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Abstract Transparent electrode based on silver nanowires (AgNWs) emerges as an outstanding alternative of indium tin

oxide film especially for flexible electronics. However, the conductivity of AgNWs transparent electrode is still dramat-

ically limited by the contact resistance between nanowires at high transmittance. Polyvinylpyrrolidone (PVP) layer

adsorbed on the nanowire surface acts as an electrically insulating barrier at wire–wire junctions, and some devastating

post-treatment methods are proposed to reduce or eliminate PVP layer, which usually limit the application of the substrates

susceptible to heat or pressure and burden the fabrication with high-cost, time-consuming, or inefficient processes. In this

work, a simple and rapid pre-treatment washing method was proposed to reduce the thickness of PVP layer from 13.19 to

0.96 nm and improve the contact between wires. AgNW electrodes with sheet resistances of 15.6 and 204 X sq-1 have

been achieved at transmittances of 90 and 97.5 %, respectively. This method avoided any post-treatments and popularized

the application of high-performance AgNW transparent electrode on more substrates. The improved AgNWs were suc-

cessfully employed in a capacitive pressure sensor with high transparency, sensitivity, and reproducibility.
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1 Introduction

Transparent electrodes are regarded as essential compo-

nents in optoelectronic applications such as solar cells,

touch screens, organic light-emitting diodes, and sensor

devices [1–4], and indium tin oxide (ITO) thin films are the

most widely used material for such applications. However,

there are several drawbacks to use ITO thin film, such as

the inherent brittleness, the expensive deposition process,

and also the emerging indium scarcity. Several alternatives

have been investigated, including carbon nanotubes

(CNTs), graphene, conductive polymer, and metal nano-

wires [5–7]. Among these, transparent electrode based on

silver nanowire (AgNW) networks is being studied inten-

sively and attracting commercial interest owing to their

great potential for flexible, cost-efficient, and large-scale

fabrication [8–11].

Although bulk silver exhibits very low electrical resis-

tivity, the conductivity of AgNW networks is limited,

especially at high transmittance, by the contact resistance

between wires due to the residual of polyvinylpyrrolidone

(PVP) layer, which is usually employed as the capping

agent to control nanostructure size and disperse nanowires

during AgNW synthesis [12, 13]. Several methods have

been developed to enhance the contact between nanowires,

such as high-temperature (above 200 �C) or long-duration
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thermal annealing [14, 15], rinsing and pressure treatment

[16], and photonic sintering [17]. Other techniques such as

nanosoldering, microwire enhancement, and galvanic dis-

placement aim to remove the PVP layer or enlarge the

contact area at wire–wire junctions [3, 18, 19]. However,

all of these are the post-treatment methods after AgNWs

are deposited on the substrate or the surface of device.

Therefore, not only do these methods complicate the fab-

rication process, they also inevitably influence the perfor-

mance of the heat-sensitive, pressure-sensitive, or

chemical-sensitive substrates.

Recently, a new strategy was proposed using long nano-

wires to reduce the number of wire–wire junctions in con-

ductive paths, thereby leading to low sheet resistance [20, 21].

However, the PVP-induced resistance problem still has not

been solved. The residual PVP layer adsorbing on the surface

of AgNW still acts as an electrically insulating barrier at the

wire–wire junctions and undermines the conductivity of the

electrode. As the saying goes, ‘‘sharpen the knife before cut-

ting the wood,’’ i.e., high-performance AgNW ink is pre-

requisite before the fabrication of AgNW transparent

electrode. Hence, decreasing the thickness of PVP layer

beforehand will be a suitable, simple, and effective method for

conductivity improvement. Unfortunately, many efforts are

still focused on various post-treatments of AgNW electrodes

as mentioned above. So far, few reports have paid attention to

the important process to improve AgNW ink before electrode

fabrication. AgNW paste washed by water has been reported

to joint copper at room temperature without pressure [22], but

this close-packed AgNW layer with thickness over 20 lm was

quite different from transparent electrode. The actual effect of

filtration washing and sonication dispersing process could

improve the conductivity of AgNW films [15]; however, it is

too time-consuming to produce nanoscale ink by filtration in

practical applications. Moreover, the washing effect on long

AgNW has not been discussed. In this paper, a simple and

rapid washing method is proposed to tailor the thickness of

PVP layer on the surface of very long AgNWs, and the

nanowire ink for high-performance transparent electrode

regardless of substrate properties was achieved accordingly.

Solvents and washing parameters were carefully selected and

adjusted to meet the dispersion and preservation requirements

of the nanowires. Finally, as-washed AgNWs were used in

capacitive pressure sensor, which showed high transparency,

sensitivity, and reproducibility.

2 Experimental

2.1 Preparation of AgNWs

AgNWs for the preparation of transparent electrodes were

synthesized using a one-step polyol method starting with two

solutions. For the first, 1.0 g silver nitrate was dissolved in

40 mL ethylene glycol at room temperature, while for the

second, 0.8 g PVP (Mw = 360,000) was gradually dis-

solved in 50 mL ethylene glycol at 60 �C while stirring at

300 rpm. After complete dissolution, the two solutions were

mixed and 13.6 g of FeCl3 solution (600 lmol L-1 in eth-

ylene glycol) was added to the mixture at room temperature

and stirred at 300 rpm for 3 min. The mixture was then

heated at 110 �C without stirring for a 12-h redox reaction.

Finally, the solution was mixed with acetone at a volume

ratio of 1:4 to precipitate AgNWs for the subsequent steps.

2.2 Washing Method

Thickness tailoring of PVP nanolayer was performed by

first mixing AgNW precipitate with ethanol at a mass ratio

of 1:15 and stirring at 150 rpm for 15 min at room tem-

perature, followed by centrifugation of the suspension at

3,000 rpm for 3 min. The supernatant was carefully dec-

anted, and the residual precipitate was dispersed in ethanol

and prepared for further washing. This procedure consti-

tutes one cycle of ethanol washing (E1) and was applied

twice, thrice, or four times to obtain three more AgNW ink-

labeled E2, E3, and E4. Then, E4-AgNWs were mixed with

deionized (DI) water at either 25 or 90 �C, with stirring at

150 rpm for 15 min, to obtain W25-AgNWs and W90-

AgNWs, respectively. Meanwhile, E4-AgNWs were also

mixed with dimethylformide (DMF), at either 25 or

140 �C, with stirring at 150 rpm for 15 min to form D25-

AgNWs and D140-AgNWs, respectively. The ink in DI

water and DMF were then centrifuged at 3,000 rpm for

3 min to obtain AgNW precipitate. Since the wetting

properties of these three solvents on PET were different,

the AgNWs were finally dispersed in ethanol for coating.

All these AgNW inks were fixed at 1.2 wt % concentration.

All the reagents mentioned above were purchased from

Wako Pure Chemical Industries, Ltd.

2.3 Fabrication of AgNW Transparent Electrodes

PET films with a thickness of 100 lm were employed as

substrates for AgNW electrodes. The PET substrates were

cleaned in ethanol with ultrasonic treatment and then dried

in air. The well-dispersed AgNW inks were drop-coated on

the PET substrates for various transmittances at 550 nm

wavelength. The dropped ink spread on the surface until

uniformly coating the substrate, and the specimens were

dried in air for 2–3 min until the solvent is evaporated.

AgNW ink was also coated on glass beaker, PET bottle,

tissue paper, and bacterial cellulose to verify its adapt-

ability on various substrates. Coating method for glass

beaker and PET bottle was dip-coating, and for tissue paper

and bacterial cellulose was also drop-coating.
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2.4 Fabrication of Pressure Sensors

AgNW transparent electrodes on PET substrates were

employed in capacitive pressure sensors. Pure PVP was

dissolved in ethanol at 5 wt % concentration. The PVP

solution was spin-coated on the as-prepared AgNW elec-

trodes at room temperature. After drying in air for about

30 s, two pieces of sandwiched PET/AgNWs/PVP struc-

tures were assembled with the two PVP layers in contact.

Two pieces of conductive tapes were pasted on AgNW

electrodes for the capacitance measurement.

2.5 Measurements and Characterization

The morphology of the PVP layer adsorbed on the AgNWs

was investigated by optical microscope (VHX-600, Key-

ence), scanning electron microscope (SEM, SU8020, Hit-

achi High-Technologies), and transmission electron

microscope (TEM, JEM-2100, JEOL). The sheet resistance

of 30 mm 9 20 mm AgNW electrodes was measured

using a four-point probe meter (Loresta GP T610, Mitsu-

bishi Chemical Analytech). The transmittance investigated

here was the transmittance of parallel light and does not

include the transmittance of diffused light. The parallel

transmittance (Tp) of the AgNW electrode for wavelengths

in the range 300–900 nm was measured using a UV–visi-

ble/near-infrared spectrophotometer (V670, JASCO). The

testing window size of the spectrophotometer is

12 mm 9 6 mm, and three different places of one sample

were tested and the average value was used as the trans-

mittance for each sample. Thermogravimetry analysis

(TGA) was carried out on a thermal analyzer (TG–DTA

2000SA, Netzsch Japan). The electrode haze was measured

using a D65 illumination haze meter with a strong visible

light source (HZ-V3, Suga Test Instruments). For the

capacitive sensor, changes in capacitance were measured

using a digital multimeter (34410A, Agilent Technologies).

3 Results and Discussion

Transparent electrodes are designed to achieve both out-

standing electrical conductivity and optical transmittance;

however, these two properties are seemingly negatively

correlated, since the higher density of nanowires leads to the

increase of conductivity and also the decrease of transpar-

ency. This dilemma could be resolved by employing long

AgNWs. For the one-step wet chemistry method, the length

and diameter of AgNWs varied drastically with the reaction

temperature and the stirring speed [12]. In this study, the

procedure for growing AgNWs was modified as at low

temperature of 110 �C without stirring. The as-synthesized

AgNWs, shown in Fig. 1, had an average length of 89.5 lm

and an average diameter of 84.2 nm. During the synthesis

and growth of AgNWs, the PVP capping agent was gradu-

ally adsorbed on the surface of the newly emerging silver

crystals and grew with the crystals to be a nanolayer on the

surface of the nanowire, formed from the merging of the

crystals (Fig. 1c inset). The thickness of the nanolayer ran-

ged from 5.96 to 20.13 nm with an average of 13.19 nm

(Fig. 1c). The PVP layer prevents the agglomeration of

AgNWs due to steric repulsion [23], while too thick layer

also increases the contact resistance. Therefore, the thick-

ness of PVP layer needs to be tailored appropriately.

Many post-processing methods, such as heating and

pressing, have been proposed to thin down the PVP layer. In

fact, it is known that PVP dissolves well in various solvents

such as water, methanol, ethanol, acetic acid, chloroform,

and so on [24]. Therefore, it is feasible to use these solvents

to reduce the thickness of PVP layer. In this study, a simple

stirring, washing, and centrifugation method was employed,

and its effect on the thickness of the PVP layer was inves-

tigated. Figure 2 shows that the average thickness is dra-

matically reduced to 5.74 nm after a single washing cycle

using ethanol and then decreased gradually down to 2.43 nm

after four cycles. The TEM images shown in the inset of

Fig. 2 highlight the thickness change of PVP layer on the

surface of AgNWs during washing. The thickness visibly

decreased compared with that of the original AgNWs and

gradually thinned after each washing cycle. This trend is

also verified by the thermogravimetric analysis (TGA)

shown in Fig. S1. For the untreated AgNWs samples, the

weight loss indicates intense evaporation of organic resi-

dues. The rapid weight loss occurring between *300 and

450 �C was attributed to the evaporation and decomposition

of residual byproducts and PVP [22]. For E4-AgNWs, the

weight loss at high temperature is much less, demonstrating

that after four cycles of washing, a mass of PVP and

byproducts had been removed.

The AgNWs washed in ethanol were used to fabricate

electrodes on PET substrates at room temperature. Figure 3

shows the relationship between the electrical performance

and the optical transmittance of the electrodes. The devia-

tions of measured sheet resistance values were usually less

than ±1 % of the average value at each measuring point.

When the AgNW loading decreased, the transmittance

increased but so did the sheet resistance. However, washing

drastically decreased the resistance while maintaining the

transmittance. For example, the resistances from zero to four

washing cycles were 195, 50.8, 32.0, 19.5, and 15.6 X sq-1,

respectively, with the same transmittance of ca. 90 %. The

results indicate that washing gradually removed the PVP

layer leading to lower contact resistance between AgNWs.

Importantly, the reductions in resistance were more notable

at higher transmittance. For instance, at 85 % transmittance,

the resistance dropped from 30 to 10 X sq-1 after four
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cycles of washing, while at 95 % transmittance, the drop is

more dramatic, from 5 9 104 to 93.0 X sq-1. At low

transmittance, dense AgNW percolation networks leaded to

a large number of conductive paths, and this balanced the

deleterious effect of high contact resistance at the wire–wire

junctions (see Fig. S2). At high transmittance, however,

there were fewer conductive paths, so the effect of contact

resistance was more pronounced. Indeed, according to the

percolation theory of conductive networks [25], sheet

resistance would dramatically increase at the critical con-

centration of AgNWs, i.e., percolation threshold, as the

transmittance increased. In the present work, a thin PVP

nanolayer made it possible to reduce percolation threshold

and achieve low sheet resistance with a limited number of

conductive paths. Moreover, within the measurement range,

no clear correlation was observed between the thickness of

the PVP nanolayer and the transmittance or haze of the

fabricated electrode (see Fig. S3). This could be due to the

thinness of the PVP nanolayer compared with AgNW and

the high transmittance of PVP thin layer itself. Tailoring the

thickness of the PVP nanolayer markedly improved the

electrical characteristics of the electrodes with little or no

effect on their optical properties. Summarily, it is necessary

to wash AgNWs for four cycles using ethanol to reduce the

PVP layer thickness to about 2.5 nm and achieve sheet

resistance below 10 and 100 X sq-1 for transmittance below

82 and 95 %, respectively. However, since the reduction is

lower after each cycle, the gains from washing more than

four times were expected to be minor.

In order to further improve the contact between wires to

achieve high conductivity, other solvents like DI water and

dimethylformamide (DMF), which are better solvents for

dissolving PVP (see Fig. S4), were used to wash the treated

AgNWs. After washing with ethanol, E4-AgNWs were further
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treated in DMF or water, and the evolution of PVP nanolayer

morphology was investigated as shown in Fig. 4. The average

thickness decreased from 2.43 nm to approximately 1 nm.

Washing at higher temperature (140 �C for DMF and 90 �C
for DI water) led to greater reductions in thickness due to easier

dissolution of PVP at higher temperature.

The sheet resistances of electrodes employing these four

kinds of AgNWs were also compared with the ones

employing E4-AgNWs (Fig. 4b). A similar pattern

emerged that high-transmittance electrodes were more

sensitive to changes in the thickness of the PVP nanolayer:

for transmittance below 95 % at the wavelength of 550 nm,

the sheet resistance was similar to that of ethanol-treated

samples, while for electrodes with higher transmittance, a

clear reduction in the sheet resistance was obtained. For

example, the sheet resistance of electrodes using W90-

AgNWs dramatically dropped from 2.1 9 106 to

204 X sq-1 at the transmittance of 97.5 %. To the best of

our knowledge, this result is the lowest value ever reported

without any post-treatment and far exceeds that of ITO.

It should be noticed that the agglomeration of nanowires

gradually emerged and finally precipitated when washing

time in DI water or DMF was prolonged, corresponding to

the excessive removal of PVP. The agglomeration degra-

ded the dispersion of nanowires and thus the electrode

performance at high transmittance. Therefore, it is impor-

tant to maintain well-distributed nanowire percolation

networks while reducing the contact resistance of individ-

ual wire–wire junction. In other words, the washing

parameters should be carefully controlled to obtain PVP

layer with a thickness optimal for peak electrical perfor-

mance. The washing parameters included washing

temperature, washing times, stirring speed, and the solvent

type. Simple, time-saving or cost-effective washing pre-

treatment could be easily achieved with different washing

parameters to improve the electrical performance for var-

ious applications of AgNW transparent electrodes.

Figure 5 shows the comparison of the optoelectrical

performances of the W90-AgNWs electrodes with those

from previously published studies. It should be noted that

our electrodes were fabricated at room temperature

without any post-treatment. Electrodes produced by this

simple washing method had much lower sheet resistance

compared with long AgNWs [21] and showed similar or

even lower values compared with AgNWs with an aver-

age length of 95.1 lm annealed at 250 �C for 2 h [26].

Clearly, the electrodes also performed better than elec-

trodes with short annealed AgNWs [26] and better than
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other conductive materials such as ITO [27], CNTs [28],

and graphene [29]. The high conductivity improved by

pre-treatment enabled AgNWs to become excellent

transparent electrode materials especially at high

transmittance.

The washed AgNWs not only improved the conductivity

of the film electrodes, but also overcome the substrate

limitation induced by the post-treatment and could be

directly coated on various substrates with different shapes

and properties. The W90-AgNWs were coated on the glass

beaker, PET bottle, tissue paper, and bacterial cellulose

substrate (Fig. S6). These AgNW films on different sub-

strates all showed high conductivity without any post-

treatment. The flat PET substrate-based electrodes with

W90-AgNWs were incorporated into a capacitive pressure

sensor for validation in a practical application. 5 wt % PVP

solution in ethanol was coated on the AgNW electrodes

and dried as the dielectric interlayer, and two pieces of

sandwiched PET/AgNWs/PVP structures were stacked as

shown in Fig. S7. This kind of structure could be fabricated

in different shapes and sizes, on rigid or flexible substrates.

First, the sensor employing two pieces of 93.7 %-trans-

mittance AgNW electrodes was investigated (see Fig. S8).

Pulsed pressures of 0.5 and 1.0 kPa were used to test the

response of the capacitive sensor as shown in Fig. 6a.

Under intermittent pressure stimuli of 0.5 kPa, the capac-

itance changed rapidly from ca. 0.1 to 0.24 nF, with good

reproducibility throughout the test. When the pressure was

increased to 1.0 kPa, a larger response of 0.35 nF was

obtained with good stability. Under mechanical pressure,

the distance between the overlapping areas of upper and

lower electrodes decreased rapidly resulting in immediate

changes in the capacitance [30]. Figure 6b compares the

change in capacitance under a pressure of 0.3 kPa for

sensors assembled using electrodes with different trans-

mittances. The sensor using washed AgNWs showed a

higher capacitance change DC/C0 (C0 is defined as the

original capacitance without any pressure, and DC is

defined as the difference between the capacitance with

pressure and C0) at all transmittances compared to the

sensor using untreated AgNWs, suggesting that the sensor

using W90-AgNWs is more sensitive to external pressure

due to the improved contact resistance between AgNWs.

The high-performance sensor was successfully achieved

with the pre-treated AgNWs, and this pre-treatment method

also provides an effective and simple route to enhance the

performance of other devices based on transparent

electrodes.
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4 Conclusions

The conductivity of AgNW transparent electrode has been

dramatically improved at high optical transmittance by a

simple and rapid washing method without any post-treat-

ment. In this washing pre-treatment process, increasing the

number of washing cycles leads to the gradual reduction in

the thickness of PVP layer and the corresponding decrease

in the sheet resistance especially at high transmittance.

Washing temperature and solvent type are also important

factors in the pre-treatment process. Therefore, AgNW

electrodes with sheet resistances of 15.6 and 204 X sq-1 at

transmittances of 90 and 97.5 %, respectively, were pro-

duced without any post-treatment at room temperature. A

capacitive pressure sensor based on the pre-treated AgNWs

that performs with high sensitivity, reproducibility, and

transparency, is demonstrated. The AgNW ink after

washing pre-treatment also avoids the substrate limitation

induced by the usual post-treatment and greatly expands

the application of AgNW electrode on various substrates.
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