
Vol.:(0123456789)

1 3

Developing MXenes from Wireless Communication 
to Electromagnetic Attenuation
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HIGHLIGHTS 

• The industrial application and foundational research of MXenes at gigahertz frequency are systematically reviewed.

• The design principles of “lightweight, wide, and strong” are specifically highlighted.

• Current challenges and future directions for MXenes in wireless communication and electromagnetic attenuation are outlined.

ABSTRACT There is an urgent global need for wire‑
less communication utilizing materials that can provide 
simultaneous flexibility and high conductivity. Avoiding 
the harmful effects of electromagnetic (EM) radiation from 
wireless communication is a persistent research hot spot. 
Two‑dimensional (2D) materials are the preferred choice 
as wireless communication and EM attenuation materials 
as they are lightweight with high aspect ratios and possess 
distinguished electronic properties. MXenes, as a novel 
family of 2D materials, have shown excellent properties 
in various fields, owing to their excellent electrical con‑
ductivity, mechanical stability, high flexibility, and ease of 
processability. To date, research on the utility of MXenes 
for wireless communication has been actively pursued. 
Moreover, MXenes have become the leading materials 
for EM attenuation. Herein, we systematically review the 
recent advances in MXene‑based materials with different structural designs for wireless communication, electromagnetic interference (EMI) 
shielding, and EM wave absorption. The relationship governing the structural design and the effectiveness for wireless communication, EMI 
shielding, and EM wave absorption is clearly revealed. Furthermore, our review mainly focuses on future challenges and guidelines for design‑
ing MXene‑based materials for industrial application and foundational research.
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1 Introduction

Wireless communication has been gaining popularity with 
the arrival of the age of artificial intelligence [1–3]. This 
is accompanied by a surge in the demand for all kinds of 
portable devices. These devices require a concealed inte‑
gration of radio communication electronics without sac‑
rificing lightweight and transportability [4–6]. Therefore, 
it is necessary to develop new routes of antenna fabrica‑
tion [7, 8]. It is difficult to fabricate ultra‑thin, flexible, 
and conformal antenna using traditional metal materials 
because of the skin depth limitation [9]. To overcome 
this shortcoming, carbon‑based nanomaterials have been 
explored for wireless communication applications. For 
example, Elwi et al. prepared multi‑walled carbon nano‑
tube antennas that afforded a remarkable enhancement in 
the bandwidth [6]. Vacirca et al. reported an onion‑like 
carbon antenna that showed a peak gain of − 1.48 dBi, 
just 3 dB less than that of a copper dipole antenna [8]. 
However, the low conductivity of carbon inhibits these 
materials from achieving reasonable radio‑frequency 
performance. Thereafter, two‑dimensional (2D) nanoma‑
terials, such as graphene,  MoS2, and others, have been 
used to fabricate antennas, thereby furnishing antennas 
with thinner patches. For example, Shin et al. fabricated 
a graphene antenna, affording a high transmitted power 
efficiency of 96.7% [1]. To date, it is still a challenge to 
find a flexible material with high conductivity for antenna 
fabrication.

On the other hand, the use of a large number of wireless 
communication devices will lead to an explosive increase 
in electromagnetic (EM) radiation on the scale of “big 
data” [10–12]. The undesired EM radiation directly affects 
the operation of electronic equipment and also indirectly 
influences human health, as long‑term exposure to EM 
radiation may cause cancer and other health problems 
[13–16]. How to avoid the harm from EM radiation has 
always been a research hot spot. The development of elec‑
tromagnetic interference (EMI) shielding and EM wave 
absorbing materials is the key to solving the above prob‑
lem [17–22]. Recently, various materials have been glob‑
ally studied as EMI shielding or/and EM wave absorbing 
materials, including zero‑dimensional (0D), one‑dimen‑
sional (1D), and 2D materials. Among them, 2D materials 

are the materials of choice as they are lightweight, have 
large aspect ratios, and offer distinguished electronic prop‑
erties. For example, Cao’s group reported that chemically 
graphitized r‑GOs exhibited high‑efficiency EMI shielding 
effectiveness (EMI SE) at elevated temperatures. The EMI 
SE of the composites with 20 wt% r‑GOs reached a maxi‑
mum at ~ 38 dB [12]. Zhang et al. prepared 2D  WS2‑rGO 
heterostructure nanosheets. The composite containing 40 
wt%  WS2‑rGO showed a minimum reflection loss (RL) 
of − 41.5 dB, with the absorption bandwidth reaching up 
to 13.62 GHz [15].

MXenes, as a novel family of 2D materials, possess 
huge potential in the fields of wireless communication, 
EMI shielding, and EM wave absorption owing to their 
excellent electrical conductivity, numerous family mem‑
bers, mechanical stability, high flexibility, and ease of 
processability [23, 24]. At present, research on MXene 
antennas is still in the exploratory stage, but the excellent 
properties of these materials for wireless communication 
have been widely regarded. Moreover, since the discovery 
of the outstanding EMI shielding performance of  Ti3C2Tx 
MXene in 2016, MXenes have become the leading materi‑
als for EMI shielding and EM wave absorption with the 
fastest growing number of related research publications 
(Fig. 1). Moreover, as EM attenuation materials, the excel‑
lent chemical and physical properties of MXenes have 
facilitated the development of pure MXenes and hybrids 
with controlled structural designs such as films, foams, 
aerogels, and fabrics (inset of Fig. 1).

This review systematically summarizes the effects 
of MXenes with various structural designs on wireless 
communication, EMI shielding, and EM wave absorp‑
tion. The most feasible strategies for high‑performance 
wireless communication, EMI shielding, and EM wave 
absorption are revealed by discussing the different 
approaches for modifying the structures of MXenes. 
Finally, we provide an overview of the further develop‑
ment and prospects of MXenes for wireless communica‑
tion and EM attenuation.
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2  Antenna Mechanism and EM Attenuation 
Mechanism

2.1  Antenna Mechanism

Actually, the wavelength of substrate‑based antennas is 
inversely proportional to frequency, and the length of 
designed antenna is selected according to antenna types 
and wavelength. λ is defined as [25–30]:

Two important indexes to judge the quality of designed 
antenna are bandwidth and voltage standing wave ratio 
(VSWR) or return loss of the antenna [31–33]. The VSWR 
is to quantify the impedance matching at the operating fre‑
quency and different thicknesses, which can be calculated 
by the formula [34, 35]:

where S11 represents the reflection coefficients. VSWR is 
the ratio between the peak amplitude and the minimum 
amplitude of standing wave. Standing wave is caused by 
any mismatch at the input of antenna, which will cause the 
input power to be reflected back [36, 37]. VSWR equal to 1 
means that there is no standing wave (S11 =  − infinity), and 
the antenna is an ideal match.

(1)� =
c

f

(2)VSWR =
1 + ||S11||
1 − ||S11||

The research on 2D materials as patch antennas is the 
most extensive. Different substrates have been proposed for 
flexible patch antennas, such as rubber, polyethylene, cellu‑
lose nanopaper, and others, to achieve improved efficiency. 
The patch antenna, using natural rubber as substrate, plays a 
significant role in wireless communication as the mechanical 
properties of rubber make the antenna flexible. Moreover, 
an antenna on a polyethylene substrate was designed and 
fabricated with distinct bending curvature, affording reliable 
performance within the designed C‑band [38].

2.2  Shielding Mechanism

The ability of a shield to against the incoming EM radia‑
tion is measured by the EMI SE, which is defined as the 
ratio of the transmitted and incident powers, generally on 
a logarithmic scale, as expressed in Eq. (3) [39]:

where PI and PT represent incident wave power and transmit‑
ted wave power, respectively. EI and ET represent electric 
field intensity of incident wave and electric field intensity 
of transmitted wave power, respectively. According to the 
theory of Schelkunoffs, the total EMI SE is the sum of 

(3)SET(dB) = 10log
PT

PI

= 20log
ET
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reflection (SR), absorption  (SEA), and multiple reflections 
 (SEM), as shown in Eq. (4) [40]:

To quantify the value of  SER and  SEA, the concept of 
the absorption (A), reflection (R) and transmission (T) 
coefficient is proposed. The relation among them can be 
obtained as follows:

The value of A, R, and T can be calculated from the meas‑
ured scattering parameters (Smn). Smn represents that how 
energy is scattered from a shield. “m” indicates the port 

(4)SET = SER + SEA + SEM

(5)SER = 10log
(

1

1 − R

)

(6)SEA = 10log
(
1 − R

T

)

receiving the radiation energy, and “n” indicates the port 
that is transmitting the incident energy. Accordingly, A, R 
and T can be calculated via the relationships:

Both reflection and absorption provide great contributions 
for excellent EMI shielding. However, in consideration of 
green shielding, less reflection is better. The ideal EMI 
shielding involves strong absorption with no reflection and 
transmission, as shown in Fig. 2b. Multiple reflection also 
plays an important role in EM wave attenuation. Multiple 
reflections between the front and back of the shield 

(7)A + R + T = 1
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Fig. 2  Situations in which the EMI shield responds to the EM wave: a allowing all waves to enter with large transmission, b allowing all waves 
to enter with no transmission, and c strong secondary reflection. The situations in which the absorber responds to the EM wave: d good imped‑
ance matching with weak attenuation, e an ideal absorber with good impedance matching and strong attenuation, and f poor impedance matching 
with strong attenuation
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contribute a lower EMI SE. However, when the thickness of 
the shield close to or larger than the skin depth 
( � =

�√
�f�o�r�

�−1

 , where µo = 4 ×  10−7H  m−1, µr is per‑

meability of an absorber, and σ is electrical conductivity) or 
when the  SET > 10 dB, the effect of multiple reflection 
should be neglected.

Specific shielding effectiveness (SSE) is derived to compare 
the effectiveness of shielding materials taking into account the 
density. Lightweight materials afford high SSE. SSE can be 
calculated as follows:

 To account for the thickness contribution, the following 
equation is used to evaluate the absolute effectiveness  (SSEt) 
of a material in relative terms

2.3  Absorption Mechanism

The responses of an EM wave absorption to an incident EM 
wave are determined by the absorber’s permittivity and perme‑
ability. The EM wave absorption capacity can be expressed by 
the following equations [41]:

where Zin is the normalized input impedance, εr and µr are 
the relative complex permittivity and permeability of an 
absorber and d is the thickness of the absorber.

Excellent EM wave absorption performance of an absorber 
depends not only on efficient EM wave attenuation but also on 
impedance matching. As shown in Fig. 2e, the absorber exhib‑
its ideal impedance matching, which means that all EM waves 
are allowed to penetrate the absorber. And, its high‑efficiency 
EM attenuation is usually derived from dielectric loss and 
magnetic loss, as well as multi‑scattering or multi‑reflection.

Generally, the dissipation pathway within the absorber is 
described as dielectric loss. The dielectric loss can be thought 
as a sort of friction to the displacement of the subatomic par‑
ticles, then the passing EM wave attenuates, presenting as the 
subsequent generation of heat. Dielectric loss is constructed 

(10)SEE = EMI SE/density = dB cm3 g−1

(11)SSEt = SSE/t = dB cm2 g−1

(12)RL = 20 log
||
||

Zin − 1

Zin + 1

||
||

(13)Zin =

�
�r

�r
tanh

�

j

�
2f�d

c

�
√
�r�r

�

by conduction loss and polarization loss; the relation among 
them can be expressed by the following formula:

where ε"c and ε"p represent conduction loss and polarization 
loss, respectively.

Conduction loss plays an important role in the materi‑
als with high conductivity, such as, MXene, graphene and 
other carbon materials. Actually, the conduction loss is the 
energy loss of EM wave caused by electron transition. Up 
to now, Cao’s group has done a lot of work to clarify the 
role of conduction loss. For example, the electron‑hopping 
model (EHM) was established to explain the mechanism 
of conduction loss in the carbon fibers (CFs) and multi‑
walled carbon nanotubes (MWCNTs) [42]; a model of 
aggregation‑induced charge transport (AICT) was pro‑
posed to illustrate electron transport in whole MWCNTs/
SiO2 composites [43]; electron transition theory was used 
to explain the loss behavior of  Ti3C2Tx MXene [44]. Now, 
the role of conduction loss caused by electron transition 
has been widely recognized in the design of EM wave‑
absorbing materials.

Polarization loss is generated by the behavior of diploes. 
Diploes are generated in the site of functional groups, 
defects, and interfaces. Under a high‑frequency alternating 
electric field, when rotation of dipoles cannot follow the 
change of electric field, dipole orientation polarization loss 
occurs, which is another key role of dielectric loss. Cao’s 
group made important contributions to the resources, char‑
acterization techniques, and semiquantitative methods of 
polarization relaxation. In 2008, they proposed a capacitor‑
like model and an equivalent circuit model to explain the 
EM wave response of CdS‑Fe2O3 heterostructures [45]. In 
2012, the perfect polarization relaxation was established in 
 Fe3O4‑MWCNTs and PANI‑Fe3O4‑MWCNTs [46]. Later, 
the capacitor‑like model is applied to visualize the interfacial 
polarization in MWCNTs, graphene, MXene, or their nano‑
hybrids, etc. After that, a semiquantitative research strat‑
egy of multiple polarization, that is the separation of the 
contribution of electron transport and dipole polarization, 
was established by them to accurately analyze the source 
of polarization [47]. Recently, they proposed a new concept 
of polarization genes and made a semiquantitative charac‑
terization and definition [48]. In conclusion, on the premise 
of meeting the impedance matching, effectively rising the 

(14)�
��

= �
��

c
+ �

��

p
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conduction loss and polarization loss will greatly improve 
the EM wave absorbing performance of absorber.

Magnetic loss is caused by eddy currents, natural reso‑
nance, and exchange resonance. The eddy current is inevi‑
table. If magnetic loss only originates from eddy current 
loss, the value of µ"(µ’)−2f−1 is constant when frequency 
changes. Natural resonance usually occurs at low frequency 
(2–10 GHz), while exchange resonance occurs at high fre‑
quencies (> 10 GHz).

3  MXene‑Based Materials for Antenna

Research on MXenes for wireless communication applica‑
tions is still in the exploratory stage. Gogotsi’s group has 
undertaken pioneering research in this field. According 
to the different usage frequency, MXene antennas can be 
divided into low‑frequency antennas (< 2.4 GHz) and high‑
frequency antennas (> 5.6 GHz).

3.1  Low‑Frequency Antenna

Gogotsi’s group firstly designed and investigated the  Ti3C2Tx 
MXene dipole antenna at 2.4 GHz [49]. The translucent 
MXene antenna with a thickness of ~ 100 nm had a reflection 
coefficient of less than − 10 dB. By increasing the antenna 
thickness to 8 µm, the reflection coefficient reached − 65 dB. 
The VSWR was less than 2 for MXene antennas with vari‑
ous thicknesses despite the fact that the surface resistance 
increased significantly with thicknesses below 100 nm. The 
radiation pattern of an 8‑mm‑thick dipole antenna presented 
typical dipole radiative behavior. Moreover, the MXene 
antenna afforded a maximum gain of 2.11 dB at the thick‑
ness of 8 µm, which converges with the maximum gain of an 
ideal half‑wavelength dipole antenna (2.15 dB).

Li et  al. prepared a stretchable  Ti3C2Tx nanosheets 
(MXene) and single‑walled carbon nanotubes (SWNTs) 
S‑MXene dipole antenna (Fig. 3a) [50]. The resonant fre‑
quencies of an S‑MXene antenna were linearly dependent 
on the applied strains (Fig. 3b). Moreover, the S‑MXene 
antenna afforded nearly the same reflection |S11| (~ − 33 dB) 
at the same resonant frequency (1.425 GHz) during the 
fatigue test up to 100% uniaxial strains for 500 cycles 
(Fig. 3c).

3.2  High‑Frequency Antenna

Gogotsi’s group reported on micrometer‑thin and flexible 
MXene microstrip patch antennas with target frequencies 
of 5.6, 10.9, and 16.4 GHz, produced by a simple spray‑
coating fabrication method (Fig. 3d, e) [51]. The return 
loss values of MXene antennas with a thickness of 5.5 µm 
achieved − 29, − 25, and − 48 dB at 5.6, 10.9, and 16.4 GHz 
(Fig. 3f), respectively, which demonstrated that MXene 
patches were capable of delivering RF power efficiently 
to the radiator. The radiation efficiency increased with the 
thickness of MXene patches (Fig. 3g), which was due to 
the decreasing conductor loss. Moreover, the outstanding 
performance of MXene patch antennas was comparable to 
their copper counterparts (Fig. 3h).

4  MXene‑Based Materials for EMI Shielding

4.1  Pure MXene Matrix

4.1.1  Non‑annealing

Liu et al. prepared multilayer  Ti3C2Tx by etching  Ti3AlC2 
with 40% HF at room temperature (RT) for 24 h [52]. The 
multilayer  Ti3C2Tx/wax with the 60 wt%  Ti3C2Tx con‑
tent displayed outstanding EMI shielding performance of 
39.1 dB at the thickness of 2 mm. Hu et al. fabricated mul‑
tilayer  Ti3C2Tx by etching  Ti3AlC2 with 40% HF solution at 
50 °C for only 0.5 h [53]. The multilayer  Ti3C2Tx prepared 
in such a short time also exhibited excellent EMI shielding 
performance. For example, the  Ti3C2Tx/wax with 70 wt% 
 Ti3C2Tx showed EMI shielding performance of 34 dB at 
18 GHz.

Previous studies focused on the EMI shielding perfor‑
mance of multilayer  Ti3C2Tx. He et al. investigated the dif‑
ference between  Ti3C2Tx nanosheet and multilayer  Ti3C2Tx 
in EMI shielding performance [54]. Different etchants led 
to different centrifugal results (Fig. 4a, b) and different 
morphologies (Fig. 4c–f). The  Ti3C2Tx nanosheet showed a 
much better EMI shielding performance compared with the 
multilayer  Ti3C2Tx owing to the formation of local conduc‑
tive networks (Fig. 4g–l). The  Ti3C2Tx‑wax matrix with 80 
wt%  Ti3C2Tx loading showed EMI shielding performance of 
58.1 dB at the thickness of only 1 mm.
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Li et al. prepared the multilayer  Ti2CTx MXene by HCl/
LiF etching  Ti2AlC for 48 h at 40 °C [55]. The multilayer 
 Ti2CTx presented outstanding EMI shielding performance 
of 70 dB with a thickness of only 0.8 mm in the X‑band, 
exceeding most of reported graphene‑based EMI shielding 
composites, owing to the multilayered structure and the high 
electrical conductivity (0.30 S  cm−1).

The matrix of EMI‑absorbing materials is usually made of 
wave‑transparent materials. The imaginary part of the dielec‑
tric constant of the matrix is zero, which means there is no 
EM loss. Paraffin is generally used as the matrix of absorb‑
ing materials. There are also other wave‑transmitting materi‑
als that can be used as the matrix, such as polystyrene (PS) 

and polyvinylidene fluoride (PVDF). A  Ti3C2Tx nanosheet@ 
PS matrix was fabricated by electrostatic assembling of neg‑
ative  Ti3C2Tx nanosheet on positive polystyrene microsphere 
[56]. The  Ti3C2Tx@PS with 1.9 vol%  Ti3C2Tx loading exhib‑
ited an outstanding EMI shielding performance of > 54 dB 
over the whole X‑band. Such excellent EMI shielding perfor‑
mance was attributed to the high conductivity (1081 S  m−1) 
of  Ti3C2Tx and their highly efficient conducting network 
within PS matrix. Rajavel et al. reported that the multilayer 
 Ti3C2Tx‑PVDF with 22.55 vol%  Ti3C2Tx displayed remark‑
able shielding performance of 48.47 ± 3.5 dB with a thick‑
ness of 2 mm [57]. Such outstanding shielding performance 
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was attributed to the formation of conducting network along 
with the assembly of micro‑capacitor network.

4.1.2  Annealing

The improvement of EMI shielding properties by anneal‑
ing is also widely studied. Yin group investigated the EMI 
shielding performance of multilayer  Ti3C2Tx annealed 
at 800 °C  (Ti3C2Tx‑800) in Ar atmosphere. The total 
SE of  Ti3C2Tx‑800/wax was 32 dB [58]. After that, the 
 Ti3C2Tx‑200 was fabricated by annealing  Ti3C2Tx at 200 °C 

for 2 h in Ar + 5%  H2 atmosphere [59]. The  Ti3C2Tx‑200/
epoxy displayed enhanced EMI shielding performance 
compared with  Ti3C2Tx/epoxy. Ji et al. investigated the EMI 
shielding performance of multilayer  Ti3C2Tx at different 
annealing temperatures (800, 950, 1100, 1250, 1400, and 
1550 °C for 1 h) in Ar atmosphere [60]. Among them, the 
multilayer  Ti3C2Tx annealed at 1100 °C displayed the best 
EMI shielding performance, showing excellent EMI shield‑
ing performance of 76.1 dB.
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and shielding performance for k multilayer  Ti3C2Tx and l  Ti3C2Tx nanosheet. Reproduced with permission from Ref. [54]. Copyright 2019, The 
Royal Society of Chemistry
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4.2  MXene Hybrid Matrix

It is common that MXene is doped with one‑dimensional 
nanoparticles.  Ti3C2Tx nanosheet/Ni chain hybrid was fabri‑
cated by a one‑step hydrothermal process [61]. The  Ti3C2Tx/
Ni hybrid with 50 wt%  Ti3C2Tx showed EMI SE of 66.4 dB. 
The excellent EMI shielding performance was due to the 
synergistic effect of conductive  Ti3C2Tx and magnetic Ni 
chains, by which the dielectric properties and EM loss can 
be easily controlled to obtain good EM wave dissipation 
ability.  Nb2CTx/Nb2O5‑Ag ternary hybrid nanostructures 
were fabricated by self‑reduction and oxidation of  Nb2CTx 
in the presence of metallic salt  (AgNO3) [62]. The  Nb2CTx/
Nb2O5‑Ag hybrid‑wax matrix with a thickness of 1 mm 
showed excellent EMI SE of 68.76 and 72.04 dB in the 
X‑ and Ku‑band region, respectively. The excellent EMI 
shielding performance was attributed to the strong electrical 
conductivity, increased interface polarization, and multiple 
reflection loss between the ternary interfaces.

MXene is not only doped with one‑dimensional nanopar‑
ticles, but also doped with two‑dimensional materials. Song 
et al. investigated the EMI shielding performance of honey‑
comb structural rGO–Ti3C2Tx MXene/epoxy nanocompos‑
ites [63]. The introduction of rGO–Ti3C2Tx can fully play 
synergistic effects of rGO and MXene, to greatly improve the 
electrical conductivity and EMI SE of rGO–Ti3C2Tx MXene/
epoxy nanocomposites. When the cell size of 0.5 mm with 
1.2 wt% rGO + 3.3 wt%  Ti3C2Tx loading, the enhanced σ 
(387.1 S  m−1) and EMI SE (55 dB) values were reached, 
which were, respectively, 2978 and 5 times of rGM/epoxy 
nanocomposites (σ of 0.13 S  m−1, EMI SE of 11 dB) at the 
same loading of directly blending rGO–Ti3C2Tx fillers.

The shielding properties of multi‑doped MXene have also 
been studied. Raagulan fabricated the  Ti3C2Tx MXene‑p‑
aminophenol (PAT)‑conductive polymer (CP) by a cost‑
effective spray coating technique and characterization [64]. 
The composite showed excellent EMI shielding performance 
of 45.18 dB and good electric conductivity of 7.813 S  cm−1.

4.3  Film

The EMI shielding properties of MXene as a film have been 
widely studied, and there are numerous research results. As 
a shield, MXene films can be divided into three categories: 
pristine MXene films, organic‑hybrid MXene films, and 

inorganic‑hybrid MXene films. The pristine MXene film 
refers to the film fabricated from pure MXene nanosheets, 
organic‑hybrid MXene films contain organic substances, and 
inorganic‑hybrid MXene films are MXene films doped with 
an inorganic substance.

4.3.1  Pristine

Koo’s group reported that a 45‑µm  Ti3C2Tx film displayed 
EMI SE of 92 dB (a 2.5‑µm film showed > 50 dB), which is 
the highest among synthetic materials of comparable thick‑
ness produced to date [65]. The outstanding electrical con‑
ductivity of  Ti3C2Tx films and multiple internal reflections 
led to this excellent performance. After that, they systemati‑
cally studied the EMI shielding of  Ti3C2Tx MXene‑assem‑
bled films over a broad range of film thicknesses, monolayer 
by monolayer [66]. Theoretical research showed that mul‑
tiple reflection, the surface reflection, and bulk absorption 
become significant in the shielding mechanism below skin 
depth. The 24‑layer film of 55 nm thickness showed EMI SE 
of 20 dB, revealing an extraordinarily large absolute shield‑
ing effectiveness (3.89 × 106 dB  cm2  g−1). Meanwhile, they 
prepared  Ti3CNTx and  Ti3C2Tx MXene free‑standing films 
of different thicknesses by vacuum‑assisted filtration and 
investigated their EMI shielding performance under different 
annealing temperatures [67]. It is found that  Ti3CNTx film 
provided a higher EMI SE compared with more conductive 
 Ti3C2Tx or metal foils of the same thickness. This excellent 
EMI shielding performance of  Ti3CNTx was achieved by 
thermal annealing, owing to an anomalously high absorp‑
tion of EM waves in its layered, metamaterial‑like structure.

Han et al. systematically studied the shielding properties 
of 16 different MXene films [68]. All MXene films with 
micrometer thick displayed excellent EMI shielding perfor‑
mance (> 20 dB). Among them,  Ti3C2Tx film displayed the 
best EMI shielding performance. For example,  Ti3C2Tx film 
with a thickness of only ~ 40 nm showed the EMI shielding 
performance of 21 dB.

4.3.2  Organic‑Hybrid

The organic substances for hybridization can be divided 
into three categories: aramid nanofibers (ANFs), cellulose 
nanofibers (CNFs), and others.
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4.3.2.1 ANF Xie et  al. prepared  Ti3C2Tx nanosheet/ANF 
composite film by vacuum‑assisted filtration approach [69]. 
The  Ti3C2Tx/ANF composite film with different  Ti3C2Tx 
addition exhibited outstanding EMI shielding performance, 
which was accomplished beyond the commercial standard 
for EMI shielding materials. The 80%‑Ti3C2Tx/ANF com‑
posite film with an ultra‑thin thickness ~ 17  µm possessed 
an EMI SE of ~ 28 dB in 8.2–12.4 GHz and electrical con‑
ductivity of 173.36 S  cm−1. Weng et al. further confirmed 
this conclusion [70]. Lei et al. found that the  Ti3C2Tx/ANF 
composite film with a loading of 40 wt%  Ti3C2Tx showed 
high electrical conductivity of 3661.8 S  m−1 [71], and excel‑
lent EMI shielding performance of 24.5  dB, and  SEEt of 
8814.5  dB  cm2   g−1 at the thickness of 14  µm. Wei et  al. 
reported that the ANF/Ti3C2Tx film with 90 wt% displayed 
the EMI SE of 34.71 dB at the thickness of 11 µm and  SEEt 
of 21,971.37 dB  cm2  g−1, which would be no recession after 
1000 times bending [72].

After that, ternary mixed ANF‑MXene film was reported 
[73]. A double‑layered and homogeneously blended ANF‑
Ti3C2Tx MXene/silver nanowire (ANF‑MXene/AgNW) 
nanocomposite film was fabricated via the facile two‑
step vacuum‑assisted filtration followed by hot‑pressing 
approach, respectively. Compared with the homogeneously 
blended ones, the double‑layered nanocomposite papers pos‑
sessed greater advantages in EMI shielding performances, 
which was due to the massive ohmic losses, multiple internal 
reflections and polarization relaxation of localized defects, 
and abundant terminal groups.

4.3.2.2 CNF Cao et al. fabricated an ultrathin and highly 
flexible delaminated  Ti3C2Tx (d‑Ti3C2Tx MXene)/CNF 
composite film through a vacuum‑filtration‑induced self‑
assembly process [74]. The d‑Ti3C2Tx/CNF film with 90 
wt% d‑Ti3C2Tx content showed high electrical conductivity 
(739.4 S  m−1) and outstanding EMI shielding performance 
 (SEEt = 2647 dB  cm2  g−1). Zhou et al. found that the CNF/
Ti3C2Tx film showed EMI SE of ~ 40 dB and high  SEEt up 
to 7029 dB  cm2  g−1 with a thickness of only 0.035 mm [75]. 
Moreover, the EMI shielding properties could withstand the 
folding test more than 1000 times without obvious reduc‑
tion. Cui et al. reported that a  Ti3C2Tx/CNF film exhibited 
EMI SE of 42.7 dB with a thickness of 15 µm, owing to the 
high electrical conductivity (46.3 S  cm−1) [76].

Zhou et al. fabricated a CNF/Ti3C2Tx/g‑C3N4 film with 
 Ti3C2Tx/g‑C3N4 mass ratio of 5:1 presented outstanding 
performance with EMI SE of 42.99 dB in X‑band at the 
thickness of 28.20 µm [77]. Moreover, both the electrical 

conductivity and the EMI SE of the film remained nearly 
unchanged after bending at 135° for 10,000 cycles.

Xin et al. investigated the EMI shielding performance of a 
 Ti3C2Tx/CNF/silver composite film [78]. The  Ti3C2Tx/CNF/
silver composite film exhibited excellent EMI shielding per‑
formance (50.7 dB) and good electrical conductivity (588.2 
S  m−1), attributed to  Ti3C2Tx MXene, self‑reduction of silver 
nanoparticles, and the brick‑like structure.

An ultrathin and flexible carbon nanotubes/Ti3C2Tx/
CNF composite film was fabricated via a facile alternating 
vacuum‑assisted filtration process [79]. The film showed a 
high electrical conductivity of 2506.6 S  m−1 and EMI SE of 
38.4 dB. This result was attributed to the sandwich structure 
in improving EMI SE, and the gradient structure on regulat‑
ing the contributions from refection and absorption.

4.3.2.3 Others The flexible green multilayered  Ti3C2Tx/
hydroxyethyl cellulose (M‑Ti3C2Tx/HEC) composite film 
was prepared via the filtration‑assisted self‑assembly 
method (Fig. 5a–c) [80]. The effect of multilayer stacking on 
the EMI shielding performance was investigated. The EMI 
SE of the film exceeded 20 dB under the stacking thickness 
reaching 100 mm (Fig. 5d, e). Notably, the film presented 
the trend of absorption‑dominate green EMI shielding with 
the decrease of the stacking thickness (Fig. 5f).

Gogotsi’s group investigated the EMI shielding per‑
formance of a polyethylene terephthalate (PET)/Ti3C2Tx 
nanosheet film [81]. The PET/Ti3C2Tx film exhibited elec‑
trical conductivity values of 1080 ± 175 S  cm−1, which 
profoundly exceeded electrical conductivity values of other 
2D materials including graphene (250 S  cm−1) and reduced 
graphene oxide (340 S  cm−1). Such excellent EMI shielding 
performance was ascribed to the high electrical conductivity 
and layered structure.

A free‑standing, ultrathin, and flexible  Ti3C2Tx/poly 
(3,4‑ethylenedioxythiophene)‑poly (styrene sulfonate) 
(PEDOT: PSS) film was prepared by a vacuum‑assisted 
filtration process [82]. The composite film with 11.1 µm 
prepared a high EMI SE value of 42.1 dB. Meanwhile, the 
hybrid film exhibited a superior conductivity of 340.5 S 
 cm−1 and an excellent specific EMI shielding efficiency of 
19,497.8 dB  cm2  g−1. This result was due to the lamellar 
structure of the films and multiple interface reflection and 
polarization.

Luo et al. fabricated a flexible  Ti3C2Tx nanosheet/natu‑
ral rubber (NR) nanocomposite film via vacuum‑assisted 
filtration approach [83]. In the film,  Ti3C2Tx nanosheets 



Nano‑Micro Lett.          (2021) 13:115  Page 11 of 34   115 

1 3

selectively distributed at the interfaces of the NR particles, 
forming an interconnected network for efficient electron 
transport, which leads to excellent EMI shielding perfor‑
mance. The  Ti3C2Tx nanosheet/NR film with 6.71 vol% of 
 Ti3C2Tx nanosheet showed an outstanding electrical con‑
ductivity of 1400 S  m−1 and a superb EMI shielding perfor‑
mance of 53.6 dB.

Wang et  al. prepared a flexible and ultrathin poly 
(vinylidene fluoride) (PVDF)/Ti3C2Tx/Ni chain compos‑
ite film by physical mixing [84]. The PVDF/Ti3C2Tx/Ni 
chain composite film with only 0.10 mm thickness showed 
EMI shielding performance of 19.3 dB, which increased 
to 34.4 dB at 0.36 mm thickness. The outstanding EMI 

shielding performance was attributed to the excellent elec‑
trical conductivity (892 S  m−1).

An ultrathin  Ti3C2Tx/calcium alginate (CA) aerogel film 
was fabricated via divalent metal ion‑induced crosslink‑
ing, vacuum‑assisted filtration, and freeze‑drying. The 
 Ti3C2Tx/CA aerogel film with a thickness of 26 µm pre‑
sented excellent EMI SE (54.3 dB), owing to its sponge‑
like structure, which facilitated the dissipation of incident 
EM waves through multi‑reflection and scattering in the 
 Ti3C2Tx/CA aerogel film [85].

Liu et al. fabricated a polyurethane/Ti3C2Tx MXene film 
vacuum‑assisted filtration [86], thanks to the bioinspired 
material design and the careful choice of polyurethane as a 
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polymer matrix. The polyurethane/Ti3C2Tx with nacre‑like 
structure showed superior electric conductivity of ~ 2897.4 
S  cm−1 and  SEEt of 33,771.92 dB  cm2  g−1 with ultra‑small 
thickness (< 10 µm).

A poly vinyl alcohol/Ti3C2Tx (PVA/Ti3C2Tx) film with 
alternating multilayered structure was prepared by mul‑
tilayered casting [87]. When the amount of  Ti3C2Tx was 
19.5 wt%, PVA/Ti3C2Tx multilayered film with a thickness 
of 27 µm displayed electrical conductivity of 716 S  m−1, 
EMI SE of 44.4 dB, and the  SEEt of 9343 dB  cm2  g−1. 
This excellent performance was due to the improved mul‑
tiple interfacial reflection and improved absorption in the 
MXene layer.

Liu et al. prepared a chitosan (CS)/Ti3C2Tx film by vac‑
uum‑assisted filtration [88]. The CS/Ti3C2Tx film with the 
 Ti3C2Tx content of 75 wt% displayed high EMI shielding 
performance of ~ 34.7 dB at the thickness of 13 µm, which 
was attributed to the outstanding electrical conductivity 
(~ 1402 ± 70 S  m−1) and multiple internal reflection.

A Ca ion cross‑linked sodium alginate (SA)‑montmoril‑
lonite (MMT)/Ti3C2Tx MXene (CSA‑M‑T) film was fabri‑
cated by a step‑by‑step vacuum‑assisted filtration process 
[89]. Compared with the pure  Ti3C2Tx layer, such kind of 
sandwich film can effectively maintain the EMI shielding 
performance (50.01 dB).

4.3.3  Inorganic Hybrid

4.3.3.1 Carbon‑Based A assemble  Ti3C2Tx MXene‑car‑
bon nanotube (CNT) composite film was fabricated by spin 
spray layer‑by‑layer (LbL) [90]. The absolute effectiveness 
of the film was up to 58,187 dB  cm2  g−1, which was due to 
the both the excellent electrical conductivity (130 S  cm−1) 
and the enhanced absorption with the LbL architecture of 
the films.

Xiang et  al. prepared a lightweight and ultrathin 
 TiO2‑Ti3C2Tx/graphene film with the range of 5.25–9.17 µm 
of thickness by vacuum filtration and pyrolysis [91]. The 
film displayed surface resistance of 7.5 Ω  sq−1 and EMI SE 
of 27 dB. Meanwhile, the value of  SEEt of the film reached 
30,291.43 dB  cm2  g−1.

A stretchable  Ti3C2Tx nanosheet/single‑walled carbon 
nanotube (SWNT) film was fabricated by Li et al. by pre‑
buckling of SWNT and  Ti3C2Tx nanosheet coatings on latex 
substrates [50]. A single layer of stretchable  Ti3C2Tx/SWNT 

film demonstrated a strain‑invariant EMI shielding perfor‑
mance of ≈ 30 dB up to 800% areal strain.

Zhang’s group investigated the EMI shielding perfor‑
mance of  Ti3C2Tx MXene‑GO film [92]. Thanks to the high 
electronic conductivity, the  Ti3C2Tx‑GO film with a small 
film thickness of 7 µm displayed the EMI SE of 50.2 dB. 
Compared with other shielding materials, the MXene‑GO 
films were obviously superior in combining excellent EMI 
shielding performance and good tensile strength.

A  Ti3C2Tx‑bonded carbon black (CB) film with a porous 
structure was fabricated by a vacuum‑assisted filtration 
method [93]. With the incorporation of 70 mg of CB, the 
 Ti3C2Tx‑bonded CB film showed EMI shielding perfor‑
mance of 60 dB with a  SEA of 15 dB and  SER of 45 dB. 
Moreover, the  SEEt reached 8718 dB  cm2  g−1. Research 
showed that the porous structure could improve the absorp‑
tion, resulting from enhanced scattering and reflection.

4.3.3.2 Others A aluminum ion‑reinforced  Ti3C2Tx 
MXene (Al‑Ti3C2Tx) film was fabricated by Zhang group 
via vacuum filtration method [94]. The Al‑Ti3C2Tx film dis‑
played a high conductivity of 265,600 S  m−1. The strong 
and highly conductive MXene film with a small thickness of 
39 mm showed EMI shielding performances of over 80 dB 
in the X‑band.

Ning et al. investigated the EMI shielding performance 
of a Mn ion‑intercalated  Ti3C2Tx (MIT) film [95]. The MIT 
film showed an average electronic conductivity of 4268 S 
 m−1, which was two times than that of pure  Ti3C2Tx film 
(1894 S  m−1). The MIT film with a thickness of 2.5 µm 
showed enhanced performance of 44.3 dB compared with 
pure  Ti3C2Tx film (24.1 dB), owing to the additive internal 
absorption.

A sliver nanowire (AgNW)/Ti3C2Tx film was fabricated 
by a pressured‑extrusion film‑forming process [96]. The 
MXene/AgNW composite film with a low loading of nano‑
cellulose (0.167 wt%) showed high electrical conductiv‑
ity of ~ 30,000 S  m−1, and remarkable  SEEt of 16,724 dB 
 cm2  g−1.

A  Ti3C2Tx/montmorillonite (MMT) film was fabricated 
by a simple vacuum‑assisted filtration technique [97]. The 
EMI shielding performance of  Ti3C2Tx/MMT film with dif‑
ferent concentration ratios was investigated. The composite 
film with 10 wt% MMT showed high electrical conductiv‑
ity (4420 S  m−1), EMI SE of 65 dB in the entire X‑band 
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and  SEEt of over 10,000 dB  cm2  g−1 at a thickness of only 
25 µm.

4.4  Foam

4.4.1  Pristine

The inceptive study of the EMI shielding performance of 
pure MXene foam was reported by Yu’s group [98]. They 
used an efficient and facile method to prepare free‑standing, 
flexible, and hydrophobic  Ti3C2Tx MXene foam (Fig. 6a–g). 
In striking contrast to well‑known hydrophilic MXene 
materials, the  Ti3C2Tx foams surprisingly had hydrophobic 
surfaces, with outstanding water resistance and durabil‑
ity. Thanks to the highly efficient wave attenuation in the 

favorable porous structure, the lightweight  Ti3C2Tx foam 
showed enhanced EMI shielding performance of 70 dB com‑
pared with its unfoamed film counterpart (53 dB) (Fig. 6h–j).

4.4.2  Hybrid

A porous 3D  Ti3C2Tx MXene/C hybrid foam (MCF) was 
prepared by sol–gel followed by thermal reaction [99]. And, 
the MCF/epoxy was obtained via vacuum‑assisted impreg‑
nation followed by curing process. The MCF/epoxy with 
4.25 wt% MCF displayed the EMI shielding performance 
of 46 dB and electrical conductivity of 184 S/m, which was 
4.8 and 3.1 ×  104 times higher than that of MCF‑0/epoxy 
nanocomposites (without  Ti3C2Tx MXene), respectively.

A porous few‑layered  Ti2CTx (f‑Ti2CTx) MXene/poly 
(vinyl alcohol) (PVA) composite foam was fabricated by a 
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facile freeze‑drying method [100]. The f‑Ti2CTx/PVA foam 
with a content of only 0.15 vol% afforded a  SEEt of 5136 dB 
 cm2  g−1. Such excellent EMI shielding performance was 
attributed to the multi‑porous structure, internal reflection, 
and polarization effect.

A lightweight  Ti3C2Tx MXene/graphene  (Ti3C2Tx‑GO) 
hybrid foam was fabricated by freeze‑drying and reduction 
heat treatment [101]. Thanks to the improved foam electrical 
conductivity and highly efficient wave attenuation in inter‑
connected porous structures, the  Ti3C2Tx‑GO hybrid foam 
showed excellent EMI shielding performance of 50.7 dB and 

specific EMI shielding effectiveness of 6217 dB  cm3  g−1, 
which was much higher than that most of the EMI shielding 
materials.

Silver nanowires (AgNWs)/Ti3C2Tx foam was fabri‑
cated by integrating AgNWs as the skeleton and  Ti3C2Tx 
as the covering decoration for foaming structure [102]. The 
AgNWs/Ti3C2Tx foam showed EMI shielding performance 
of 41.3 dB at the thickness of 1.2 µm in the X‑band. The 
freespace created during foaming helped to obtain EM wave 
scattering within the skin depth.
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A polydimethylsiloxane (PDMS)‑coated  Ti3C2Tx MXene 
foam was fabricated by using the  Ti3C2Tx assisted with 
sodium alginate (SA) as template followed by coating a 
thin layer of PDMS [103]. The  Ti3C2Tx/SA/PDMS foam 
with 95 wt%  Ti3C2Tx exhibited an excellent conductivity 
of 2211 s  m−1 and EMI shielding performance of 70.5 dB. 
Moreover, the foam with 74 wt%  Ti3C2Tx displayed EMI SE 
of 48.2 dB after 500 compression–release cycles.

4.5  Aerogel

4.5.1  Pristine

Han et al. fabricated three types of porous MXene aero‑
gels  (Ti3C2Tx,  Ti2CTx, and  Ti3CNTx) via a bidirectional 
freeze‑casting technique (Fig. 7a–c) [104]. The EMI SE 
of  Ti3C2Tx,  Ti2CTx, and  Ti3CNTx aerogels reached 70.5, 
69.2, and 54.1 dB at the thickness of 1 mm (Fig. 7d, e), 
respectively. Especially, the  SEEt of  Ti2CTx aerogel with 
a density of 5.5 mg  cm−3 and a thickness of 1 mm reached 
8818.2 dB  cm2  g−1, which was several times higher than 
that of other materials. Meanwhile, Bian et al. prepared 
an ultralight  Ti3C2Tx aerogel by the freeze‑drying method 
[105]. The  Ti3C2Tx aerogel with density of 6.26 mg  cm−1 
exhibited electrical conductivity of 22 S  cm−1 and  SEEt of 
9904 dB  cm3  g−1. The excellent EMI shielding performance 
was attributed to the high electrical conductivity and porous 
structures.

4.5.2  Hybrid

A cellulose nanofibril (CNF)/Ti3C2Tx aerogel was fabricated 
via an ice‑templated freeze‑casting approach (Fig. 7f) [106]. 
The  Ti3C2Tx MXene “bricks” bonded by CNF “mortars” of 
the nacre‑like cell walls induced high electrical conductivity, 
and interfacial polarization led to excellent EMI shielding 
performance. The CNF/Ti3C2Tx aerogel with ultralow den‑
sity showed EMI SE up to 74.6 dB, SEE of as 30,660 dB 
 cm3  g−1, and  SEEt achieving 189,400 dB  cm2  g−1 (Fig. 7g, 

h), exceeding that of other MXene‑based or other shielding 
architectures reported so far.

Zhang et al. fabricated a 3D  Ti3C2Tx MXnen/reduced 
graphene (RGO) hybrid aerogel by directional freezing and 
freeze‑drying [107]. The  Ti3C2Tx/RGO hybrid aerogel with 
aligned cellular microstructure displayed a high electrical 
conductivity of 1085 S  m−1 and an excellent EMI shielding 
performance of 50 dB in the X‑band at a low  Ti3C2Tx content 
of 0.74 vol%, which was the best results among polymer 
nanocomposites with similar loading of  Ti3C2Tx.

Koo’s group fabricated a 3D porous  Ti3C2Tx/carbon 
nanotube (CNT) hybrid aerogel by a bidirectional freezing 
method [108]. The  Ti3C2Tx/CNT aerogel showed excellent 
electrical conductivity of 9.43 S  cm−1 and superior EMI 
shielding performance of 103.9 dB at 3 mm thickness over 
the X‑band frequency. The excellent EMI shielding perfor‑
mance of the  Ti3C2Tx/CNT hybrid aerogel was attributed to 
the 3D porous structure with a high‑conducting and uniform 
lamellar structure.

Liang et al. prepared a  Ti3C2Tx MXene/wood‑derived 
porous carbon (WPC) aerogel via freeze‑drying procedure 
[109]. Such wall‑like “mortar‑brick” structures profoundly 
prolong the transmission paths of the EM waves and dissi‑
pate the incident EM waves in the form of heat and electric 
energy, thereby exhibiting the superior EMI shielding per‑
formance. The  Ti3C2Tx/WPS aerogel showed EMI SE value 
of 71.3 dB at density as low as 0.197 g  cm−3.

4.6  Fabric

MXene fabric usually refers to MXene‑coated fabric. The 
main fabrics used for this purpose are cotton or polymers, 
although other materials are also utilized.

4.6.1  Cotton

Geng et al. prepared  Ti3C2Tx coated cotton fabrics with low 
 Ti3C2Tx loading (1.5–2.6 mg  cm−2) through a facile vacuum 
filtration process [110]. The fabric with  Ti3C2Tx loading of 
2.6 mg  cm−2 showed  SEEt of 2969 dB  cm2  g−1. Zhang et al. 
reported that the  Ti3C2Tx modified fabric with a low  Ti3C2Tx 
loading 6 wt% exhibited excellent electrical conductivity of 
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5 Ω  sq−1 and outstanding EMI shielding performance (up 
to 36 dB) [111]. Cheng et al. fabricated a  Ti3C2Tx MXene‑
coated cotton fabric by a simple solution impregnation and 
dip‑coating method [112]. The cotton fabric coated by rising 
amount of  Ti3C2Tx could improve the EMI shielding perfor‑
mance. When the amount of  Ti3C2Tx was 5.2 mg  cm−2, the 
fabric afforded excellent electrical conductivity of 670.3 S 
 m−1 and EMI SE of 31.04 dB in the X‑band (Fig. 8a, b). 
Moreover, the EMI shielding performance of the fabric was 
almost not changed after 800 bending times (Fig. 8c, d).

4.6.2  Polymer

A flexible and durable cellulose/Ti3C2Tx MXene nanocom‑
posite fabric was fabricated by a simple dip‑coating method 
[113]. The fabric with a  Ti3C2Tx nanosheet loading of 1.89 
vol% displayed an outstanding electrical conductivity of 
2756 S  m−1 (Fig. 8e). After a polydimethylsiloxane (PDMS) 
coating, EMI SE of the fabric could achieve over 43 dB in 
the X and Ku at the  Ti3C2Tx loading of 1.07 vol%, and no 
apparent decline was observed after 2000 bending–releasing 
cycles in the durability test (Fig. 8f).

Zhang’s group fabricated a  Ti3C2Tx MXene‑decorated 
polyester fabric  (Ti3C2Tx‑fabric) by depositing in situ polym‑
erized polypyrrole (PPy)‑modified  Ti3C2Tx nanosheets onto 
poly (ethylene terephthalate) fabric, followed by silicone 
coating [114]. The modified fabric displayed a high electri‑
cal conductivity of 1000 S  m−1 and EMI SE of 90 dB, with 
a thickness of 1.3 mm. Benefiting from the contribution of 
PPy‑to‑EM wave absorption due to introduction of the polar 
group, the EMI shielding performance of the  Ti3C2Tx‑fabric 
was better than that of the fabric modified by MXene at 
similar conductivities.

Yuan et al. prepared a flexible and stretchable  Ti3C2Tx 
MXene/polyurethane (PU) fabric [115]. The  Ti3C2Tx/PU 
fabric with sandwich structure exhibited EMI SE of ~ 20 dB 
at a stretching process within 30% deformation.

Polyaniline (PANI)/Ti3C2Tx/carbon fiber (CF) fabric was 
fabricated based on the LbL assembly approach [116]. The 
fabric with a thickness of 0.55 mm possessed a high EMI 
shielding performance of 26 dB, SSE of 135.5 dB  cm3  g−1 
and electrical conductivity of 24.57 S  m−1.
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4.6.3  Others

Yu’s group prepared the silk fabric with biomimetic leaf‑like 
MXene/silver nanowire by depositing in situ polymerized 
PPy‑modified  Ti3C2Tx MXene sheets onto poly (ethylene 
terephthalate) textiles followed by a silicone coating [117]. 
The flexible fabric displayed a low sheet resistance of 0.8 Ω 
 sq−1, excellent EMI shielding performance of 54 dB in the 
X‑band at the thickness of 120 µm.

Ti3C2Tx MXene‑decorated wood‑pulp fabric was fab‑
ricated by depositing highly conductive  Ti3C2Tx MXene 
networks onto wood‑pulp fabric grid (FG) followed by 
hydrophobic methyltrimethoxysilane (MTMS) coating 

with multi‑scaled roughness via a simple vacuum‑filtration 
approach and sol–gel process [118]. The fabric possessed 
superior EMI SE up to ~ 57.8–90.2 dB.

5  MXene‑Based Materials for EM Wave 
Absorption

5.1  Pure MXene Matrix

5.1.1  Non‑annealing

The earliest research was concerned with the EM wave‑
absorbing properties of multilayer  Ti3C2Tx. Qing et  al. 
prepared multilayer  Ti3C2Tx MXene by etching  Ti3AlC2 
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with 50% HF for 3 h (Fig. 9a–d) [119]. Compared with the 
 Ti3AlC2/wax, the multilayer  Ti3C2Tx/wax showed high EM 
wave absorption at the same filling concentration of 50 wt% 
(Fig. 9e). This result was due to the unique two‑dimensional 
(2D) morphology of multilayer  Ti3C2Tx MXene, such as the 
large number of defects and larger internal boundary layer 
capacitance. Feng et al. further confirmed that the excellent 
EM wave‑absorbing property of multilayer  Ti3C2Tx/wax was 
due to the high dielectric loss and the strong multi‑reflec‑
tions [120]. Luo et al. used a combination of experiment 
and simulation to study the EM wave absorption of multi‑
layer  Ti3C2Tx [121], finding that the frequency dispersion 
effect and the double‑peaked dielectric spectral features of 
 Ti3C2Tx/wax led to superior EM wave absorption.

The influence of different etching time on the EM wave‑
absorbing performance of multilayer  Ti3C2Tx has also been 
studied. Tong et al. investigated the effect of different etch‑
ing time in 40 wt% HF acid on the EM wave absorption 
of multilayer  Ti3C2Tx MXene (0, 6, 24, 48, 96, 144, and 
192 h) [122]. With the increase of etching time, the mor‑
phology of  Ti3C2Tx was destroyed gradually.  Ti3C2Tx etched 
for 24 h afforded the best EM wave‑absorbing properties 
among etching sample. A minimum RL value of − 42.5 dB 
was achieved at the thickness of 1.7 mm. This result could be 
attributed to multiple reflections between MXene layers and 
interfacial polarizations. Zhao’s group etched the multilayer 
 Ti3C2Tx in ≥ 40 wt% HF acid for different time (1, 2, and 3 h) 
[123] and then explored their EM wave absorption. Multi‑
layer  Ti3C2Tx etched for 3 h  (Ti3C2Tx‑3) had excellent EM 
wave‑absorbing property. Forty percentage ratio multilayer 
 Ti3C2Tx‑3/wax showed a minimum RL value of − 36.3 dB 
with a thickness of 4.5 mm. Cui et al. produced multilayer 
 Ti3C2Tx etched by HCl/LiF with different diverse etching 
times (12, 24, 36, 48, and 60 h) [124] and studied their EM 
wave absorbing properties. They found the same result as 
HF etching. The  Ti3C2Tx etched 24 h showed best EM wave 
absorption, owing to multilayer scattering between the lami‑
nate structures.

The influence of different etchants on the EM wave‑
absorbing properties was reported by Xu’s group [125]. 
Multilayer  Ti3C2Tx MXenes were obtained by ultrasonica‑
tion‑solvothermal treatment in different solvents including 
dimethylformamide (DMF), ethanol, and dimethyl sulfox‑
ide (DMSO), respectively. Research showed that multilayer 
 Ti3C2Tx treated with DMF showed excellent wave‑absorbing 

properties due to the larger layer space and diminished oxi‑
dation effects.

Cao’s group was firstly investigated the EM wave absorp‑
tion performance of the delaminated  Ti3C2Tx (d‑Ti3C2Tx) 
nanosheet etched by HCl/LiF (Fig. 9f, g) [44]. All  Ti3C2Tx 
nanosheet/wax composites with different concentra‑
tions showed excellent EM wave absorption (Fig. 9h–k). 
Especially for 40 wt% composite, a minimum RL value 
of − 47.9 dB and a corresponding absorption bandwidth of 
3.6 GHz were achieved at a thickness of 2.5 mm. Moreo‑
ver, they found the transformation mechanism between EM 
energy and thermal energy in the composite. The higher the 
concentration of delaminated  Ti3C2Tx nanosheet in the com‑
posite, more was the conversion of EM energy to thermal 
energy.

Xu’s group fabricated the multilayer  Nb2CTx MXene by 
49 wt% HF etching and solvothermal/hydrothermal treat‑
ment [126]. They found that multilayer  Nb2CTx further 
treated in ethanol showed much more superior absorption 
capability. This result could be due to the enlarged inter‑
layer spacing, and increased surface functional groups after 
ethanol‑based solvothermal treatment.

5.1.2  Annealing

Yin’s group originally reported that the multilayer  Ti3C2Tx 
MXene annealed at 800 °C for 2 h in Ar atmosphere had 
excellent EM wave‑absorbing properties [58]. Such excel‑
lent EM wave‑absorbing properties were due to the surface 
functional groups of MXene modified by annealing. The 
annealing led to the formation of a local sandwich struc‑
ture composed of  TiO2 nanocrystals and amorphous carbon, 
which enhanced the EM wave absorption. After that, they 
investigated the EM wave‑absorbing properties of multi‑
layer  Ti3C2Tx at different annealing temperatures (600, 700, 
and 800 °C) for 1 h in  CO2 [127]. The multilayer  Ti3C2Tx 
annealed at 800 °C showed best EM wave absorption per‑
formance with its RL value achieving − 36 dB and absorp‑
tion bandwidth of 5.6 GHz. Meanwhile, they explored the 
EM wave absorption performance of multilayer  Ti3C2Tx 
annealed at 500, 800, and 900 °C for 1 h in  CO2 [128]. The 
microwave absorption of multilayer  Ti3C2Tx annealed at 800 
°C was best, which was due to the enhanced polarization loss 
and stronger conduction loss.
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Fan et al. fabricated the multilayer  Ti3C2Tx, and annealed 
it in  O2 at different temperatures (100, 200, 300, 400, and 
500 °C) for 2 h [129]. The multilayer  Ti3C2Tx calcined at 
100 °C showed excellent EM wave‑absorbing properties, 
with a minimum RL value of − 40.07 dB at 19.2 GHz and 
the absorption bandwidth of 3.8 GHz. This result was attrib‑
uted to the appropriate complex permittivity and matching 
impendence.

5.2  MXene Hybrid Matrix

EM wave absorption can be improved by increasing the 
magnetic loss or dielectric loss. The magnetic loss of the 
absorber can be improved by doping with magnetic materi‑
als. Certain carbon‑based materials with high conductivity 
can be doped into the absorber to enhance the dielectric loss.

5.2.1  Magnetic Hybrid

5.2.1.1 Fe‑Based Liu et  al. investigated the EM wave 
absorption of the multilayer  Ti3C2Tx doped with different 
concentrations of  Fe3O4 (3, 5, and 10 wt%)  (Ti3C2Tx‑3, 
 Ti3C2Tx‑5,  Ti3C2Tx‑10) [130]. By tuning the doping concen‑
tration of  Fe3O4, the sample showed improved microwave 
absorption performance. Among them,  Ti3C2Tx‑10/wax 
showed excellent absorption performance, with a maximum 
RL value of − 57.3 dB. Zhao et al. further investigated the 
EM wave absorption of multilayer  Ti3C2Tx/Fe3O4 [131]. 
The multilayer  Ti3C2Tx/Fe3O4 exhibited enhanced EM wave 
absorption compared with pure multilayer  Ti3C2Tx, which 
is due to the outstanding impedance matching and efficient 
attenuation. Yang’s group studied the EM wave‑absorbing 
properties of multilayer  Ti3C2Tx doped with  Fe3O4 nanopar‑
ticles  (Fe3O4@Ti3C2Tx) with different concentrations [132]. 
The sample contained 25 wt%  Fe3O4 nanoparticle displayed 
outstanding EM wave absorption, with a minimum RL 
value of − 57.2 dB at 15.7 GHz and bandwidth of 1.4 GHz, 
caused by enhanced interface polarization. Che’s group fab‑
ricated magnetized multilayer  Ti3C2Tx MXene microsphere 
by embedded  Ti3C2Tx MXene into a confined and magnet‑
ized  Fe3O4 nanospheres (designated as M/F) [133]. This 
structure could enhance the specific interfaces and dielectric 
polarization. Meanwhile, these  Fe3O4 magnetic led to the 
optimized impedance balance and EM coordination capa‑
bility. As expected, the M/F composite with 15 wt%  Fe3O4 
content hold distinct EM wave absorption property with the 

strong reflection loss (− 50.6 dB) and absorption bandwidth 
(4.67 GHz) at the thickness of 2 mm.

The multilayer  Ti3C2Tx/flaky carbonyl iron (FCI) compos‑
ite with different mass ratios were fabricated by the ultra‑
sonic mixing method [134]. An excellent EM wave‑absorb‑
ing properties can be realized by optimizing the  Ti3C2Tx and 
FCI content. Beneficial from the good impedance matching 
and moderate attenuation ability, the composite with 20 wt% 
 Ti3C2Tx and 40 wt% FCI loading presented the absorption 
bandwidth of 8.16 GHz with a thickness of 1.0 mm.

5.2.1.2 Ni‑Based A  Ti3C2Tx/Ni‑nanoparticle hybrid 
was synthesized by in  situ hydrothermal treatment. The 
 Ti3C2Tx‑Ni hybrid showed a RL value of − 47.06 dB with 
a thickness of 1.5  mm and bandwidth of 3.6  GHz [135]. 
The combined effect of magnetic loss, conduction loss and 
dielectric loss is the key to achieving such excellent EM‑
absorbing ability. Liang et al. prepared a  Ti3C2Tx MXene/
Ni‑nanochain (Ni@MXene) hybrid via a facile and moder‑
ate co‑solvothermal method [36]. The Ni@MXene hybrid 
displayed a minimum RL of − 49.9 dB at the thickness of 
1.75  mm when the Ni‑nanochain content was 90 wt%. It 
was further proved that the synergistic effect of conductive 
MXene and the magnetic Ni‑nanochain led to the excellent 
EM wave‑absorbing ability. Che’s group also investigated 
the EM wave‑absorbing properties of a multilayer  Ti3C2Tx/
Ni hybrid [136]. The Ni nanoparticles were uniformly 
distributed on the surface and in the multilayered gaps of 
 Ti3C2Tx. This unique structure led to excellent EM wave‑
absorbing properties. The hybrid showed a minimum RL 
of − 50.5 dB at 5.5 GHz. Liang et al. investigated the EM 
wave‑absorbing properties of Ni‑, Co‑ and NiCo‑doped 
multilayer  Ti3C2Tx [137]. Among them, multilayer  Ti3C2Tx 
doped with Ni nanoparticles (Ni@Ti3C2Tx) in a polyvi‑
nylidene fluoride (PVDF) matrix showed strong EM wave 
absorption. With 10 wt% Ni dopant, the sample exhib‑
ited the optimal EM wave absorption, with a minimum 
RL of − 52.6 dB at 8.4 GHz and absorption bandwidth of 
3.7 GHz. Liu et al. found that compared with the individual 
 Ti3C2Tx and Ni powders [138], hybrid  Ti3C2Tx/Ni afforded 
the most favorable EM wave absorption performance with a 
minimum RL value of − 24.3 dB at 9.8 GHz.

5.2.1.3 Co‑Based Deng et  al. fabricated the  Co3O4/
Ti3C2Tx by the two‑step method. When the mass ratio of 
 Ti3C2Tx to  Co3O4 was 1:3 [139], the  Co3O4/Ti3C2Tx hybrid 
showed better than 90% absorption from 10.8 to 17 GHz. 
Such excellent performance is owing to combined effects 
of multilayer structure, defects, conductivity of  Ti3C2Tx and 
equivalent capacitance of  Co3O4.
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5.2.1.4 Multi‑based A CoFe@Ti3C2Tx hybrid was pre‑
pared by in situ reduction, and a minimum RL value of − 
36.29  dB could be obtained with a thickness of 2.2  mm 
[140]. The excellent EM wave absorption performance was 
due to the sandwich‑like structure and enhanced interfacial 
polarization. He et  al. further confirmed that multilayer 
 Ti3C2Tx modified by CoFe could improve the EM wave 
absorption.

A FeCo@Ti3C2Tx hybrid was fabricated by in situ hydro‑
thermal treatment [141]. The incorporation of magnetic 
FeCo could improve the EM wave‑absorbing property. The 
FeCo@Ti3C2Tx hybrid exhibited a broad EM wave‑absorb‑
ing bandwidth of 8.8 GHz, due to enhanced impedance 
matching and microwave attenuation.

A Co‑doped NiZn ferrite (CNZF)/polyaniline (PANI) on 
 Ti3C2Tx hybrid (CNZF/PANI/Ti3C2Tx) was synthesized by 
hydrothermal reaction and interfacial polymerization [142]. 
The dipole polarization, interfacial polarization, natural 
resonance, eddy current loss, and multiple reflections con‑
tributed to the improved EM wave absorption performance 
of CNZFO/PANI/Ti3C2Tx hybrid. The multiple‑layer hybrid 
exhibited excellent EM wave absorption with a minimum RL 
of − 37.1 dB and absorption bandwidth of 4.1 GHz.

Hou et al. investigated the EM wave‑absorbing properties 
of  NiCo2O4‑doped multilayer  Ti3C2Tx at different anneal‑
ing temperatures (350, 400, 450, and 500 °C) for 2 h in 
argon [143]. The  NiCo2O4/Ti3C2Tx annealed at 350 °C 
displayed the best EM wave absorption, with the RL value 

of − 50.96 dB. This result was attributed to the polariza‑
tion behavior and multiple scattering produced by unique 
structures.

The EM wave‑absorbing properties of  Ba3Co2Fe24O41, 
multilayer  Ti3C2Tx, and polyvinyl butyral (PVB) after physi‑
cal mixing were investigated by Yang’s group [144]. The 
as‑synthesized PVB/Ba3Co2Fe24O41/Ti3C2Tx exhibited out‑
standing and efficient EM wave attenuation. A minimum 
RL value for the PVB/Ba3Co2Fe24O41/Ti3C2Tx composite 
reached − 46.3 dB at 5.8 GHz; the absorption bandwidth was 
1.6 GHz, with a thickness of only 2.8 mm.

5.2.2  Carbon‑Based Hybrid

A graphite/TiC/Ti3C2Tx (G/TiC/Ti3C2Tx) hybrid was 
obtained by two steps [145]. Firstly, the graphite/TiC/
Ti3AlC2 (G/TiC/Ti3AlC2) hybrid was prepared in a bath of 
molten salts. G/TiC/Ti3C2Tx was obtained after etching the 
Al atoms from G/TiC/Ti3AlC2 (Fig. 10a–c). It was found 
that the graphite/TiC/Ti3AlC2‑wax matrix with a thickness 
of 2.1 mm exhibited a minimum RL of − 63 dB and the effec‑
tive absorption bandwidth was more than 3.5 GHz (Fig. 10d, 
e).

Multilayer  Ti3C2Tx MXene modified with in situ grown 
carbon nanotubes  (Ti3C2Tx/CNT) was fabricated by Yin’s 
group (Fig. 10f, g) [146]. Compared with the pure multilayer 
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 Ti3C2Tx MXenes, the hierarchical microstructure makes a 
contribution to the outstanding EM wave absorption perfor‑
mance, with a minimum RL value of − 52.9 dB and absorp‑
tion bandwidth of 4.46 GHz (Fig. 10h, i).

Dai et al. reported that the  Ti3C2Tx MXenes/nano‑carbon 
sphere hybrid exhibited RL of − 54.67 dB at 3.97 GHz [147], 
owing to the unique structure of  Ti3C2Tx MXenes/nano‑car‑
bon and the formation of a heterogeneous interface structure.

Nitrogen‑doped graphene (N‑GP) and  Ti3C2Tx compos‑
ites were prepared by Qing group [148]. The values and 
frequency dependencies of EM properties of N‑GP/Ti3C2Tx 
could be tuned by the combination of the unique structure 
and dielectric characteristics of the N‑GP and  Ti3C2Tx. A 
minimum RL of the N‑GP/Ti3C2Tx composite reached up 
to − 52 dB, and absorption bandwidth could be obtained in 
the frequency range of 10.9–18 GHz with a thickness of 
only 1.4 mm.

5.2.3  Others Hybrid

Qian et al. prepared an urchin‑like ZnO–Ti3C2Tx hybrid 
through a coprecipitation process [149]. Compared with 
pure multilayer  Ti3C2Tx, ZnO–Ti3C2Tx hybrid showed sig‑
nificant enhanced EM wave absorption. The minimum RL 
of 75 wt% ZnO–Ti3C2Tx/wax realized − 26.30 dB, which is 
much better than that of pure multilayer  Ti3C2Tx (− 6.70 dB), 
owing to larger interfaces and the construction of semicon‑
ductive networks.

Ti3C2Tx MXenes/polypyrrole microspheres  (Ti3C2Tx/
PPy) composites with delaminated structure were fabri‑
cated for significant enhancement of EM wave‑absorbing 
properties [150]. Thanks to the synergistic effect between 
 Ti3C2Tx and PPy microspheres, the obtained  Ti3C2Tx@PPy 
composite exhibited excellent EM absorption performance. 
The 10 wt%  Ti3C2Tx@PPy composites in wax matrix dis‑
played a minimum RL of − 49.5 dB at 7.6 GHz, and the 
absorption bandwidth was 5.14 GHz. Tong et al. reported 
that multilayer  Ti3C2Tx MXene decorated with PPy chains 
is a good microwave‑absorbing material [151]. The 25 wt% 
 Ti3C2Tx/PPy hybrids in a wax matrix showed a minimum 
RL of − 49.2 dB.

A multilayer  Ti3C2Tx modified by  MoS2 was fabricated by 
a hydrothermal method [152]. The complex permittivity of 
 MoS2/Ti3C2Tx increased compared with that of multilayer 
 Ti3C2Tx. This result led to enhanced EM wave‑absorbing 

performance. When the thickness of  MoS2/Ti3C2Tx‑wax 
was 2.5 mm, the corresponding absorption bandwidth was 
2.6 GHz.

A multilayer  Ti3C2Tx MXene/polyaniline (PANI) was 
prepared by the hydrothermal reaction [153]. The EM wave 
absorption of sample with different PANI doping concen‑
trations was systematically studied. When the mass ratio of 
 Ti3C2Tx to polyaniline is 1:2, the sample showed best EM 
wave absorption. The maximum RL reached − 56.30 dB at 
13.80 GHz with a thickness of 1.8 mm.

The  Nb2O5 with different morphologies was prepared 
in situ and implanted between the layers of the  Nb2CTx 
MXene via hydrothermal method [154]. The  Nb2O5/Nb2CTx 
exhibited the enhanced EM wave absorption compared with 
primary  Nb2CTx MXene. Especially,  Nb2CTx doped with 
columnar  Nb2O5 showed a minimum RL of − 44.1 dB at 
2.8 GHz, owing to the increased lamellar spacing of the 
 Nb2CTx.

5.3  Foam

Yin’s group fabricated reduced graphene oxide (RGO)/
Ti3C2Tx hybrids foam via self‑assembly and sacrificial 
template processes [155]. The RGO/Ti3C2Tx foam with 
the density is merely 0.0033 g  cm−3 possessed outstanding 
EM absorption performance superior to all reported foam‑
based counterparts, and the absorption bandwidth covers 
the whole X‑band at 3.2 mm, and its specific EM absorp‑
tion performance value exceeds 14,299.2 dB  cm−2  g−1. 
Those results were attributed to the unique heterogeneous 
interface associated with core–shell structures. Mean‑
while, they synthesized ordered lamellar few‑layered 
 Ti3C2Tx/SiC nanowires (f‑Ti3C2Tx/SiCnws) hybrid foams 
with ultralow density via a combination of self‑assembly 
and bidirectional freezing processes (Fig. 11a–d) [156]. 
The f‑Ti3C2Tx/SiCnws hybrid foam showed a minimum 
RL of − 55.7  dB at an ultralow density of only about 
0.029 g  cm−3 (Fig. 11e, f). Compared with most of the 
current foam‑based counterparts, the free‑standing foams 
exhibited enhanced EM absorption properties, owing to 
enhanced polarization loss and balance the conductive 
loss and impedance matching characteristics caused by 
the unique microstructure and phase compositions. After 
that, they prepared porous  Ti2CTx MXene/poly vinyl 
alcohol (PVA) composite foams constructed by a facile 
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freeze‑drying method (Fig. 11g–j) [100].  Ti2CTx/PVA 
foam possessed an outstanding EM absorption perfor‑
mance with a minimum RL of − 18.7 dB and an absorption 
covering the whole X‑band with any thickness from 3.4 to 
3.9 mm (Fig. 11k, l).

A new ultralight carbon foam modified by  Ti3C2Tx 
nanosheet (CF/Ti3C2Tx) with three‑dimensional network 
structure was prepared by vacuum impregnation and 
freeze‑drying process [157]. The CF/Ti3C2Tx foam with 
ultralow density of only 5–7 mg  cm−3 showed excellent 
flexibility and steady compression‑resilience properties. 
Meanwhile, the foam showed higher EM absorption than 
most foam‑based EM absorbers, with a minimum RL 
of − 45 dB at 8.8 GHz.

5.4  Aerogel

Yang et  al. prepared aligned  Ti3C2Tx MXene/gelatin 
(M@G) nanocomposite aerogel using a unidirectional 

freeze casting method [158]. The composite aerogel 
showed a minimum RL of − 59.5 dB at 14.04 GHz and an 
absorption bandwidth of 6.24 GHz in the parallel direction 
but presented a minimum RL of − 57.3 dB at 4.08 GHz 
with an absorption bandwidth covering of 3.72–4.56 GHz 
in the vertical direction. The aerogel exhibited signifi‑
cantly anisotropic EM wave‑absorbing properties, owing 
to the unidirectional aligned microstructure.

Jiang et  al. fabricated the hierarchically structured 
cellulose aerogels with interconnected  Ti3C2Tx MXene 
nanosheet networks via a freeze‑casting and chemical 
cross‑linking strategy [159]. The aerogel with a low den‑
sity (0.31 g  cm−3) presented a minimum RL of − 43.4 dB 
at 11.2 GHz and an absorption bandwidth of 4.5 GHz, 
which was due to enhanced conductive loss and multiple 
reflection attenuating.

A  TiO2/Ti3C2Tx/RGO ternary composite aerogel with 
a three‑dimensional hierarchical architecture was syn‑
thesized by a hydrothermal method [160]. The minimum 
RL of the aerogel reached − 65.3 dB at the thickness of 
2.5 mm. At the same time, the absorption bandwidth was 
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4.3 GHz, with a thickness of only 2.0 mm. The improved 
EM wave absorption performance was attributed to the 
highly porous conductive networks, multiple reflection, 
and scattering and defective polarization properties.

Wang et al. reported a multilayer  Ti3C2Tx@RGO hybrid 
aerogel prepared by a hydrothermal method and freeze‑
drying treatment [161]. Compared with pure multilayer 
 Ti3C2Tx, the EM wave absorption of the  Ti3C2Tx@RGO 
aerogel improved significantly. The minimum RL achieved 
for the  Ti3C2Tx@RGO aerogel was − 31.2 dB at 8.2 GHz, 
and the absorption bandwidth reached 5.4 GHz. Such good 
performance was due to the conductive network, interface 
polarization, dipole polarization, and multiple scattering, 
as important contributors.

5.5  Fabric

To obtain the enhanced EM wave absorption performance, 
the hierarchical  Ti3C2Tx MXene/Ni chain/ZnO array hybrid 
nanostructures were rationally constructed on cotton fab‑
ric [162]. The impedance matching could be modulated by 
adjusting the concentration of Ni chains to manipulate the 
magnetic loss. The minimum RL value for the hybrid fabric 

could reach − 35.1 dB at 8.3 GHz at the thickness of 2.8 mm, 
and its absorption bandwidth could cover the whole X‑band 
with thickness of 2.2 mm.

6  Overview and Perspectives

As shown in Table 1, MXene antennas exhibit excellent 
comprehensive performance compared with other mate‑
rials [163–169], as clearly confirmed by Fig. 12a, b. This 
indicates that MXene antennas have great development 
prospects for the future. Research on the EM attenuation 
properties of MXenes was initiated in 2016. Thereafter, a 
large number of MXene‑based structures have been designed 
for EMI shielding and EM wave absorption based on the 
principle of “lightweight, wide, and strong.” Tables 2 and 
3 list the EMI shielding and EM wave absorption perfor‑
mances of MXene‑based materials, respectively. Research 
on MXene‑based shielding and absorption materials has 
mainly focused on film and hybrid materials (Fig. 12c–f), 
respectively. MXene‑based films afford the highest conduc‑
tivity among this class of materials (Table 2), which is the 
reason why MXene films are the most widely used materials 
for EMI shielding. However, the high conductivity leads to 

Table 1  The comprehensive performance of patch antennas made of different materials

Type d (µm) Efficiency (100%) Frequency (GHz) Substrate Substrate 
thickness 
(mm)

σ (S  m−1) References

Ti3C2Tx MXene 1 80–93.4 5.6, 10.9, and 16.4 RT 5880 1.6 1.5 ×  106 [51]
3.2 87–98.4
5.5 90.6–99

Copper 35 95–100 RT 5880 1.6 5.8 ×  107 [51]
EGaIn 100 46–60 3.45 PDMS 1 3.4 ×  106 [25]
Copper mesh 20 49–56.88 2.4–2.5 acrylic 1.2 1 ×  106 [26]
SWCNTS/EGaIn 100 90 4 PDMS 0.5 3.4 ×  106 [27]
NbSe2 0.8 70.6 2.01–2.8 PET – 9.7 ×  105 [28]
IZTO/Ag/IZTO 0.1 7.76 2.45 Acryl 1 – [29]
Cu mesh 5 42.69 2.45 Acryl 1 – [29]
EGaIn 1500 75 5.2 Photopolymer resin 6 5.1 ×  106 [30]
Aligned CNTs 8.16 94 10, 14 RT 5870 – 4.63 ×  106 [31]
Graphene 25 64.9 6 PDMS 2 – [32]
Graphene/CNTs/PMMA – 44.9 3.11 PET – – [33]
Silver 3 11 2.45 Cardboard 0.56 2 ×  107 [34]
Silver nanowire 500 41.83 2.92 PDMS 1 8.1 ×  105 [35]
Ni/Ag/Cu fabric 130 58.6 2.45 PDMS 3 – [36]
Silver paint 26.5 2.8 2.45 NinjaFlex 1.2 1.7 ×  104 [37]
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impedance mismatch. Therefore, no research has been per‑
formed on MXene films for EM wave absorption (Table 3). 
MXene hybrids for EM wave absorption are the most exten‑
sively studied materials, owing to their easily tunable EM 
parameters. Moreover, the addition of a matrix also sim‑
plifies adjustment for impedance matching. The choice of 
foam and aerogel is based on their lightweight characteristics 
(Fig. 12d), and the porous structure can increase multiple 
reflections to improve the attenuation of EM waves. The 
advantage of using a fabric as the EM attenuation material 
is that it has satisfactory porosity and permeability. In addi‑
tion, it is more practical.

To summarize, the core outstanding areas to be addressed 
in the wireless communication and EM attenuation fields 
include the following: conduction design, because the 
conduction directly affects the thickness and transmission 

performance of the antenna, the strength of the first interface 
reflection is dominated by conduction, and conduction loss 
plays an important role in EM wave absorption; EM trans‑
mission and attenuation mechanisms in MXenes that are not 
understood and may fundamentally differ from the behavior 
in other 2D materials, such as graphene; how to balance 
EM wave absorption and reflection in MXenes to achieve 
green shielding, and how wireless communication devices 
employing MXenes can be adapted to large‑scale industrial 
production in the future.

Based on the above overview of MXenes, there are still 
some challenges that need to be addressed in the future. The 
conduction is mainly decided by the type of MXene, num‑
ber and types of surface functional groups, and the con‑
struction mode of MXenes. Conduction varies greatly in 
different kinds of MXenes. For example, the conductivity 
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of a free‑standing  Mo2Ti2C3 film is 100 S  cm−1, while the 
conductivity of a free‑standing  Ta4C3 film is 0.476 S  cm−1 
[24]. However, current research has mainly focused on 
 Ti3C2Tx MXene. It is necessary to study the wireless com‑
munication performance and EM response mechanism of 
other MXenes. The number and types of surface functional 
groups are mainly affected by the etching method. For exam‑
ple,  Ti3C2Tx etched with LiF/HCl has a high content of = O 
terminal groups compared with  Ti3C2Tx etched with HF, 
which leads to conductivity differences [54]. The anneal‑
ing temperature also has a certain influence on the type of 

surface functional groups [24]. Researchers need to study 
how to control the conductivity of MXenes by selecting dif‑
ferent etchants and annealing temperatures. Moreover, the 
method used to construct MXenes also affects the conductiv‑
ity of MXenes. For example, the conductivity of a pressed 
 Ti3C2Tx disk (2 S  cm−1) is lower than that of a free‑standing 
 Ti3C2Tx film (1500 S  cm−1). Designing different methods of 
constructing MXenes to regulate the conduction will also be 
a direction for future research. The oxidation of MXenes is 
an unavoidable problem, especially in the case of few‑layer 
or monolayer MXenes. After oxidation, the conductivity of 

Table 2  Typical MXene‑based materials and their EMI shielding properties

Type Materials Matrix Ratio (wt%) d (mm) σ (S  m−1) SE (dB) SEEt (dB  cm2  g−1) References

Pure MXene Ti3C2Tx Wax 60 2 – 39.1 – [52]
Ti3C2Tx SiO2 60 1 0.42 26.7 – [54]
Ti2CTx Wax 40 0.8 1.63 ×  10–16 6 – [55]
Ti3C2Tx PS 1.9 vol% 2 1081 62 – [56]
Ti3C2Tx PVDF 50 1 0.988 34.49 – [57]

MXene hybrid Ti3C2Tx–Ni Wax 50 2.8 4 66.4 – [61]
Ti3C2Tx–Ag Wax 60 1 3.813 62.7 [62]
Nb2CTx–Ag Wax 60 1 3.123 72.04 – [62]
r GO–Ti3C2Tx Epoxy 4.5 0.5 387.1 55 – [63]

MXene film Ti3C2Tx – 100 0.045 4.665 ×  105 92 25,863 [65]
Ti3C2Tx – 100 5.5 ×  10−5 5 ×  105 20 3.89 ×  106 [66]
Ti3CNTx – 100 0.04 1.786 ×  105 116.2 – [67]
Ti2CTx – 100 0.011 1.6 ×  105 50 – [68]
Nb2CTx – 100 0.01 500 15 – [68]
Ti3C2Tx–SA – 90 0.008 2.9 ×  105 57 30,830 [65]
Ti3C2Tx/ANF – 80 0.017 1.733 ×  104 28 1317.64 [69]
ANF/Ti3C2Tx/Ag – 20 0.045 9.22 ×  104 48.1 8907.4 [73]
Ti3C2Tx/CNF – 90 0.047 739.4 24 2647 [74]
Ti3C2Tx/PEDOT:PSS – 87.5 0.0111 3.405 ×  104 42.10 19,497.8 [82]
Ti3C2Tx/PVA – 19.5 0.027 716 44.4 9343 [87]
Ti3C2Tx/GO – 90 0.007 2.64 ×  105 50.2 – [92]
Ti3C2Tx/MMT – 90 0.025 4420 65 10,000 [97]

MXene foam Ti3C2Tx – 100 0.006 58,820 32 136,752 [98]
Ti2CTx/PVA – 0.15 vol% 5 8.3 ×  10–6 28 5136 [100]
Ti3C2Tx/rGO – 33 1.5 1000 28.6 6217 [101]

MXene aerogel Ti3C2Tx – 100 1 – 70.5 64,182 [104]
Ti2CTx – 100 1 – 69.2 62,909 [104]
Ti3CNTx – 100 1 – 54.1 49,182 [104]
Ti3C2Tx/rGO Epoxy 0.99 vol% 2 695.9 56.4 – [107]
Ti3C2Tx/CNT – 25 3 943 103.99 8253.17 [108]

MXene fabric Ti3C2Tx Cotton 6 0.33 5 Ω  sq−1 36 – [111]
Ti3C2Tx Cotton 5.2 mg/cm2 – 670.3 31.04 – [112]
Ti3C2Tx Cellulose 1.89 vol% 0.2 2756 42.7 – [113]
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MXenes decreases significantly. How to inhibit the oxidation 
of MXenes is a key point for future research.

At present, research on the wireless communication per‑
formance of MXenes is still in the exploratory stage. The 
mechanism of transmission of EM waves in MXene anten‑
nas is not very clear. Although research on EM attenua‑
tion in MXenes is more extensive, the exact mechanism 
of EMI shielding and EM wave absorption is still poorly 
understood. Since the concept of “green shielding” was 
put forward, realizing green shielding by using MXene‑
based materials has become a major challenge. Therefore, 
a series of thorough studies on EM wave transmission, 

dielectric relaxation, and the EM response of MXene‑
based materials is urgently needed.

The low yield of MXenes limits their commercial appli‑
cation in wireless communication, EMI shielding, and 
EM wave absorption materials. Increasing the produc‑
tion of MXenes is the only way to realize commercializa‑
tion. Moreover, the hydrophilic nature of MXenes limits 
the fabrication of composites or hybrids with polymers 
and other materials to only aqueous media. To broaden 
the path of structural design, it is essential to investigate 
organic dispersions of MXenes.

In summary, MXenes, as the newest and fastest grow‑
ing family of 2D materials, will open new avenues for 

Table 3  Typical MXene‑based materials and their EM wave absorption properties

Type Materials Matrix Ratio (wt%) d (mm) RLmin (dB) Bandwidth (< − 
10 dB) (GHz)

References

Pure MXene Ti3C2Tx Wax 40 2.5  − 47.9 3.6 [44]
Ti3C2Tx Wax 50 2  − 40 6.8 [120]
Ti3C2Tx Wax 55 1.7  − 42.5 4.2 [122]
Nb2CTx Wax 70 2.9  − 52.2 0.65 [126]
Ti3C2Tx Wax 45 1.7  − 36 5.6 [127]
Ti2CTx Wax 55 4.5  − 54.1 1.1 [128]

MXene hybrid TiO2/Ti3C2Tx/Fe3O4 Wax 70 1.9  − 57.3 2 [130]
Fe3O4@Ti3C2Tx Wax 60 4.2  − 57.2 1.4 [132]
Ti3C2Tx/FCI Epoxy 60 1  − 15.52 8.16 [134]
Ti3C2Tx/Ni Wax 50 1.5  − 47.06 3.6 [135]
Ni@Ti3C2Tx PVDF 10 3  − 52.6 3.7 [137]
Ti3C2Tx/Ni Wax 60 2.2  − 24.3 2.6 [138]
Ti3C2Tx/Co3O4 Wax 50 2  − 34.8 6.2 [139]
CoFe@Ti3C2Tx Wax 60 2.2  − 36.29 2.64 [140]
FeCo@Ti3C2Tx Wax 70 1.6  − 17.86 8.8 [141]
Ti3C2Tx–NiCo2O4 Wax 50 2.18  − 50.96 0.8 [143]
Co2Z/Ti3C2Tx PVB 30 2.8  − 46.3 1.6 [144]
G/TiC/Ti3C2Tx Wax 50 2.1  − 63 3.5 [145]
CNT/Ti3C2Tx Wax 35 1.55  − 52.9 4.46 [146]
N‑GP/Ti3C2Tx Epoxy/PA 32 1.4  − 52 7.1 [148]
Ti3C2Tx@PPy Wax 10 3.6  − 49.5 5.6 [150]
MoS2@TiO2/Ti3C2Tx Wax 50 2.5  − 15.9 2.6 [152]

MXene foam Ti3C2Tx/SiC – 100 2.6  − 14.7 3.2 [156]
CF/Ti3C2Tx Wax – 4.5  − 45 5 [157]

MXene aerogel Ti3C2Tx@gelatin – 100 2  − 59.5 6.24 [158]
Ti3C2Tx/Cellulose Wax 24 2  − 43.4 4.5 [159]
TiO2/Ti3C2Tx/RGO Wax 10 2.5  − 65.3 4.3 [160]
Ti3C2Tx@RGO Wax 15 2.05  − 31.2 5.4 [161]

MXene fabric Ti3C2Tx/Ni/ZnO Cotton 13.39 2.8  − 35.1 4.2 [162]
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realizing various classes of wireless communication and 
EM protection devices. This review is expected to serve 
as a guide to those exploring wireless communication and 
EM attenuation properties of MXenes.
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