
ARTICLE

High-Performance Solid-State Supercapacitors Fabricated
by Pencil Drawing and Polypyrrole Depositing on Paper Substrate

Jiayou Tao • Wenzhen Ma • Nishuang Liu • Xiaoliang Ren • Yuling Shi • Jun Su • Yihua Gao

Received: 10 January 2015 / Accepted: 5 March 2015 / Published online: 10 April 2015

� The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract A solid-state powerful supercapacitor (SC) is fabricated with a substrate of Xerox paper. Its current collector

based on a foldable electronic circuit is developed by simply pencil drawing. Thin graphite sheets on paper provide

effective channels for electron transmission with a low resistance of 95 X sq-1. The conductive organic material of

polypyrrole coated on thin graphite sheets acts as the electrode material of the device. The as-fabricated SC exhibits a high

specific capacitance of 52.9 F cm-3 at a scan rate of 1 mV s-1. An energy storage unit fabricated by three full-charged

series SCs can drive a commercial light-emitting diode robustly. This work demonstrated a simple, versatile and cost-

effective method for paper-based devices.
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1 Introduction

Supercapacitors (SCs), as the promising energy storage

devices, have attracted tremendous attention for a set of

features, such as high power density, fast rates of charge–

discharge process, long cycling life and improved safety

[1–3]. Particularly, SCs can provide much higher power

density than batteries and higher energy density than con-

ventional capacitors, which bridge the gap between those

two kinds of typical energy storage devices [4–6]. Ac-

cording to the underlying energy storage mechanism, SCs

can be classified into two categories [4, 5]. One is elec-

trochemical double-layer capacitors (EDLCs) which store

electrical energy by electrostatic accumulation of charges

between the surfaces of the electrode materials and elec-

trolyte [4]. Although EDLCs exhibit ultrahigh power den-

sity and distinguished long-term cycling performance, the

stored energy is limited by the finite electrical charge

separation at the interface between electrolyte and elec-

trode materials [3]. The other type of SC is the so-called

pseudocapacitor, which stores energy due to fast and re-

versible redox reactions occurring on the surface or near

surface of the active electrode materials. Compared to

EDLCs, pseudocapacitors have high energy density but

low power density and short cycle life [6].

Paper is inexpensive, foldable, environmentally benign

nature and widely used in our daily life. Commonly, paper is

composed of cellulose fibres with a typical diameter of about

20 lm. In recent years, paper is becoming a promising

flexible substrate for various electronics, such as solar cells

[7], transistors [8], displays [9] and energy storage devices

[10–12]. The realization of paper-based devices is highly

desired not only for their wide range of applications, but also
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for their compatibility with printed electronics. Aimed at low

cost, environmentally benign nature and wide range of ap-

plications, paper was exploited for the substrate of our SCs.

Carbon materials, as the most typical electrode materials for

EDLCs, have been extensively studied in the past decades

due to their good conductivity, robust mechanical character

and stable electrochemical behaviour [13–17]. Among car-

bon materials, graphene has some fascinating features, such

as large surface area, high flexibility, excellent conductivity

and good chemical/thermal stability [18, 19]. However, high

temperature and vacuum are needed during the synthesis

process of graphene [20–23]. Consequently, some un-

favourable issues emerge such as high cost, elaborate fab-

rication or difficulty in large-scale fabrication. Herein, we

got inspiration from ordinary writing manners and success-

fully drew arbitrary shapes of current collectors for our SCs

using a pencil. Multilayered graphene (thin graphite sheets)

was transferred onto the paper substrates during this simple

process, which provided an effective transmission path for

electrons. For the sake of enhancing the electrochemical

performance of the devices, polypyrrole (PPy)was deposited

on the pencil drawing paper, which was also used as the

pseudocapacitive material in this research. Compared to

other conductive polymers, PPy has greater density and a

great degree of flexibility in electrochemical process [24,

25], which result in a high volumetric capacitance and high

mechanical performance. After the deposition of PPy, two

PPy thin graphite sheet paper electrodes were assembled

with a gel electrolyte of H3PO4/polyvinyl alcohol (PVA).

The as-fabricated solid-state SCs exhibited good flexibility

and a high specific capacitance of 52.9 F cm-3 at a scan rate

of 1 mV s-1, which ismuch higher of some SCs than in prior

literatures [26, 27]. This technique represents a low cost,

applied and versatile fabrication method for paper-based

energy devices.

2 Experiment

To get paper-based SCs, a piece of Xerox paper (1.5 cm2)

was drawing by a 4B pencil (86 % graphite and 14 % clay)

until its sheet resistance reduced to about 95 X sq-1

(*150 times of scratching). After that, a layer of thin

graphite sheets was deposited on the paper. Then, the

graphite–paper composite (the area is about 1.0 9 1.0 cm)

was immersed in a solution that contained 0.2 M NaClO4

and 5 % (V:V) pyrrole monomer, and PPy was grown on

the drawn paper via an electrochemical deposition process.

Three-electrode configuration was used in this deposition

process with Ag/AgCl as the reference electrode, platinum

foil as the counter electrode and the drawn paper as the

working electrode. A constant voltage of 0.8 V was applied

during the process. Then the as-grown sample was washed

with deionized water and dried at room temperature. In

order to seek for the dependence of SC performance on

PPy deposition time, the deposition time of PPy on the

drawn paper was different. Finally, two pieces of

1.0 9 1.5 cm functionalized paper were used as electrodes

with the opposite area of 1.0 9 1.0 cm. A gel composite

H3PO4/PVA was used which acted as the separator and the

electrolyte between the two electrodes. After the gel elec-

trolyte dried completely, the quasi-solid-state SC was

prepared.

3 Results and Discussions

The fabrication process is illustrated in Fig. 1a. Scanning

electron microscopy (SEM) images of the electrode show

that the drawing on paper with 4B pencil produced multi-

layer graphene coating on the substrate (Fig. 1b). The

cross-section SEM image shows that the thickness of the

graphite film is about 3.0 lm (Fig. 1c), and the graphite

has been coated on the paper surface tightly. Figure 1d

shows that a layer of PPy has been polymerized and

wrapped on the drawing paper. There are a certain amount

of micro- or nanopores on the surface, which provides

larger effective area for redox reaction during charge–dis-

charge section (Fig. S1). The thickness of the active ma-

terials (graphite and PPy) also has been measured to be

about 5.0 lm (after 5-min electrodeposition of PPy) and

they tightly attach to each other (Fig. 1e). X-ray diffraction

(XRD) of graphite paper (G-paper) was also carried out

(Fig. 1f). The peaks at 26.67� and 54.83� fit well with

graphite (111) and (222), respectively. It further confirmed

that the film made by pencil drawing mainly contained

graphite. To study the functional groups information, Ra-

man spectra of both G-paper and PPy-G-paper are shown in

Fig. 1g. The Raman spectrum of G-paper exhibits two

prominent peaks. In detail, the peak at 1380 cm-1 is des-

ignated as the well-documented D band owing to the dis-

order-induced mode from Raman scattering at the graphene

edges [28], and the peak at 1618 cm-1 is attributed to the

doubly degenerate in-plane E2g vibration mode. In the

Raman spectrum of the PPy-G-paper, three typical peaks

arising from PPy can be indexed. The peak at 1582 cm-1 is

assigned to C=C back-bone stretching attributed to the G

band of graphene. The peak at 1336 cm-1 corresponds to

the D band of graphene. The peak at 986 cm-1 is assigned

to ring vibration of PPy [29], whereas bands at 1046 and

1231 cm-1 are due to C–H stretching. The Raman spectra

confirmed the presence of PPy and graphite in the com-

posite film, forming a PPy-G-paper hybrid structure.

The electric resistance of G-paper was measured at

different lengths (all the width of the measured G-paper is

0.5 cm). It reveals that there is a linear correlation between
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the length and the distance (Fig. 2a). The results indicated

that thin graphitic sheets coated on paper by pencil drawing

have good conductivity, which provide a stable transmis-

sion channel for electrons during charge–discharge pro-

cess. For convenient portability, some paper-based

applications require electronic circuits that could be folded

irrespective of whether the folding angle is negative or

positive. We have fabricated a simple foldable circuit

which could drive a light-emitting diode (LED) under

negative or positive folding angles (Fig. 2b, c). The small

change of circuit resistance allows the paper-based circuit

board to be folded at any angle. It illustrates that the gra-

phite on paper provides a good conductivity. After the PPy

deposition, the sheet resistance substantially reduced from

95 to 21.3 X sq-1 with the PPy deposition time increased

from 0 to 10 min (Fig. 2d). Obviously, the sheet resistance

decreased slightly when the deposition time increased from

5 to 10 min. This good conductivity also can be confirmed

in the following Nyquist plot.

To explore the electrochemical performance of the PPy-

G-paper SCs, a typical two-electrode configuration has

been employed in this work. All electrochemical mea-

surements were carried out at room temperature. We per-

formed the cyclic voltammogram (CV) scans of the

G-paper electrodes at different scan rates from 1 to

200 mV s-1 (Fig. 3a, b). The CV curve kept in a near

rectangular shape even at the scan rate of 100 mV s-1

indicates that the device has good capacitive performance.

The CV curves during higher power process are shown in

Fig. S2. The CV of PPy-G-paper at different PPy deposi-

tion times was also measured (as shown in Fig. 3c and Fig.

S3). When the deposition time increased to 5 min, the
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Fig. 1 a Schematic of fabrication process of the PPy-G-paper. b A SEM image of the G-paper. c A cross-sectional SEM image of the G-paper.

d A SEM image of PPy-G-paper. e A cross-sectional SEM image of the PPy-G-paper. f XRD of the G-paper illustrating the graphite. g Raman

spectra of the G-paper and PPy-G-paper
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capacitances of the PPy-G-paper SCs also had increased

and there was a downward trend after 5-min PPy deposi-

tion. It indicates that the device with 5 min of PPy elec-

trodeposition has better performance than that with 2 and

10 min. So the optimized deposition time of PPy is 5 min.

Figure 3d clearly shows the excellent CV performance at

different scan rates of the PPy-G-paper SCs with 5 min of

PPy electrodeposition. The device has a high specific ca-

pacitance of 52.9 F cm-3 at 1 mV s-1, which is much

higher than those reported in prior literatures [26, 27]. We

supposed that the high specific capacitance value should be

attributed to the synergetic effect of graphite and PPy

conductive wrapping layer, which improved the electrical

conductivity and acted as the pseudocapacitance materials

simultaneously. To further evaluate the electrochemical

performance of the SCs, the galvanostatic charge/discharge

(GCD) characterization was performed with different cur-

rent densities over the voltage window of 0–0.8 V (in

Fig. 3e, f). The near linear voltage versus time profiles and

the near symmetrical charge/discharge characteristics
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represent good capacitive characteristics of both G-paper

SCs and PPy-G-paper SCs. Comparing Fig. 3e with

Fig. 3f, it is clear to see that the capacitance of the PPy-G-

paper SC is significantly improved than that of the G-paper

SC.

Cycling life is an important parameter to determine the

performance of SCs. In order to study the electrochemical

stability, the cycling performance of the as-fabricated SCs

was tested. Figure 4a shows that the SC based on G-paper

electrodes has excellent cycling performance with over

90 % retention of capacity after 3000 cycles. For the de-

vice based on PPy-G-paper, 80.5 % of the initial ca-

pacitance was retained after 3000 cycles (the inset of

Fig. 4a). Figure 4b shows the Nyquist plots in the fre-

quency range from 100 kHz to 0.01 Hz with the potential

amplitude of 10 mV. The equivalent series resistance

(ESR) of the G-paper and PPy-G-paper reduces from 536.6

to 280.8 X. It revealed that the conductivity was improved

after PPy deposition.

In order to demonstrate the flexibility of our devices, the

bent state is shown in Fig. 4c. We also test the CV per-

formance at original/bent state; as shown in Fig. 4d, the

CV curves of the device just have a little influence. An

example for the application of the connected SCs is shown

in Fig. 4e and the inset, where three arbitrary PPy-G-paper-

based SCs are connected in series. They can drive a

commercial LED (Fig. 4e) as an energy source when it has

been fully charged. We picked two SCs (devices 1 and 2)

and measured their capacitances, which are 16.1 and

11.3 mF at the current density of 20 A cm-3, respectively.

As shown in Fig. 4f, when they are connected in series, the

capacitance of the whole device is calculated to be 7.6 mF,

when in parallel, it is 32.8 mF. The results reveal that the

capacitance of the connected SCs roughly obeys the basic

rule of series and parallel connections of capacitors. So we

can take various connections of our SCs to meet a wide

variety of demands in practice.

4 Conclusions

In summary, we fabricated SCs on Xerox paper using

pencil drawing and PPy deposition successfully. The thin

graphite sheets drawn by pencil acted as a good EDLC

material and a good current collector. The SCs based on

PPy-G-paper electrodes showed high specific capacitance

of 52.9 F cm-3 at a scan rate of 1 mV s-1. In addition,

three SCs connected in series can drive a commercial LED.

This method of fabricating the energy storage devices is of

low cost and environment friendly, and the paper SCs can

potentially guide the development of paper electronics for

its low cost and high compatibility.
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