with  Mnδ+‑Nx sites 
have been developed and proved to be highly active for  CO2 
reduction and oxygen reduction; however, they have seldom 
been explored for NRR [26–30]. Moreover, the fabrication 
of Mn SAC with increased dispersion intensity of Mn atoms 
remains a grand challenge because Mn atoms are easily oxi‑
dized and tend to aggregate into oxide /carbide species during 
the thermal treating process even at a low content [27, 31, 32].

Herein, we develop a folic acid (FA) self‑assembly strat‑
egy to fabricate a new Mn SAC with exclusive Mn–N3 sin‑
gle‑atom sites on ultrathin N‑doped carbon sheets (denoted 
as Mn–N–C SAC). The engineered Mn–N–C SAC shows 
remarkable electrocatalytic performance for triggering 
NRR to ammonia, with a maximum ammonia faradaic effi‑
ciency  (FENH3) of up to 32.02% and a desirable yield rate of 
21.43 μg  h−1  mg−1

cat. This demonstrates the new synthesis 
of Mn SAC for enhanced NRR. In‑depth theoretical analysis 
unveils the intriguing electrocatalytic properties of Mn–N3 
active sites.

2  Experimental Section

2.1  Synthesis of the Catalysts

FA powder (110 mg) was dispersed in 13.5 mL of deionized 
water–ethanol mixed solution (v/v = 8:5.5), followed by the 
addition of  MnCl2·4H2O (49 mg). The resulted solution was 
ultrasonicated for 30 min and then hydrothermally treated 
at 140 °C for 2 h. The obtained FA‑Mn NS with a yield 
of 34.3% with respect to the amount of FA was collected, 
ultrasonicated, washed with deionized water for 5 times and 
then freeze‑dried. FA‑Mn NS precursor was transferred into 
crucible for pyrolysis. The pyrolysis process was proceeded 
under Ar atmosphere and kept at 800 °C for 2 h, leading 
to the Mn–N–C SAC sample with a yield of 28.6% for use 
without any further treatment. N‑doped carbon nanosheets 
were synthesized following the same procedure except for 
the addition of metal source.

2.2  Material Characterization

Morphological information was obtained from FESEM 
(HITACHI SU8010) and TEM (JEOL‑F200). The atomic 
metal dispersion was confirmed by HAADF‑STEM images, 
EELS spectra and EDS mappings taken from STEM (Titan 
Cubed Themis G2 300). XRD patterns were collected using 
Bruker AXS D8 Advance instrument with Cu Kα radia‑
tion (λ = 1.5406 Å). XPS experiments were performed on 
Thermo Scientific K‑Alpha + spectrometer. Specific surface 
area was measured on a Quantachrome AUTOSORB‑1 sys‑
tem. ICP‑AES measurements were performed on ICAP 7000 
SERIES to determine the metal loading of the catalysts. 
The atomic coordination environment of the catalysts was 
investigated by synchrotron Spherical Grating Monochro‑
mator (SGM) beamline and Very Sensitive Elemental and 
Structural Probe Employing Radiation (VESPERS) beam‑
line of Canadian Light Source. The data were analyzed by 
ATHENA software and fitted by IFEFFIT program.

2.3  Electrochemical Measurements

The electrochemical tests were carried out in a typical 
H‑type cell separated by Nafion 211 membrane. To prepare 
the catalyst ink, the catalyst sample (5 mg) was suspended 
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in a mixture solution of isopropanol (950 μL) and Nafion 
(5 wt%, 50 μL), followed by an ultrasonication treatment 
for 2 h. Then the obtained ink was dropped onto the carbon 
fiber paper to prepare the working electrode, with a load‑
ing content of 0.25 mg  cm−2. Ag/AgCl (3.0 M KCl) and 
platinum plate (1 × 1  cm2) were used as the reference elec‑
trode and counter electrode, respectively. The NRR tests 
were performed in 0.1 M NaOH solution. All the poten‑
tials in this work were calibrated to RHE, E (RHE) = E (Ag/
AgCl) + 0.210 + 0.059 pH.

Before the electrochemical measurements, Nafion 
membrane was pretreated with 3 wt% hydrogen peroxide 
at 80 °C for 1 h, rinsed with deionized (DI) water and 
then soaked in DI at 80 °C for another 1 h. To remove the 
possible N contaminates, all the feeding gases including 
14N2 (99.999%), 15N2 (99%) and Ar (99.999%) were sub‑
sequently passed through an alkaline trap of 0.1 M NaOH 
and an acidic trap of 0.05 M  H2SO4. Before the experi‑
ment, the electrolyte was saturated with the purified Ar or 
 N2 for at least 30 min and the bubbled gas was maintained 
during the experiments. Linear sweep voltammetry (LSV) 
measurements were performed at a scan rate of 10 mV  s−1. 
The chronoamperometry tests were conducted at a constant 
potential of −0.25, −0.35, −0.45, −0.55, and −0.65 V vs. 
RHE for 2 h.

2.4  Determination of Ammonia

To analyze the yield rate and Faradaic efficiency of ammo‑
nia, the produced  NH3 in the electrolyte was detected by 
the typical indophenol blue method [33, 34]. All the yield 
rate and Faradaic efficiency are calculated from the average 
values of three repetitive measurements. In detail, 2 mL of 
NRR‑obtained electrolyte was firstly mixed with 1.25 mL 
of 0.625 M NaOH containing salicylic acid (0.36 M) and 
sodium citrate (0.17 M), followed by a subsequent addition 
of 75 μL of NaClO (available chlorine 4.0 wt%) and150 μL 
of  C5FeN6Na2O (10 mg  mL−1). The mixed solution was 
incubated for 2 h under ambient condition and then the 
formed indophenol blue was measured by UV–vis spec‑
trophotometer at the absorption wavelength of 658 nm. To 
calculate the concentrations of the ammonia, a calibration 
curve was constructed from the standard  NH4Cl in 0.1 M 
NaOH.

2.5  Determination of Hydrazine

The hydrazine in the electrolyte was examined by the method 
of Watt and Chrisp [35]. A mixture of para(dimethylamino)‑
benzaldehyde (4.0  g), HCl (37%, 24  mL) and ethanol 
(200 mL) was used as a color reagent. 2 mL of the electrolyte 
was mixed with 2 mL of the color reagent. After a 30 min 
incubation at ambient condition, the mixed solution was 
measured at 458 nm. The calibration curve was constructed 
using standard hydrazine monohydrate solution, which was 
prepared at different concentrations in 0.1 M NaOH.

2.6  15N2 Isotope Labeling Experiments

Isotope labeling test was performed using the above‑men‑
tioned method with the feeding gas been changed to 15N2 
enriched gas (99%). The formed 15NH3 in the electrolyte was 
examined by using 1H NMR spectroscopy (nuclear magnetic 
resonance, 600 MHz).

2.7  FE and Yield Rate Calculations

The FE and mass‑normalized yield rate of  NH3 are calcu‑
lated according to the formulas as follows:

where F is the Faraday constant (96,485 C  mol−1), c is the 
concentration of  NH3, V is the volume of the electrolyte, 
Q is the total charge passed through the electrode, t is the 
electrolysis time (2 h) and m is the total mass of the catalyst.

2.8  DFT Calculations

Vienna Ab Initio Package (VASP) is employed to conduct the 
density functional theory (DFT) calculations within the gen‑
eralized gradient approximation (GGA) using the PBE for‑
mulation [36–38]. Projected augmented wave (PAW) poten‑
tials [39, 40] are selected to describe the ionic cores and the 
valence electrons were taken into account with a plane wave 
basis set being used (kinetic energy cutoff, 400 eV). Under 
the Gaussian smearing method, partial occupancies of the 

(1)FE = (3 × F × c × V) ∕Q

(2)Yield rate = 17 × c × V ∕ (t × m)
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Kohn − Sham orbitals are allowed with a width of 0.05 eV. 
The self‑consistence of the electronic energy is reached until 
the energy change smaller than  10−5 eV. The convergence of 
the geometry optimization is achieved till the force change 
smaller than 0.02 eV Å−1. Grimme’s DFT‑D3 methodology 
is used to describe the dispersion interactions [41].

The equilibrium lattice constant of hexagonal graphene mon‑
olayer unit cell separated by vacuum in depth of 15 Å is optimized 
to be a = 2.468 Å, with a 15 × 15 × 2 Monkhorst–Pack k‑point 
grid being used for Brillouin zone sampling. Then, it is used to 
construct a graphene monolayer supercell model with p (5 × 5) 
periodicity in the x and y directions. To separate the graphene 
monolayer from its periodic duplicates, the supercell model is sep‑
arated by vacuum in depth of 15 Å. A Mn–N3 moiety is embedded 
into the graphene model to mimic Mn SAC. During structural 

optimizations, the Γ point in the Brillouin zone is used for k‑point 
sampling, and all atoms are allowed to fully relax.

The free energy of a gas phase molecule and the adsorb‑
ates on the constructed model are calculated according to 
the formula: G = E + ZPE – TS, where E is the total energy, 
ZPE is the zero‑point energy, T is the temperature in kelvin 
(298.15 K used here), and S is the entropy.

3  Results and Discussion

3.1  Synthesis and Characterizations of Mn–N–C SAC

The multistep synthesis of Mn–N–C SAC is schematically 
depicted in Fig. 1a. Specifically, FA powder is suspended 
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Fig. 1  a Schematic of the synthetic procedure of Mn–N–C SAC. b SEM image of FA‑Mn NS. c TEM and d bright‑field STEM images of Mn–
N–C SAC. e HAADF‑STEM image of Mn–N–C SAC and the corresponding EDS elemental mapping images. f Aberration‑corrected STEM 
image and g the corresponding EELS curves of Mn–N–C SAC
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and then hydrothermally dissolved in a mixed solvent of 
ethanol and water. In this process, FA molecules partially 
dissociate at α‑carboxyl group  (pKα ≈ 3.38), which leads to 
a measured pH value of 4.25 (<  pKγ ≈ 4.98 of γ‑carboxyl 
group) for initial FA suspension [42, 43]. The dissociated 
molecules can efficiently chelate Mn ions. Synchronously, 
the dissolved molecules self‑assemble into unusual supra‑
molecular nanosheets by means of complementary hydro‑
gen bonding interaction at pteridine groups [44]. The syn‑
ergy of FA partial dissociation and self‑assembly simply 
integrates a controllable amount of Mn ions into the FA 
supramolecular nanosheets. Details of the intermolecular 
interaction and metal–ligand coordination can be found 
in Fig. S1. Thereafter, FA‑Mn supramolecular nanosheets 
(denoted as FA‑Mn NS) are pyrolyzed at 800 °C under Ar 
atmosphere to obtain Mn–N–C SAC. During the pyrolysis, 
the chelated Mn ions are physically isolated by undissoci‑
ated FA molecules and then anchored onto the resulted 
carbon matrix by in situ formed C‑Nx species, which can 
effectively prevent them from aggregation.

Field‑emission scanning electron microscopy (SEM) 
and high‑resolution transmission electron microscopy (HR‑
TEM) images reveal the ultrathin and amorphous struc‑
ture of as‑synthesized FA‑Mn NS (Figs. 1b and S2). The 
thickness of the nanosheets is measured to be 2.5–3 nm 
by atomic force microscopy (AFM) (Fig. S3). X‑ray pho‑
toelectron spectroscopy (XPS) analysis proves the for‑
mation of FA‑Mn NS that exhibits consistent structural 
components with FA except for Mn (Fig. S4). The content 
of Mn in the nanosheets is measured to be 0.57 wt% by 
inductively coupled plasma‑atomic emission spectrometry 
(ICP‑AES). Then, the metal–organic precursor is directly 
transformed into Mn–N–C SAC by thermal pyrolysis. As 
shown by TEM image (Fig. 1c), Mn–N–C SAC preserves 
the ultrathin structure with rough surfaces. AFM analyses 
in Fig. S5 demonstrate that Mn–N–C SAC has an average 
thickness of ~ 1.5 nm, verifying the graphene feature of the 
catalyst. Such nanosheet structure endows the catalyst with 
abundant well‑exposed active sites for NRR. Further bright‑
field scanning TEM (STEM) inspection clearly illustrates 
that the carbon matrix of the catalyst is structured with dis‑
ordered carbon lattices (Fig. 1d), indicating a low graphiti‑
zation degree. The high angle annular dark‑field (HAADF)‑
STEM further confirms the ultrathin feature of Mn–N–C 
SAC and excludes the presence of detectable Mn aggregates 
(Fig. 1e). The associated EDS elemental mapping images 

display an even distribution of C, N and Mn elements across 
the whole carbon sheet. The homogeneous and atomistic dis‑
persion of Mn throughout the carbon matrix can be directly 
monitored as monodisperse white spots by the aberration‑
corrected STEM (Fig. 1f). The mass loading of Mn is deter‑
mined to be as high as 2.82 wt% by ICP‑AES, comparable 
to the metal loading of typical transition metal (e.g., Co, 
Fe or Ni)‑N–C SACs [45–47]. In the electron energy‑loss 
spectroscopy (EELS) curve (Fig. 1g), evident C, N and Mn 
signals are measured from the inset selected area, which 
implies the likely Mn–N interactions.  N2 adsorption–desorp‑
tion isotherm in Fig. S6a demonstrates that Mn–N–C SAC 
has a Brunauer–Emmett–Teller (BET) surface area of 285. 
9  m2  g−1. Moreover, a sharp  N2 uptake and an open hyster‑
esis loop are observed at low relative pressures (P/P0 < 0.1), 
implying a disordered microporous structure derived from 
FA pyrolysis [48]. The corresponding pore size distributions 
are calculated using Barrett‑Joyner‑Halenda (BJH) method 
and the results in Fig. S6b show a hierarchical porous struc‑
ture (dominantly micropores and mesopores) for Mn–N–C 
SAC. In the absence of Mn, N‑doped carbon sheets (denoted 
as NC NS) are prepared (Fig. S7).

Figure 2a shows the powder X‑ray diffraction (PXRD) 
patterns of Mn–N–C SAC and NC NS, in which only C 
(002) and less prominent C (101) diffraction peaks are 
detected. The absence of diffraction peaks corresponding 
to Mn aggregates confirms a high dispersion of Mn atoms. 
Compared with NC NS, Mn–N–C SAC displays a broader 
and negatively shifted C (002) peak, implying that Mn dop‑
ing makes the catalyst more defective and less graphitized. 
Raman spectra in Fig. 2b show an increased area ratio of 
peak D and peak G (i.e., D/G) from 1.37 to 1.53 after Mn 
doping, indicating additional structural defects and a reduced 
extent of graphitization. Such structural change can partially 
disturb the electron transfer (i.e., conductivity) over the 
catalysts, as being confirmed by a slight increase in series 
resistance in the electrochemical impedance spectra (Fig. 
S8). XPS is performed to further investigate the chemical 
and electronic states of Mn–N–C SAC. As expected, C, N, 
Mn, and O signals are detected and quantitively summarized 
in Fig. S9a. The high‑resolution Mn 2p XPS spectrum in 
Fig. S9b shows Mn  2p3/2 and Mn  2p1/2 peaks at 641.40 and 
653.28 eV, respectively, which are close to those of  Mn2+ 
and thus suggest a valence state of + 2 for Mn atoms [49]. 
In Fig. 2c, both the N 1s spectra of Mn–N–C SAC and NC 
NS can be fitted into pyridinic N, pyrrolic N, quaternary N, 



 Nano‑Micro Lett.          (2021) 13:125   125  Page 6 of 12

https://doi.org/10.1007/s40820‑021‑00651‑1© The authors

and oxidized N with minute changes in their corresponding 
binding energy [27, 28, 50]. The detail fitting results can 
be found in Table S1. Compared with NC NS, the pyrrolic 
N of Mn–N–C SAC is increased by 4.0% and is likely con‑
tributed by the formed Mn–Nx moieties. Mn–Nx component 
is not fitted in detail here due to its near binding energy to 
that of pyrrolic N and pyridinic N [28, 29, 31, 51], as being 
further confirmed by the following N K‑edge X‑ray absorp‑
tion spectroscopy (XAS) analysis. In addition, the percent‑
age of quaternary N decreases by 4.2%, suggesting that the 
Mn–N coordination occupies the N sites for the formation 
of quaternary N.

More insightful atomic and electronic structures of 
the samples are analyzed by synchrotron‑radiation‑based 

XAS. Soft X‑ray absorption near edge structure (XANES) 
analysis is firstly undertaken in a total electron yield 
(TEY) mode. In the Mn  L2,3‑edge spectrum (Fig. 2d), 
the  L3 edge gives a dominant peak at 640.1 eV neigh‑
boured by two minor peaks at 641.3 and 643.5 eV, and 
the  L2 edge presents two comparable peaks at 650.5 and 
652.2 eV. These peaks are assigned to Mn 2p → Mn 3d 
transitions and are characteristics of ionic  MnII systems 
[52]. The valence bonds of the catalyst are further exam‑
ined by N K‑edge spectra analysis (Fig. 2e). The spec‑
trum of NC NS presents four nitrogen features: pyridinic 
(peak a, 398.2 eV), pyrrolic (399.4 eV), graphitic (peak 
c, 401.1 eV) and C–N σ* bond (peak d, 407.3 eV), con‑
sisting with XPS results. The N K‑edge of Mn–N–C SAC 
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largely maintains the features of NC NS; however, a new 
peak e near to peak b is formed and assigned to Mn–N 
bond interaction, in accordance with previous studies [53, 
54]. Nevertheless, the contributions of N species to Mn–N 
bonds are not resolvable in the experimental spectrum.

Mn K‑edge XANES and phase‑uncorrected Fourier 
transformed (FT) extended X‑ray absorption fine structure 
(EXAFS) spectroscopy are further performed to analyze 
the chemical and coordination structures of Mn–N–C SAC. 
The reference standards including Mn foil, MnO,  Mn2O3 
and Mn phthalocyanine (MnPc) together with the precursor 
FA‑Mn NS are also characterized for comparison. For the 
Mn K‑edge XANES curves in Fig. 2f, both the absorption 
edge and white line peak of Mn–N–C SAC is located close 
to those of Mn (II) in FA‑Mn NS and Mn (II) in MnO, but 
are far from those of Mn (III)  Mn2O3, indicating that the 
valence of Mn species in Mn–N–C SAC is close to + 2. It 
is consistent with Mn L‑edge results. MnPc has a perfect 
Mn–N4 square planar symmetry and such D4h centrosym‑
metric coordination gives a pre‑edge feature at 6541 eV in 
the plotted XANES spectra (Fig. 2f). The pre‑edge peak is 
generally assigned to the dipole‑forbidden 1 s → 3d tran‑
sition for transition metals [46]. Compared with MnPc, 
Mn–N–C SAC exhibits a more evenly increased signal 
intensity in the pre‑edge region, implying a different local 
coordination structure of the atomic Mn sites. From the 

EXAFS curves in Fig. 2g, it can be observed that Mn–N–C 
SAC gives a nearly symmetric dominant peak at 1.66 Å. 
Considering the formed Mn–N structures in the N K‑edge 
XANES spectrum, the peak is assigned to Mn–N scatter‑
ing path. Unlike Mn foil and MnO, no obvious peaks for 
Mn–Mn scattering path at 2.32 and 2.76 Å are observed, 
corroborating the homogeneous dispersion of Mn atoms over 
the ultrathin carbon sheets [29, 31]. The EXAFS spectrum 
of MnPc presents a main peak at 1.52 Å, which is assigned 
to the scattering of Mn–N (Fig. 2g). Compared to MnPc, 
the larger Mn–N distance for Mn–N–C SAC implies a dif‑
ferent Mn–N coordination structure from the symmetrical 
Mn–N4. The structural parameters are obtained from the 
quantitative least‑square EXAFS curve fitting in R and k 
spaces (Fig. 2h, i and Table S2). The results show that the 
fitting curves match satisfactorily with the experimental 
data. The EXAFS fitting analysis for standard MnO is also 
given in Fig. S10. The Mn–N scattering path in Mn–N–C 
SAC displays an average coordination number of 2.7 ± 0.2, 
indicating that the isolated Mn atom likely gives a three‑fold 
Mn–N3 coordination structure. The Mn–N interaction gives 
a mean bond length of 2.19 Å, longer than those of MnPc 
(1.94 Å) with square planar Mn–N4 structure, Mn SAC with 
Mn–N4 structure (1.95 Å) [31] and Mn SAC with Cl‑Mn–N4 
structure (2.08 Å) [27]. These structural features evidence a 
different Mn–N coordination environment from the typical 
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Mn–N4 coordination. The results verify the formation of Mn 
SACs with massive atomic Mn sites being homogeneously 
distributed on ultrathin carbon sheets.

3.2  Electrochemical Performance of Mn–N–C SAC 
for NRR

The NRR activities of the catalysts are evaluated using a 
carbon fiber paper electrode in 0.1 M NaOH. All poten‑
tials are referred to reversible hydrogen electrode (RHE). 
Figure  3a shows the linear sweep voltammetry (LSV) 
curves of Mn–N–C SAC. Evidently, the current density in 
 N2‑saturated electrolyte is larger than that in Ar‑saturated 
electrolyte over a wide potential range from ‑0.2 to ‑0.9 V, 
implying that Mn–N–C SAC is active for NRR. To quantify 
the NRR activity, chronoamperometry electrocatalyses are 
conducted. NC NS is also measured for comparison. The 
produced ammonia is detected by indophenol blue method 
with the calibration curve being provided in Fig. S11. The 
average  NH3 yield rates and Faradaic efficiencies (FEs) of 
Mn–N–C SAC and NC NS at different potentials are cal‑
culated from the obtained chronoamperometric curves and 
the corresponding UV–vis spectra in Figs. S12 and S13. 
As shown in Fig. 3b, the  NH3 yield rate of Mn–N–C SAC 
increases with the cathodic potential becoming more nega‑
tive and reaches up to 21.43 μg  h−1  mg−1

cat. at ‑0.65 V. By 
contrast, the NC NS counterpart exhibits a negligible  NH3 
yield rate at all applied potentials (only 0.87 μg  h−1  mg−1

cat. 
‑0.65 V). This corroborates the critical role of Mn–N3 moi‑
eties for NRR. In addition, Mn–N–C SAC delivers a sub‑
stantial higher FEs for  NH3 production than NC NS at all 
potentials (Fig. 3c). Remarkably, the  NH3 FE of Mn–N–C 
SAC reaches up to 32.02% at ‑0.45 V, which is ca. 25‑fold 
higher than that of NC NS. It is observed that NC NS gives 
a higher current density than Mn–N–C SAC (Figs. S12 and 
S13), which is likely contributed by the remarkable HER 
activity and increased graphitization degree (as evidenced by 
XRD and Raman). Beyond ‑0.45 V, the  NH3 FE of Mn–N–C 
SAC experiences a significant decrease as a result of the 
accelerated HER. The  NH3 yield rate and FE values make 
Mn–N–C SAC among the best NRR electrocatalysts to date 
(Table S3).

Hydrazine is often a competitive product of NRR. In this 
work, no hydrazine is detected by Watt‑Chrisp method (Fig. 
S14), verifying the excellent selectivity of Mn–N–C SAC 

toward  NH3. To exclude the possible  NH3 interferences, a set 
of control experiments are further performed. As evidenced 
by the corresponding UV–vis spectra (Fig. S15), no  NH3 is 
detected from the electrolytes of Mn–N–C SAC‑based elec‑
trolysis system while using Ar as feeding gas or operating 
at the open‑circuit condition. Moreover, bare carbon fiber 
paper is measured to be inert for NRR (Fig. S15). The results 
reflect a reliable  NH3 production data deriving from NRR. 
The origination of  NH3 is further verified by isotope‑labeled 
experiment, in which the ammonia‑containing electrolyte 
is monitored by 1H NMR (Fig. 3d). Evidently, a double of 
notable peaks with a coupling constant of 72 Hz is detected 
using 15N2 (15 N≡15 N, 99%) as the N source, which match 
well with those of 15(NH4)2SO4 standard reference. While 
14N2 feeding gas being used, the triple signal with a coupling 
constant of 52 Hz is measured, which is identical to that 
of 14(NH4)2SO4 standard sample. The results confirm the 
generation of  NH3 from NRR. Stability is another important 
criterion for NRR electrocatalysts. As depicted in Figs. 3e 
and S16, six successive recycling tests at ‑0.45 V lead to no 
obvious fluctuation of  NH3 yield rate and FE for Mn–N–C 
SAC. Further, the catalyst exhibits no decrease in these 
values even after being subjected to a 10 h testing period 
(Figs. 3f and S17). The results suggest the strong stability 
of Mn–N–C SAC for NRR.

3.3  NRR Mechanism Analysis

DFT studies are performed to fundamentally understand the 
NRR process on Mn–N–C SAC. According to the calcula‑
tion results, Mn–N3 site can effectively adsorb  N2 via both 
end‑on and side‑on patterns with a similar adsorption energy 
of ‑0.77 and ‑0.74 eV, respectively. Bader charge analysis on 
a end‑on adsorption mode shows the electron back‑donation 
(0.48  e−) from Mn atom to the adsorbed  N2 (Fig. 4a), which 
indicates the favored activation of  N2 for subsequent hydro‑
genation [55]. The selectivity toward  N2 and H adsorption is 
a key metric for NRR catalysts. As shown in Fig. 4b, Mn–N3 
site presents a more negative adsorption energy for  N2 than 
that for H, indicating sufficient  N2 binding at the potential 
of 0 V versus normal hydrogen electrode (NHE). This is 
expected to favor a less hindered  N2 adsorption by H adsorp‑
tion at low overpotential [10, 16].
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To determine the reaction pathway of NRR on Mn–N–C 
SAC, all the possible intermediates with both end‑on and 
side‑on adsorbed configurations are considered (Fig. S18 
and Tables S4 and S5). Figure 4c depicts the correspond‑
ing energy profiles. Different from the situation of other 
electrocatalyst, Mn–N–C SAC displays an optimal side‑
on adsorption configuration toward N‑NH2 in the distal 
pathway, i.e., *N*NH2. Such bonding configuration, com‑
pared to *NHNH in the alternating pathway and *NH*NH 
in the enzymatic pathway, exhibits a more negative free‑
energy variation (ΔG) while evolving from NNH. As 
such,  NH3 synthesis on Mn–N–C SAC prefers to proceed 
by the distal mechanism. The first protonation step of  N2 
(i.e., *N2 → *NNH) exhibits the highest energy barrier 
in this reaction process, thus occurring as the potential 
determining step (PDS) with ΔGPDS of 0.53 eV. Despite 
being a thermodynamically unfavorable step, the ΔGPDS 
is much smaller than those of N–N bond cleavage energy 
without the catalyst (4.26 eV) [56] or on the benchmark 
Ru (0001) stepped surface (0.98 eV) [18], suggesting the 
superior catalytic activity of Mn–N–C SAC. The desorp‑
tion of *NH3 in the last step is not considered here due to 
the significantly accumulated free energy (‑1.81 eV) in 

previous reaction processes [57]. The ΔG for hydrazine 
formation on Mn–N–C SAC reaches a prohibitively high 
value of 1.00 eV. This agrees well with the absence of 
hydrazine in our experimental measurements. Lastly, the 
N–N bond length analysis is performed to further under‑
stand the catalytic effect of Mn–N–C SAC (Fig. 4d). In 
the distal pathway, the Mn active site can properly acti‑
vate the adsorbed  N2 by stretching the N–N bond length 
from the initial 1.10 to 1.19 Å. The N–N bond length 
experiences a nearly linear elongation and reaches to 
1.41 Å for *N*NH2, which is larger than that of *NHNH 
(1.39 Å) and *NH*NH (1.31 Å). The increased bond 
length favors the easy cleavage of the N–N bond in a 
distal mechanism. Therefore, we conclude that Mn–N–C 
SAC with Mn–N3 active sites is satisfied for NRR in both 
selectivity and catalytic activity.

4  Conclusions

In summary, we demonstrate a facile folic acid self‑assembly 
strategy for the fabrication of Mn–N–C SAC, which has a 
high Mn loading content of 2.82 wt% and a homogeneous 
atomistic metal dispersion on well‑exposed carbon sheets. 
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The Mn–N–C SAC achieves a high  NH3 FE of 32.02% 
and a desirable yield rate of 21.43 μg  h−1  mg−1

cat. in 0.1 M 
NaOH. DFT calculations unveil the critical role and catalytic 
mechanism of atomic Mn sites toward NRR. Remarkably, 
the atomic Mn sites can significantly promote the adsorp‑
tion of reacting intermediates and reduce the energy barrier 
of the first hydrogenation step for efficient NRR. Our work 
provides a new strategy for the rational fabrication of Mn 
SAC and expands the catalyst to effective NRR.
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