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Abstract: Cu2-xS nanocrystals (NCs), characterized by low cost, low toxicity, high stability and high pho-

tothermal conversion efficiency, provide promising platforms as photothermal agents. Herein, a novel two-

step synthesis has been developed for Cu7S4 nanocrystals with hollow structure using the as-prepared copper

nanoparticles as starting a solid precursor followed by hot-injection of sulfide source.The Cu7S4 NCs exhibit

intense absorption band at Near-infrared (NIR) wavelengths due to localized surface plasmon resonance (LSPR)

mode, which can effectively convert 980 nm-laser energy into heat.Moreover, the localized high temperature

created by Cu7S4 NCs under NIR irradiation could result in efficient photothermal ablation (PTA) of cancer

cells in vivo, demonstrating a novel and promising photothermal nanomaterials.
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Introduction

Near-infrared (NIR)-laser-driven photothermal ab-
lation (PTA) therapy has attracted great attention
in recent years as a minimally invasive and poten-
tially more effective treatment alternative to conven-
tional approaches [1-16]. In order to promote the
photothermal conversion efficiency and gain access
to efficient PTA therapy, it is the developing novel
photothermal conversion agents that we are focusing
on.Currently, four types of photothermal agents have
been extensively developed in PTA therapy. The
first type are organic compounds (e.g., indocyanine
green (ICG) dye [1] and poly aniline nanoparticles
[2]), which may suffer from limitations such as pho-

tobleaching or unsatisfactory photothermal conversion
efficiency. The second type are carbon nanomateri-
als (including carbon nanotubes [3-5] and graphene [6-
9]) whose absorption coefficient in the NIR region is
usually not as high as expected. The third type are
noble metal nanostructures, such as nanorods [10-12],
nanoshells [13,14], nanocages [15,16], nanostars [17] and
Pd- nanosheets [18].

These noble metal nanostructures exhibit intense
NIR photoabsorption, and also are the most widely
explored kind of photothermal agents. However, their
practical applications are limited by the high cost. Al-
ternatively, copper-containing semiconductor nanocrys-
tals, characterized by low production cost, high sta-
bility, low toxicity, and high photothermal conver-
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sion efficiency, provide promising platforms as pho-
tothermal agents [19-23]. CuS nanoparticles [24],
CuS superstructures [21], Cu9S5nanocrystals [19], and
Fe3O4@Cu2−xS [22], Cu9S5@SiO2 [20] nanocomposites
have been developed as 980 nm laser-driven photother-
mal agents for efficient PTA of cancer cells in vitro and
in vivo. To meet the severe requirements of future PTA
therapy, it is still necessary to develop novel kind of cop-
per chalcogenides based photothermal agents. Herein,
we have developed a novel two-step method for prepa-
ration of Cu7S4 nanocrystals with hollow structure and
investigated them as a potential of 980 nm-laser-driven
photothermal agents.

Experimental

Characterization: Sizes, morphologies, and mi-
crostructures of the samples were determined by
field emission transmission electron microscope (TEM,
JEOL, JEM-2100F). Powder X-ray diffraction (XRD)
was conducted by a D/max-2550 PCX-ray diffract me-
ter (Rigaku, Japan). UV-Vis-NIR absorption spectra
were measured on a UV-2550 Spectrophotometer (Shi-
madzu, Japan).

Synthesis of Cu7S4 NCs: All of the chemicalswere
bought from Aladdin and are analytically pure, which
were used as received without further purification. The
preparation of copper NCs followed a modified proce-
dure [25]. Briefly, 0.5 mmol of copper acetylacetonate
was dissolved in 15 mL of oleylamine in a 100 mL
flask, which was purged with dry nitrogen gas to re-
move residual water and oxygen. The reaction mixture
was heated to 230◦C at a rate of 5◦C /min by a heating
mantle while being magnetically stirred and then kept
at 230◦C for 10 min to form copper NCs. Subsequently,
a certain amount of sulfur (e.g. 0 mmol, 0.1 mmol, 0.2
mmol, 0.3 mmol, 0.5 mmol and 0.6 mmol) dissolved in
5 mL of oleylamine was quickly injected into the solu-
tion. The resulting mixture was maintained at 230◦C
for 30 min. After the solution was cooled to room tem-
perature, the Cu7S4 NCs were purified by washing with
n-hexane. Subsequently, the Cu7S4 NCs dispersed into
15 mL of chloroform for later use.

Synthesis of polymer-modified Cu7S4 NCs: The as-
prepared Cu7S4 NCs were coated with an amphiphilic
hydrolyzed poly (maleic anhydride) pre-modified with
dodecylamine according to a literature report [23,28].
In a 50 mL round bottom flask, 530 μL of the am-
phiphilic polymer stock solution (0.8 M monomer units
in CHCl3), 5 mL of the above Cu7S4 NCs chloroform
solution and 25 mL of anhydrous CHCl3 were combined
and vortexed with magnetically stirring for 45 minutes
at room temperature. Subsequent rotary evaporation
of the solvent resulted in a dark-brown film of polymer
coated Cu7S4 NCs attached to the inner wall of the

flask. 10 mL of aqueous sodium borate buffer (SBB,
pH12) was then added to the flask and subject to ultra-
sonication for 15 min. After phase transfer from chlo-
roform to aqueous solution, the hydrophilic Cu7S4 NCs
were collected by centrifugation. The aqueous solution
of the Cu7S4 NCs was stored at 4◦C for later use.

Measurement of photothermal performance: A 980
nm laser was delivered through a quartz cuvette con-
taining aqueous dispersion (0.3 mL) of the aqueous so-
lution containing Cu7S4NCs with different concentra-
tions (i.e., 6.25, 12.5, 25, 50, 80, 100 and 150 μg/mL).
The light source was an external adjustable power (0-
0.8 W) 980 nm semiconductor laser device laser mod-
ule (Xi’an Tours Radium Hirsh Laser Technology Co.,
Ltd. China). The output power density was indepen-
dently calibrated to be 0.72 W/cm2 using a handy opti-
cal power meter (Newport model 1918-C, CA, USA). A
thermocouple with an accuracy of 0.1◦C was inserted
into the aqueous dispersion of Cu7S4NCs, which was
oriented perpendicular to the path of the laser beam.
The temperature was recorded one time per 5 s.

In vitro cytotoxicity of Cu7S4 NCs

Hepatocarcinoma cell lines Hep3B cells were seeded
in a 96-well plate at a density of 1 × 104 cells/well for
24 h at 37◦C in 5% CO2 to allow the cells to attach.
The culture medium was changed and cells were in-
cubated with complete medium containing the Cu7S4

NCsat a series of concentrations (i.e., 50, 100, 150, 200
and 250 μg/mL) at 37◦C with 5% CO2 for further 24
h. After that, 0.1 mL of 3-(4,5)-dimethylthiahiazo-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) solution (5
mg/mL, Sigma, Cat.M2003) was added to each well of
the microtiter plate and then was incubated in the CO2

incubator for 4 h. The cells then were lysed by the
addition of 100 μL of dimethylsulfoxide (DMSO). The
spectrophotometric absorbance of formazan was mea-
sured using a plate reader at 570 nm. Four replicates
were done for each treatment group.

In vivo photothermal ablation of cancer

cells

Severe combined immunodeficiency (SCID) mice
were inoculated subcutaneously with 4 × 106 hepato-
carcinoma cell lines Hep3B cells on the left side of the
rear leg 4-5 weeks before the experiments. When tu-
mors grew to 8-12 mm in diameter, the SCID mice
were randomly labeled as control and treatment sample.
Two nude mice were first anaesthetized by trichloroac-
etaldehyde hydrate (10%) at a dosage of 40 mg/kg body
weight, and then the treatment and control were in-
jected with 0.15 mL of PBS solution containing the
Cu7S4 NCs (150 μg/mL) and saline, respectively, at
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the central region of the tumors with a depth of ∼4
mm. After 2 h, the tumors of the control and treat-
ment group were irradiated with 980 nm laser (an out-
put power density of 0.72 W/cm2) for 10 min. Af-
ter that, the two SCID mice were scarified and tumors
were removed, embedded in paraffin, and cryosectioned
into 4 μm slices. These slides were stained with hema-
toxylin/eosin, the nexamined under a Zeiss Axiovert 40
CFL inverted fluorescence microscope, and images were
captured with a Zeiss AxioCam MRc5 digital camera.

Results and discussion

Cu7S4nanocrystals (NCs) were synthesized by a two-
step method, as shown in Fig. 1. Asa first step, cop-
per nanoparticles were synthesized using oleylamine as
reducing agents, according to reported method [25].
Then the as-prepared copper nanoparticles were used
as solid precursor, which could react with sulfide source
introduced by hot-injection. As a result, the hollow-
structure Cu7S4 NCs could be successfully fabricated.

200°C

SS

Fig. 1 Schematic illustration of the preparation step of
Cu7S4 NCs with hollow structure.

The copper nanoparticles were prepared without in-
jection of sulfide source (e.g. 0 g). Figure 2(a) showed
the typical transmission microscopy (TEM) image of
the copper nanoparticles. The particles are spherical
and have an average diameter of 15 nm. The high
magnification of TEM images (Fig. S1) showed that
the copper nanoparticle was crystalline with a certain
amount of surface oxidation. As the copper nanopar-
ticle show a high activity to react with oxygen [25],
the oxidation likely occurred before XRD measurement
when the specimen was exposed to air. Therefore, the
crystalline structures of the copper nanoparticles were
indexed to CuO (JCPDS card No. 44-0706), as shown
in Fig. S3. The resulting UV-vis spectrum of the copper
nanoparticles (Fig. S2) exhibited a well-defined surface
plasmon absorption peak occurred at around 580 nm,
which was consistent with previous reports, confirming
the successful synthesis of copper nanoparticles [25].

The resultant copper nanoparticles with a uniform
diameter could be used as a sacrificial solid precursor
for the synthesis of Cu7S4NCs with hollow structure
by injection of an appropriate sulfide source (e.g. 0.6
mmol). Compared to copper seeds synthesized from
the first step (Fig. 2(a)), the diameter of Cu7S4 NCs,
after 30 min aging of the second injection of sulfide
source, were within an average size of 15-30 nm, as
shown in Fig. 2(b). Moreover, the solid nanoparticles
were converted into some hollow structures, as shown in
high magnification of TEM (Fig. 2(c) and 2(d)). This
hollowing process could be explained by the Kirk end
all diffusion [26]. The diffraction peaks of the hollow
nanoparticles prepared with the S source of 0.6mmol
(Fig. 3) could be indexed with those of Cu7S4 (JCPDS

(a) (b)

(c) (d)

50 nm 100 nm

50 nm 5 nm

Fig. 2 (a) TEM images of copper nanoparticles; ((b), (c) and (d)) TEM and high magnification of TEM images of Cu7S4

NCs prepared with the sulfide source of 0.6 mmol.
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Fig. 3 XRD of the Cu7S4 NCs prepared with different sul-
fide source (e.g. 0.1 mmol, 0.2 mmol, 0.3 mmol, 0.5 mmol
and 0.6 mmol).

card No. 33-0489), confirming the successful prepara-
tion of Cu7S4.

Encouragingly, the Cu7S4NCs dissolved in chloro-
formshowed an intense absorption band in NIR re-
gion owing to the localized surface plasmon resonance
(LSPR) mode, as shown in Fig. 4. Specifically, the
Cu7S4NCs exhibit a minimum of absorption around
∼670 nm and an increased absorption with the increase
of wavelength with the maximum absorption peak of
∼1100 nm, in analogy to the reported Cu2-xS [19,24].
This stronger absorption in NIR region of Cu7S4 NCs
prepared by injecting sulfide source makes them a po-
tential 980 nm-laser-driven photothermal agents for ab-
lation of cancer cells.
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Fig. 4 UV-Vis-NIR absorbance spectrum of chloroform so-
lution containing the Cu7S4 NCs prepared with the sulfide
source of 0.6 mmol.

We also investigated the effect of sulfide amount
on crystal structure and morphology of copper sul-
phide nanoparticles. The resultant copper nanoparti-
cles, as sacrificial templates, were used to react with
sulfide source with different doses (e.g. 0.1 mmol, 0.2
mmol, 0.3 mmol and 0.5 mmol). The correspond-
ing X-ray diffraction (XRD) patternswere displayed in
Fig. 3. The diffraction peaks of all as-prepared Cu7S4

NCs could be indexed with those of Cu7S4 (JCPDS
card No. 33-0489), confirming the successful prepara-
tion of Cu7S4. According to the previous literatures,
there are at least five stable phases for the Cu2-xS sys-
tem (i.e., covellite CuS, anilite Cu1.75S, digenite Cu1.8S,
djurlite Cu1.95S, and chalcocite Cu2S) [19,21,27]. In the
present study, we are able to obtain ananilite Cu7S4

(a) (b)

(c) (d)

50 nm 5 nm

50 nm 5 nm

Fig. 5 TEM images and high magnification of TEM of Cu7S4 NCs prepared with the sulfide source of ((a), (b)) 0.1 mmol,
((c), (d)) 0.2 mmol, respectively.
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(a) (b)

(c) (d)

50 nm 5 nm

50 nm 5 nm

Fig. 6 TEM images and high magnification of TEM of Cu7S4 NCs prepared with the sulfide source of ((a), (b)) 0.3 mmol,
((c), (d)) 0.5 mmol, respectively.

nanocrystals (orthorhombic, space group P62/nma
JCPDS No.33-0489) from Cu nanoparticles by inject-
ing of different doses of sulfide source. It seems that
the amount of sulfide source has no obvious effect on
the crystal structure of final product. It should also be
noted that the difference in morphology and size can
be largely dependent on the amount of sulfide source.
When adding 0.1 mmol of sulfide source, the obtained
nanocrystals with spherical shape and relatively uni-
form diameter of 25 nm, as shown in Fig. 5(a) and
5(b). With the increase of the sulfide source from 0.1
mmol to 0.2 mmol, the uniformity of size decreased.
Specifically, two obvious different sizes (including aver-
age diameter 15 and 35 nm) of nanocrystals coexisted
in the final product, as shown in Fig. 5(c). Moreover,
the nanoparticles exhibit obvious hollow structure, as
shown in Fig. 5(d). Further increase of sulfide source
to 0.3 mmol resulted in more triangular morphology
existing in the product as shown in Fig. 6(a) and 6(b).
Besides, 0.5 mmol of sulfide source could lead to less ob-
viously hollow core structure in final products as show
in Fig. 6(c) and 6(d).

Due to their strong absorption in NIR region, the
Cu7S4 NCs prepared with 0.6 mmol of sulfide source
were chosen as an example to investigate the pho-
tothermal conversion performance and the potential
as 980 nm-laser-driven photothermal agents. The as-
synthesized Cu7S4 NCs were passivated with oley-
lamine and could not be dispersed into aqueous or
physiological solution, which limited these nanocrys-
tals applying directly to biologicalsystem.To obtain
hydrophilic Cu7S4 NCs, an amphiphilic polymer was
coated on the surface of Cu7S4 NCs by hydropho-

bic self-assembly [23,28]. The polymer-modified Cu7S4

NCs could be easily dispersed in water or phosphate
buffered saline (PBS) at pH 7.4.

The photothermal conversion performance of the
Cu7S4 NCs was examined under the irradiation of 980
nm laser with power density of 0.72 W/cm2 by de-
tecting the extent of temperature increase, as shown
in Fig. 7. Pure water was used as a negative con-
trol. The temperatures of all the Cu7S4 NCs increased
with the irradiation time, and the temperature in-
creased more rapidly with increasing the concentration
of Cu7S4 NCs. The temperature of Cu7S4 NCs aque-
ous dispersion (e.g. 150 μg/mL) could be elevated by
15.7◦C with the irritation of 980 nm laser for 400 s,
compared with pure water (i.e., 0 μg/mL) that was only
increased by less than 4◦C. These confirmed the Cu7S4

NCs can rapidly and efficiently convert the 980 nm-
laser energy into thermal energy. Moreover, with the
increase of the concentration (i.e., from 6.25 to 12.5, 25,
50, 80 and 100 μg/mL), the temperature of the Cu7S4

NCs aqueous dispersion could be increased by 6.5, 8,
8.7, 10.1, 12.2 and 14.1◦C, respectively (Fig. 7(b)). As
is well-known, hyperthermic therapy takes advantage of
heat between 40 and 45◦C to damage cancer cells [29].
Assuming that the temperature of in vivo human body
is 37◦C, tumor region injected with an aqueous disper-
sion of Cu7S4 NCs can easily be heated to over 45◦C
within 400 s by irradiation with a 980 nm laser (0.72
W/cm2), which probably efficiently induces cancer cells
death [29].

The influence of the Cu7S4 NCs on the viabilities of
cancer cells were used to evaluate the biocompatibility
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Fig. 7 Temperature elevation of the aqueous solution containing Cu7S4 NCs with different concentrations (i.e., 6.25, 12.5,
25, 50, 80, 100 and 150 μg/mL) as a function of time (0-400 s) under the irradiation of 980 nm laser with power density of
0.72 W/cm2; (b) Plot of temperature change over a period of 400 s versus the aqueous dispersion of the Cu7S4 NCs.

in vitro. The Cu7S4 NCs with various concentrations
(i.e., 50, 100, 150, 200 and 250 μg/mL) were incubated
with Hepatocarcinoma cell lines Hep3B cells for 24 h
and then the cell viabilities were tested by using the 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay. There was no obvious adverse effect
on cell viabilities, even the concentration reaching 250
μg/mL, as shown in Fig. 8, which meant a low cytotox-
icity induced by Cu7S4 NCs.
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Fig. 8 The viabilities of Hep3B cells incubated with the
Cu7S4 NCs with different concentrations (i.e., 50, 100, 150,
200 and 250 μg/mL) for 24 h, measured by MTT assay.
Data represents the mean±standard deviation of four ex-
periments.

To evaluate photothermal ablation effect of cancer
cells, two nude mice bearing evident tumors were ran-
domly divided into control and treatment group. The
control mouse was injected with 200 μL of saline in the
central region of the tumor, while the treatment mouse
was injected with 200 μL of PBS containing Cu7S4 NCs
(e.g., 150 μg/mL). After 2 h, the tumors of the two mice
were irradiated with 980 nm of laser for 10 min (see de-
tail in experiment section and the experimental setup

shown in Fig. S4). Subsequently, PTA effects of tumor
tissues in mice were confirmed by histological exami-
nation (hematoxylin/eosin (H&E) staining), as shown
in Fig. 9. In the case of control group, there were lit-
tle change regarding the cells’ sizes and shapes, nuclear
modifications as shown in Fig. 9(a) and 9(c). In the
case of treatment group, under the same irradiation
conditions, the common signs of thermal cell necrosis
are presented on considerable regions of the examined
tumor slide (Fig. 9(b)). Furthermore, more destruction
of the tumor cells, such as shrinkage of the malignant
cells, loss of contact, eosinophilic cytoplasm, and nu-
clear damage could be observed from Fig. 9(d). These
facts suggested that in vivo cancer cells could be effi-
ciently destroyed by the high temperature arising from
the excellent photothermal effect of Cu7S4 NCs. There-
fore, it is safe to conclude that Cu7S4 NCs have great
potential to be used as an excellent photothermal agent
for PTA therapy.

Conclusion

Using the copper nanoparticles as a starting precur-
sor, we have successfully synthesized Cu7S4 NCs with
hollow structure, which exhibited intense absorption
band at NIR wavelengths due to LSPR. The hydrophilic
Cu7S4 NCs coated with amphiphilic polymer could ef-
fectively convert 980 nm-laserenergy into heat and fur-
ther destroy cancel cells in vivo. Therefore, these Cu7S4

hollow NCs demonstrated great superiority as an excel-
lently potential photothermal agent, as a result of their
small size and high photothermal conversion efficiency
as well as their low cost.
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