NANO-MICRO ===

www.nmletters.org

The Effect of Fabrication Conditions for GDC
Buffer Layer on Electrochemical Performance of

Solid Oxide Fuel Cells

Jung-Hoon Song!, Myung Geun Jung?, Hye Won Park?,

Hyung-Tae Lim?*

(Received 7 May 2013; accepted 29 June 2013; published online 25 July 2013)

Abstract: A Gd-doped ceria (GDC) buffer layer is required between a conventional yttria-stabilized zirconia
(YSZ) electrolyte and a La-Sr-Co-Fe-O3 (LSCF) cathode to prevent their chemical reaction. In this study,
the effect of varying the conditions for fabricating the GDC buffer layer, such as sintering temperature and
amount of sintering aid, on the solid oxide fuel cell (SOFC) performance was investigated. A finer GDC powder
(i.e., ultra-high surface area), a higher sintering temperature (~1290°C), and a larger amount of sintering aid
(~12%) resulted in improved densification of the buffer layer; however, the electrochemical performance of an
anode-supported cell containing this GDC buffer layer was poor. These conflicting results are attributed to the
formation of (Zr, Ce)O2 and/or excess cobalt grain boundaries (GBs) at higher sintering temperatures with a
large amount of sintering aid (i.e., cobalt oxide). A cell comprising of a cobalt-free GDC buffer layer, which was
fabricated using a low-temperature process, had lower cell resistance and higher stability. The results indicate
that electrochemical performance and stability of SOFCs strongly depend on fabrication conditions for the
GDC buffer layer.
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Introduction

Typical solid-oxide fuel-cells (SOFCs) operate at high
temperatures (>800°C), as a result, their lifetimes are
limited by thermal degradation via coarsening of par-
ticles in the electrodes and chemical interactions be-
tween the electrolyte and electrodes, etc. Numerous
approaches have been investigated to reduce the op-
erating temperature of SOFCs for increased long-term
stability and cost-efficiency [1]. Many efforts have fo-
cused on developing new electrode materials that are
suitable for low temperatures (<700°C), as well as min-
imizing the resistivity of conventional electrode mate-
rials by optimizing their microstructures and composi-

tions. Conventional anode-supported SOFCs comprise
~5-10 um thick YSZ electrolyte with an optimized La-
Sr-Mn-Og (LSM)/YSZ composite cathode. However,
the electrochemical performance (i.e., the catalytic ac-
tivity) of the LSM/YSZ cathode is not sufficient for low-
temperature operation. Therefore, in recent years, new
cathode materials with higher electrocatalytic activities
have been intensively investigated for low-temperature
SOFCs. Recent studies have shown that SOFCs with a
La-Sr-Co-Fe-O3 (LSCF) cathode delivered about twice
the power density of an LSM/YSZ composite cathode
[2-4]. However, the LSCF cathode cannot be in di-
rect contact with the YSZ electrolyte because the LSCF
cathode readily reacts with the YSZ electrolyte at typ-
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ical SOFC operating conditions, generating an insulat-
ing SrZrOgs phase [5,6]. Thus, a buffer layer is required
between the YSZ electrolyte and the LSCF layer in or-
der to prevent this chemical reaction.

Gd-doped ceria (GDC) has been considered as an al-
ternative electrolyte for low temperature SOFCs [7,8],
and it is also one of the most effective buffer layer ma-
terials because it does not react with the LSCF cathode
materials and has a higher ionic conductivity than YSZ
[9]. As a buffer layer, the GDC layer should be as thin
and dense as possible. Minimized pores and a dense
structure result in two advantages: (1) increased effi-
ciency towards preventing Sr diffusion from the cath-
ode to the electrolyte layer, and (2) higher ionic con-
ductivity. However, GDC has poor sintering properties;
therefore, it is difficult to fabricate a thin dense layer
on the YSZ. Also, (Zr, Ce)Oz-based solid solutions can
form between the YSZ electrolyte and the GDC layer
at 1200°C, and have a much lower ionic conductivity
than GDC and YSZ [10]. Thus, it is very important
to optimize the GDC sintering temperature to obtain
a dense electrolyte, minimizing the formation of a (Zr,
Ce)O2-based solid-solution insulating-phase.

In this paper, we investigated the effect of fabrication
conditions, such as sintering aids (i.e., cobalt oxide)
and temperature, for GDC (Gdg.1Cep.9O2_,) buffer
layer on the electrochemical performance and stabil-
ity of SOFCs. A novel gel polymeric precursor method
was also used in order to fabricate a GDC layer without
sintering aids at lower temperatures [11,12].

Experimental

Anode-supported cells with areas of 2.5 cm? were
fabricated by applying a co-firing process with a lam-
inated green sheet of three layers; a support, and an-
ode functional layer, and an electrolyte [13,14]. The
anode support layer, which comprised ~900 wm. of
yttria-stabilized zirconia (NiO+4YSZ), the functional
layer, which comprised 10-30 wm. NiO+YSZ, and the
~10 um. YSZ electrolyte layer were co-sintered at
~1370°C for 3 h. The detail description of fabrica-
tion procedure and method can be found elsewhere [15].
Ultra-high surface area (UHSA) and low surface area
(LSA) grade 10 GDC powders (Anan Kasei Co.) were
used for the GDC buffer layer to prevent the formation
of an insulating layer between the YSZ and LSCF lay-
ers. According to the technical data provided by Anan
Kasei Co., the surface areas of LSA and UHSA GDC
are ~10-15 and ~30-35 m?/g, respectively, which im-
plies that UHSA GDC has a higher sintering driving
force than LSA GDC at high temperatures. The mean
particle diameters of UHSA and LSA were 0.29 and
0.44 wm, respectively. Cobalt oxide powder was added
as a sintering aid to both UHSA and LSA GDC at 6,
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9, and 12 at% in order to investigate its enhancement
of the density of the buffer layer. Six pastes consist-
ing of powder mixtures of GDC and cobalt oxide were
prepared: UHSA GDC with 6, 9 and 12 at% cobalt ox-
ide and LSA GDC with 6, 9 and 12 at% cobalt oxide.
The pastes were screen-printed on the YSZ electrolyte
layer of the cells. The GDC-printed anode-supported
cells were then sintered at different temperatures, i.e.,
1100, 1150, 1200, 1250 and 1290°C, for 3 h. After sinter-
ing, the screen-printed GDC layer was ~6 um thick. A
cobalt-free GDC layer was also prepared as a reference.
A low-temperature sintering process was applied using
a combination of a colloidal suspension (50%) and a gel
polymeric precursor (50%) [11,12]. The YSZ surface
was coated with a GDC (LSA) colloidal suspension fol-
lowed by impregnating GDC polymer precursors into
the colloidal coating. After drying, the coating was
heated to ~400°C to convert the polymer phase to
GDC. The GDC layer was then screen-printed onto the
YSZ electrolyte layers and sintered at 1100°C for 3 h.
The GDC layer thickness was ~5 pm thick. The cath-
ode functional layer (i.e., ~15 um LSCF+GDC) and
cathode current collector (i.e., ~40 um LSCF) were
screen-printed and co-fired at ~1070°C for 1 h. To
assess the electrochemical performance, the fabricated
cell was assembled in an alumina jig using ceramic bond
(AREMCO) as a sealant. The Pt paste and mesh were
used for current collecting for the both electrodes. Be-
fore the test, the anode reduction was conducted with
300 sccm of Hy with 3% humidity at 750°C  for 3 h.
Current-voltage characteristics (i.e., I-V curves) and
impedance spectra were measured at 750°C using So-
lartron 1260,/1287 electrochemical instruments (AC and
DC) with fuel gas in 300 sccm of 97% Hy - 3% HoO
and oxidant gas in 1000 sccm of air. The impedance
measurements were conducted in the frequency range
~0.1-100 kHz with a signal amplitude of 100 mV under
open-circuit conditions. The detail description of cell
testing procedure and method can be found elsewhere
[15]. Microstructural and compositional analyses were
conducted on the fabricated anode-supported cells via
field-emission scanning electron microscopy (FE-SEM)
with an energy-dispersive X-ray (EDX).

Results and discussion

GDC microstructure as a function of particle
size, sintering aid and temperature

Figure 1 shows photographic images of the anode-
supported cells with the GDC buffer layers that were
applied under the various conditions described in Sec-
tion 2. It is evident that the GDC layer becomes darker
with increasing amounts of cobalt oxide, which is black,
and becomes increasingly yellow with increasing sinter-
ing temperature. This color change with sintering
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Fig. 1 Photographic images of button cells with GDC buffer layers fabricated with varying GDC particle sizes, sintering

temperatures, and amounts of cobalt oxide.
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Fig. 2 Micrographs of the surface of the GDC layer with added cobalt oxide as a function of particle size, sintering aid,
and temperature: (a) 6 at% cobalt, UHSA GDC (1250°C); (b) 12 at% cobalt, UHSA GDC (1250°C); (c) 6 at% cobalt, UHSA
GDC (1290°C); (d) 12 at% cobalt, UHSA GDC (1290°C); (e) 6 at% cobalt, LSA GDC (1250°C; (f) 12 at% cobalt, LSA GDC
(1250°C); (g) 6 at% cobalt, LSA GDC (1290°C); (h) 12 at% cobalt, LSA GDC (1290°C).

temperature may be attributed to differences in the sol- with added cobalt oxide with sintering between ~800
ubility of cobalt oxide in the GDC grains. Using high- and 1150°C [16]. They found that precipitates of cobalt
resolution transmission electron microscopy (HRTEM), oxide initially form clusters at low sintering tempera-
Zhang et al. characterized the microstructure of GDC tures, which are strongly segregated at the grain bound-
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aries (GBs) as a result of their low solubility in GDC.
At higher sintering temperatures, the precipitates were
regularly distributed as isolated particles in the triple
junctions, which gradually grew with prolonged hold-
ing time. The cobalt GB concentration also increased
with increasing sintering temperature, which is a result
of grain growth and/or pre-wetting. Thus, the redis-
tribution of cobalt and cobalt excess at GBs at high
temperatures may be the cause of the color-changing
behavior of the cobalt-added GDC layer.

Figure 2(a)-(h) show micrographs of the surfaces of
cobalt-added GDC buffer layers that were fabricated
under various conditions, i.e., including 6 or 12 at% Co,
either UHSA or LSA GDC, and 1250°C or 1290°C sin-
tering temperature. As expected, a larger amount
of cobalt oxide and higher surface area and sintering
temperature resulted in improved grain connectivity
and a denser GDC microstructure: The optimal mi-
crostructure was achieved at a sintering temperature of
1290°C using UHSA-grade powder and ~12 at% sin-
tering aid, as shown in Fig. 2(d).

Electrochemical performance as a function of
GDC particle size, sintering aid and tempera-
ture

The power density (i.e., cell voltage) was measured
at 0.5 A/cm? and 750°C for cells containing GDC lay-
ers that were fabricated under a variety of conditions;
the results are shown in Fig. 3 and Table 1. High power
densities were observed when the GDC layers were sin-
tered between ~1200 and 1290°C. It was expected that
the highest power density would be obtained using the
GDC layer with the highest microstructural density
(i.e., the GDC layer that was fabricated with UHSA-
grade GDC and 12 at% cobalt oxide at a sintering tem-
perature of ~1290°C) because the denser buffer layer
should have higher ionic conductivity and most effec-
tively protect the electrolyte from Sr diffusion. How-
ever, the power density tests revealed that the electro-
chemical performance did not linearly correlate with
the microstructure (i.e., density) of the GDC buffer
layer. Surprisingly, the cell with the densest buffer
layer had a poor electrochemical performance (~0.343

Table 1
fabricated using various conditions.

W /cm?). With sintering at ~1200°C, the power den-
sity increased with increasing amounts of cobalt ox-
ide, which is probably the result of densification of the
GDC buffer layer by the sintering aid. In contrast,
at higher sintering temperatures (~1290°C), the power
density decreased with increasing amounts of cobalt ox-
ide, which is probably caused by formation of excess
cobalt oxide at GBs at higher temperatures [16]. In
this case (the high temperature sintering), the nega-
tive effect of GB excess becomes dominant rather than
the positive effect of densification with increasing the
amount of cobalt oxide. Thus, the electrochemical per-
formances of SOFCs are not simply proportional to the
densification of the buffer layer. Accordingly, the sinter-
ing temperature should be carefully optimized for each
combination of conditions (i.e., particle size, cobalt ox-
ide content, etc.).

1100

1150
; 1200
1Nter; <
cring t@mperatluioo( o
e °C)

Fig. 3 Plots of power density measured at 750°C and 0.5
A/em? as a function of GDC particle size, sintering temper-
ature, and amount of cobalt oxide.

Figure 4 shows the impedance spectra of three se-
lected samples measured at 750°C under open-circuit
conditions. The samples were sintered at different sin-
tering temperatures (i.e., 1200, 1250 and 1290°C). All
three samples were synthesized with LSA-grade GDC
and 6 at% cobalt oxide. Figure 4 shows that the

Power density (W/cm?) at 750°C and 0.5 A/cm? of SOFCs containing GDC layers that were

Sintering temperature (°) LSA-grade GDC

Power density (W/cm?)

UHSA-grade GDC

6 at% 9 at% 12 at% 6 at% 9 at% 12 at%
1100 0.235 0.262 0.112 0.172 0.204
1150 0.416 0.426 0.423 0.302 0.323
1200 0.423 0.430 0.433 0.376 0.426 0.499
1250 0.499 0.479 0.350 0.422 0.450 0.500
1290 0.489 0.333 0.385 0.498 0.419 0.343
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Fig. 4 Impedance spectra under open-circuit conditions at
750°C as a function of sintering temperature of the GDC
buffer layer (LSA-grade GDC and 6 at% cobalt oxide).

non-ohmic polarization resistance, which is represented
by the first and second semicircles, was similar for all
three samples. In contrast, the ohmic resistance was
dependent on the GDC sintering temperature, and in-
creases in the order of the sintering temperature (i.e.,
1250<1200<1290°C). Note that the frequency that cor-
responds to the intercept of the impedance arc on the
real axis is ~10% Hz for all three cases, which con-
firms that it is valid to compare the real axis intercepts.
EDX analyses indicate that (Zr, Ce)Oz-based solid so-
lutions formed at the interface of the GDC layer and
the YSZ electrolyte, regardless of the sintering temper-
ature (Fig. 5). This solid solution is an insulating layer
that has a low ionic conductivity [7,10]. Nguyen et
al. studied a GDC interlayer between an LSCF cath-
ode and a scandia-stabilized zirconia (ScSZ) electrolyte,
which was deposited by screen-printing [17]. Similar
to our results, the best electrochemical performance
was obtained with a GDC sintering temperature of
~1200°C, whereas sintering at ~1300°C resulted in poor
electrochemical performance. The critical factors for
the decrease in the electrochemical performance with
increasing sintering temperature were assessed and it
was concluded that the development of solid solutions,
ie., (Zr, Ce)Oq, was minimal between 1100°C  and
1200°C, but increased significantly above 1200°C. Based
on these results, the increase in ohmic resistance above
1250°C  shown in Fig. 4 is attributed to the effects
of the solid solution, which become significant above
1250°C in our experiments. Even though it is difficult
to determine the exact thickness of the solid solution
for each case shown in Fig. 5, it is evident that a higher
sintering temperature results in more solid solution be-
tween the GDC layer and YSZ electrolyte. In addition,
as mentioned above, the development of excess cobalt
oxide at GBs as resistive impurities could also be a rea-
son for the higher resistance at higher temperatures. It
should be noted that the optimized sintering tempera-
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ture could differ from 1250°C, depending on the particle
size and amount of sintering aid, as shown in Table 1.
This is because all the three effects (GDC densification,
(Zr, Ce)O2-solid solution formation and cobalt excess
at GBs) complexly occur as the sintering temperature
increases. In summary, a higher sintering temperature
is favorable for the densification of the GDC layer, but
the sintering temperature must be chosen to optimize
electrochemical performance as well.

Solid solution
10 pm

Fig. 5 SEM images and EDS Zr and Ce profiles of GDC
layer sintered at (a) 1100°C and (b) 1290°C. Note that the
(Ce-Zr)O3 solid solution is formed even at low sintering tem-
peratures (~1100°C).

The effect of the addition of cobalt on the stability
of SOFCs was also investigated. A long-term (five-day)
operating test was conducted on the cells, which con-
tained a GDC layer fabricated from LSA-grade GDC
with ~12 at% cobalt oxide. Figure 6(a) and (b) show
the power density and impedance spectra, respectively,
as a function of operating time. The electrochemi-
cal performance rapidly degraded over the initial three
days and then more slowly degraded over the final two
days. On the basis of the impedance results, this re-
duction in power density is primarily attributed to the
increase in ohmic resistance as a function of time. As
mentioned above, cobalt can be segregated at GBs as
a result of low solubility in GDC. Additionally, cobalt
precipitates grow over time and the GB concentration
increases with temperature as a result of grain growth
[16]. Thus, it can be deduced that the excess of cobalt
GBs increased over the five days of the experiment, re-
sulting in increased ohmic resistance.

To clarify the effect of the sintering temperature
and the addition of cobalt on the cell performance,
cobalt-free reference cells were fabricated with GDC
layers that were made using a novel low-temperature
(~1100°C) processing and screen-printing method, as
described in Section 2. Figure 7(a) and (b) show the
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Fig. 6 (a) I-V curves and (b) impedance spectra under
open-circuit conditions at 750°C as a function of time. The
GDC buffer layer was sintered at 1290°C  with LSA-grade
GDC and 6 at% cobalt oxide.
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Fig. 7 (a) Micrograph of (a) the cross-section and (b) the
surface of the GDC layer that was fabricated using a combi-
nation of a GDC colloidal suspension and polymer precur-
sors, and sintered at ~1100°C.

cross section and the surface SEM micrograph of the
cobalt-free GDC layer, respectively. The corresponding
I-V characteristics and impedance spectra are shown in
Fig. 8(a) and (b), respectively. Compared to the cobalt-
added cells, the power density was improved (~0.86
W /cm?) although the density of the GDC layer was
not higher. The impedance data indicate that this per-
formance improvement was mainly attributed to a de-
crease in the ohmic resistance (from ~0.35 to ~0.16
Q-cm?). In this case, the ohmic resistive factors, such
as (Zr, Ce)Oz-solid solution and the excess of cobalt
GBs were minimized and removed because the GDC
was sintered at the lower temperature (~1100°C) with-
out cobalt oxide [17]. Additionally, the degradation
rate became less in the cobalt-free cells. The slight
degradation (the increase in both ohmic and non-ohmic
polarization resistance) was probably attributed to typ-
ical degradation factors such as the formation of SrZrQOg
on the surface of the YSZ electrolyte [7], Sr segregation
in the LSCF cathode [18] and/or Ni coarsening [19].
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Fig. 8 (a) I-V curves at the initial state and (b) impedance
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From these results, it is evident that the solid solution
and the cobalt GB segregation have more influence on
SOFC performance and stability than the GDC density.
Therefore, GDC fabrication conditions should be care-
fully optimized to minimize the negative effects, such as
the GDC/YSZ chemical reaction and the excess cobalt
GB, while maximizing the GDC density.

Conclusion

The present study shows that the electrochemical
performances of SOFCs with LSCF cathodes is strongly
dependent on the fabrication conditions of the GDC
layer, such as sintering temperature and amount of
added sintering aid. Several attempts were made to
optimize the conditions with respect to the SOFC elec-
trochemical performance and the densification of the
GDC buffer layer. It was determined that the density of
the GDC buffer is improved by increasing the sintering
temperature and amount of sintering aid; however, the
cell resistance and the rate of cell degradation increase
under these conditions. This implies that the density
of the buffer layer does not linearly correlate with the
electrochemical performance as a result of negative sec-
ondary effects such as the formation of (Zr, Ce)Os and
excess cobalt GBs, which function as resistive impu-
rities and increase the ohmic resistance. In the case
of the cobalt free GDC made using a low temperature
processing, the cell performance and stability were sig-
nificantly improved by decreasing the ohmic resistance
originated from the solid solution and the cobalt GB
segregation. Thus, fabrication conditions, such as the
amount of sintering aid and the sintering temperature,
should be carefully optimized for a GDC buffer layer
having high performance and stability.
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