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Highlights

• Flexible and all-solid-state micro-supercapacitors (MSCs) were fabricated by inkjet printing using carbon-based hybrid

ink composed of graphene oxide (GO) and commercial pen ink.

• The as-obtained MSCs based on hybrid ink exhibit great enhancement in areal capacitance, flexibility and cycling

stability compared with that of pure GO ink.

• This work provides a promising strategy for large-scale preparation of low-cost, lightweight, and flexible/wearable

energy storage devices with carbon-based hybrid ink.
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Abstract By means of inkjet printing technique, flexible

and all-solid-state micro-supercapacitors (MSCs) were

fabricated with carbon-based hybrid ink composed of

graphene oxide (GO, 98.0 vol.%) ink and commercial pen

ink (2.0 vol.%). A small amount of commercial pen ink

was added to effectively reduce the agglomeration of the

GO sheets during solvent evaporation and the following

reduction processes in which the presence of graphite

carbon nanoparticles served as nano-spacer to separate GO

sheets. The printed device fabricated using the hybrid ink,

combined with the binder-free microelectrodes and inter-

digital microelectrode configuration, exhibits nearly 780%

enhancement in areal capacitance compared with that of

pure GO ink. It also shows excellent flexibility and cycling

stability with nearly 100% retention of the areal capaci-

tance after 10,000 cycles. The all-solid-state device can be
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optionally connected in series or in parallel to meet the

voltage and capacity requirements for a given application.

This work demonstrates a promising future of the carbon-

based hybrid ink for directly large-scale inkjet printing

MSCs for disposable energy storage devices.

Keywords Inkjet printing � Flexible devices � Graphene
oxide (GO) � Carbon-based ink � Micro-supercapacitors

1 Introduction

Significant advances in nanotechnology have greatly

prompted the development of maintenance-free microelec-

tronic devices such as wireless microsensors,

implantable medical devices, nanorobotics, and active radio

frequency identification tags, which have ultimately stimu-

lated the rapid development of new concept and sufficiently

compact energy storage systems [1–3]. In this respect,

miniaturized supercapacitors (SCs), also called micro-SCs

(MSCs), which can be fabricated directly on plastic or paper

substrates and integrated with other microelectronic device,

are attracting more and more attention as an important class

of energy storage devices [4–11]. According to the charge

storage mechanism as well as active materials used, SCs/

MSCs generally have three types. The first is called elec-

trochemical double-layer capacitors (EDLCs), in which the

charge is stored by the surface charge separation at the

electrode/electrolyte interface. The second is pseudo-ca-

pacitors or redox-capacitors, which is using fast and rever-

sible surface faradic redox reactions for charge storage. The

last are hybrid capacitors which consist of both EDLCs and

pseudo-capacitors in a single device [4, 5]. Because neither

of these two surface charge storages involve diffusion of ions

within the inner bulk region of electrode active materials,

SCs/MSCs possess a higher power density which is an order

of magnitude larger (10,000 W kg-1) than that of regular

batteries (e.g., lithium-ion batteries). In spite of the relatively

lower energy density, SCs/MSCs can deliver an energy

density in two orders ofmagnitude higher (10Wh kg-1) than

that of conventional capacitors. Furthermore, unlike batter-

ies, due to their highly reversible charge storage process,

SCs/MSCs have longer life-cycle that can often achieve up to

millions of charge–discharge cycles without energy storage

capacity loss.With these excellent performances, SCs/MSCs

have been widely acknowledged as a promising compatible

power source to complement or replace micro-batteries to

provide the required power and energy for maintenance-free

microelectronic devices [12–16].

Conventional MSCs usually follow the planar 2D archi-

tecture of thin film micro-batteries, consisting of thin-film

electrodes that are stacked on top of each other with a sep-

arator in between [17–23]. Although the configuration with

sandwich design is applicable to most of the electroactive

materials and cost-effective for mass production, it suffers

from obvious drawbacks such as possibility of short circuit

due to undesired position dislocation of electrodes and lower

power density due to electron and ion transport limitations

[4, 5]. In particular, the sandwich electrode configuration

makes it challenging to integrate the conventional MSCs

with other microelectronic devices mounted on a planar

integrated circuit, which greatly limit the miniaturization of

the entire microelectronic system. To address these short-

comings, the planar interdigital configuration is suggested

and has become dominant in the fabrication ofMSCsmainly

because of its well-established advantages such as facilitat-

ing fabrication and integration. It allows the fast movement

of ions in the same plane to enhance power density, and

effectively prevent electrode short circuit and undesired

position dislocation of electrodes [24–28]. So far, there have

been various fabrication methods developed for planar

MSCs, such as conventional photolithography technique

[29–31], screen printing method [32], selective wetting-in-

duced method [33], microfluidic etching assisted method

[34], and laser irradiation-assisted fabrication method

[35, 36]. However,most of thesemethods normally involve a

complicated and toxic lithography process that often results

in high costs, material wastage, difficulty in patterning large

areas, and a certain degree of environmental pollution.

Therefore, the development of convenient, low materials

waste, low-cost, and environmentally friendly fabricating

method for planar MSCs is significant for the further com-

mercial application of the MSCs [5].

Inkjet printing technique is a kind of simple and high-

utilization method, which can accomplish the deposition

and the patterning in the same step. This will reduce

material usage and process complexity [32, 37, 38]. In

addition, the printing technique allows end-user to control

the pattern design by propelling droplets of ink onto paper,

plastic, or other substrates through simple software. Thus,

it has good control in the printing precision [39]. Signifi-

cantly, compared with traditional fabrication approaches,

inkjet printing does not involve complicated multi-step

lithography procedures, toxic chemical treatments, high

temperature, and vacuum processing. It provides a simple

route for fabrication of planar MSCs with high practicality

and high performance. Therefore, it is a competitive

alternative to conventional photolithography for the effi-

cient, low-cost, and large-scale production of planar MSCs

with high practicality for further industrial applications.

Since the performance of inkjet-printable micro-electrodes

of MSCs is strongly governed by the ink, preparation of

liquid phase materials (active ink) that meets specific

conditions (suitable viscosity and surface tension) to be

printed through the micronozzles for inkjet printing is the

key for the fabrication of planar MSCs [40–42].
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In this field, carbon-based materials such as carbon

nanotubes (CNTs) [43, 44], graphene [45–47], and gra-

phene oxide (GO) [48–52] have received more extensive

attention for the ink formulation and practical electric

double-layer capacitor (EDLC) applications because of

their abundant sources, large surface area, corrosion

resistance, high conductivity, and suitability for mass

production. However, the poor dispersibility of CNTs and

graphene has greatly limited their applications. Although

they can be well dispersed in some organic solvents such as

dimethylformamide and N-methylpyrrolidone, these

organic solvents are often of very low viscosity (\2 cP),

which severely deteriorates the inkjetting performance

[38]. In addition, these organic solvents are toxic. Fur-

thermore, the graphene concentration in these solvents is

often so low (\0.1 mg mL-1) that several tens of print

passes are required to obtain functional devices, which can

reduce efficiency of the technique. Therefore, GO with its

excellent solubility in water has attracted more attentions

on inkjet printing of carbon-based materials for MSCs.

However, GO flakes easily aggregate and restack during

solvent evaporation after printing and the following

reduction processes to regain the electrical performance of

pristine graphene [40]. Therefore, the actual accessible

surface area of the reduced GO (rGO) electrodes is much

lower compared to the theoretical surface area, which

greatly degrades the performance of graphene-based

MSCs. Therefore, it is essential to modify the GO ink with

additives to alleviate the flake aggregation before good

performance could be realized.

Herein, we formulate carbon-based hybrid ink com-

posed of GO (98.0 vol.%) ink and commercial pen ink (2.0

vol.%), and demonstrate the fabrication of flexible and all-

solid-state MSCs based on binder-free hybrid planar

interdigital micro-electrodes via inkjet printing. The elec-

trochemical properties of the as-obtained MSCs were

examined by cyclic voltammetry (CV), galvanostatic

charge–discharge (GCD), and electrochemical impedance

spectroscopy (EIS). It was found that the as-obtained

MSCs exhibit great enhancement in areal capacitance,

excellent flexibility, and cycling stability. Our investigation

demonstrate a promising strategy for large-scale prepara-

tion of low-cost, lightweight, and flexible/wearable energy

storage devices with carbon-based hybrid ink.

2 Experiment

2.1 Preparation of Pure GO Ink

All chemicals are analytical grade and are used without

further purification. GO was synthesized by oxidation of

graphite with the modified Hummers method [53]. Then,

the as-obtained GO aqueous solution was intensively ultra-

sonicated for 60 min and filtered through a filter with

0.8 lm pore size to remove any unexfoliated GO sheets

and obtained a stable GO dispersion. Finally, the GO dis-

persion was concentrated to the nominal concentration of

2 mg mL-1, and ethylene glycol (2.0 vol.%) was added to

the dispersion to optimize the viscosity and surface tension.

2.2 Preparation of Carbon-Based Hybrid Ink

The commercial pen ink (Hero, Shanghai Ink Factory in

China) was firstly filtered through a filter with 0.45 lm
pore size to remove any large particles. Then, the carbon-

based hybrid ink was prepared by simple mixing the as-

obtained pure GO ink and the commercial pen ink with the

volume ratio of 49:1. The final hybrid ink was thoroughly

ultra-sonicated for 5 min at room temperature.

2.3 Inkjet Printing and Reduction

Inkjet printing was carried out with a commercial piezo-

electric Dimatix material printer (DMP 2800, Dimatix-Fu-

jifilm, Inc.) with a print head consisting of 16 inkjet nozzles

designed for a 10 pL nominal drop volume. The as-obtained

printing ink was injected into a cleaned ink cartridge using a

syringe. Before printing, the ink cartridge was allowed to

stand for several minutes to ensure that the ink was equili-

brated in the cartridge, and then the patterns designed by

common drawing software were printed onto the flexible

PET substrates. The printing step was repeated five times to

deposit sufficient active ink for electrochemical measure-

ments. Subsequently, the printed patterns were reduced at

80 �C by HI vapor for 30 min, rinsed three times with

ethanol and water in turn, and heated at 150 �C for 2 h to

remove iodide ions to form the micro-electrodes of the

MSCs.

2.4 Fabrication of Flexible and All-Solid-State

MSCs

Two copper wires were connected to the pad of the as-

printed micro-electrode using silver paste to make a con-

nection to the electrochemical instruments. Polyvinyl

alcohol (PVA)/sulfuric acid (H2SO4) served as electrolyte

was prepared by adding PVA power (6 g) into H2SO4

aqueous solution (6 g H2SO4 into 60 mL deionized water).

The whole mixture was heated to 85 �C under vigorous

stirring until the solution became clear. After cooling

down, the gel solution was drop cast to the surface of the

microelectrodes. After PVA/H2SO4 gel electrolyte being

solidified, the preparation of the MSCs was completed.

The areal capacitance (CS) (lF cm-2) was calculated

from the charge–discharge curves according to the
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following equations to evaluate the charge storage capacity

of the as-obtained MSCs.

C ¼ Q=DE ¼ IDt=DE; ð1Þ
CS ¼ C=S ¼ IDt=SDE; ð2Þ

where C (lF) is the total capacitance, Q (C) is the total

charge, I (lA) is the discharge current, t (s) is the discharge
time, DE (V) is the potential window during the discharge

process after IR drop, and S (cm2) is the total surface of the

positive and the negative interdigital electrodes as shown in

Fig. 1f.

2.5 Sample Characterizations

The morphologies of all samples were characterized by

scanning electron microscopy (SEM, SU-8020) and trans-

mission electron microscopy (TEM, JEOL-2010) with an

accelerating voltage of 200 kV. The Raman spectrum was

taken on a LABRAM-HR confocal laser micro-Raman

spectrometer using an Ar? laser with the 514.5-nm line at

room temperature. CV, EIS, and GCD measurements of

MSCs were carried out on an electrochemical workstation

(IM6ex, Zahner). Impedance spectroscopy measurements

were performed at open circuit voltage with ±10 mV

amplitude. Sheet resistance of the printed micro-electrode

was measured by a standard four-point probe method

(RST-9, Four-Probe Tech.). A Panasonic DMC-FX3 digital

camera was used to capture all the photographs. All mea-

surements were carried out at room temperature and at a

relative humidity of *60%.

3 Results and Discussion

In order to obtain high-quality printed pattern and printhead

reliability, restricting the size of particles dispersed in the ink

is the key. The size of particles dispersed in conventional

pigment ink for inkjet printing is usually in the range of

100–400 nm [54]. The initially obtained GO sheets dis-

persed in aqueous solution was intensively sonicated and

filtered through a filter with 0.8 lm pore size to remove any

unexfoliated and large GO sheets to obtain a stable GO ink.

Figure 1a shows the graph of the stable pure GO ink (defined

as P-ink) containing uniform and required size of GO sheets.

As shown in the TEM image (Fig. 1b), after treatment, the

GO sheet size is generally smaller than 400 nm, meeting the

specific conditions for inkjet printing. In addition, the as-

prepared P-ink can be stored for several months without any

aggregation because the surface of the GO sheets contains

hydrophilic functional groups [55]. The carbon-based hybrid

ink was prepared by further blending pure GO ink with

commercial pen ink (Fig. S1), which consists of a large

number of nanoparticles about 40 nm in size as shown in

Fig. 1d. Figure S2 shows the corresponding Raman spectra

of the commercial pen ink, which has two characteristic

bands centered at 1353 and 1582 cm-1 attributed to the

disordered carbonaceous component and ordered graphitic

component, respectively. The calculated intensity peak area

ratio ID/IG is 0.93. The Raman investigation indicates that

these nanoparticles dispersed in the commercial pen ink are

mainly graphite carbon nanoparticles (CNPs). Figure 1c

shows homogeneous and well-dispersed black hybrid ink.

(a)

P-ink H-ink

(b) (c)

(d) (e) (f)
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Fig. 1 a GO dispersed in water at 2 mg mL-1 as a stable pure GO ink. b A typical TEM image of the GO sheets. c Photograph of the as-

prepared carbon-based hybrid ink. d A typical TEM image of the graphite carbon nanoparticles dispersed in the commercial pen ink. e SEM

image of the ink-jet printed micro-electrodes. f Schematic diagram of a symmetric device with 12-interdigital fingers
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This solution remains stable over a period of 3 months. The

as-obtained homogeneous hybrid ink (defined as H-ink) can

be easily printed on flexible PET substrate to realize large-

scale fabrication of interdigital micro-electrodes for MSCs

(defined as MSCs-H that was fabricated based on H-ink) as

shown in Fig. S3. Figure 1e shows the good control over

pattern geometry and location of MSCs-H. The well-defined

pattern guarantees the absence of short circuit path between

cathode and anode during the testing. Significantly, after

reduction process, the as-obtained printed interdigital micro-

electrodes have strong adhesion to the substrate evenwithout

a binder, which ensures the good resistance to scratch (see

Supporting Information Video 1). In addition, the average

sheet resistance of the printed interdigital micro-electrodes

has also been measured by a standard four-point probe

method, which reaches*7.0 kX sq-1 and is higher than that

(*4.3 kX sq-1) of the printed interdigital micro-electrodes

based on P-ink. The increase of average resistance of the

printed interdigital micro-electrodes based on H-ink is

attributed to the addition of the CNPs of which the conduc-

tivity is poor. In this work, the length (L) and thewidth (W) of

each interdigital finger were set to a constant value of 9000

and 500 lm utilizing simple software on a personal com-

puter, respectively. The inter-space (I) between interdigital

fingers is designed as 200 lm. However, in fact, the width of

each interdigital finger and inter-space between them are

only kept for an average value of 547/187 lm in the actual

printing, containing a printer error relative to the set of

printing parameters. If the printing parameter is set smaller,

the actual printing value will contain bigger printing errors

and the print quality will also deteriorate. This may cause a

short circuit. Figure 1f is the schematic circuit diagram of a

MSCs unit with 12-interdigital fingers. The printing step was

repeated for five times to deposit sufficient active materials

for electrochemical measurements. For comparison, MSCs

based on P-ink and pure diluted commercial pen ink were

also fabricated with the same printing parameters and

denoted as MSCs-P and MSCs-CNPs, respectively.

Figure 2a–d show CV results of the as-prepared MSCs-

H, MSCs-P, and MSCs-CNPs in the potential window of

0–0.8 V at various scan rates from 10 to 1000 mV s-1.

Both MSCs-H and MSCs-P show near rectangular CV

curves, typical for EDLCs. However, MSCs-H shows lar-

ger current density compared to MSCs-P at the same scan

rate, indicating enhanced capacitance based on hybrid ink.

In addition, compared with those of the MSCs-H and

MSCs-P, the current density of MSCs-CNPs can almost be

ignored at the same scan rate, which indicates that the

enhanced capacitance of MSCs-H is not just derived from

the added CNPs themselves. Figure 2e shows the GCD

curves of MSCs-H. It can be observed that the charge and

discharge time of MSCs-H increase with the trace addition

of commercial pen ink at the same current, also indicating

the enhanced capacitance of MSCs-H compared with that

MSC-P
MSC-H
CNPs-P

10 mV s-1

0.8

0.6

0.4

0.2

0
−0.2
−0.4C

ur
re

nt
 d

en
si

ty
 ( μ

A
 c

m
− 2

)

0 0.2 0.4 0.6
Potential (V)

0.8

MSC-P
MSC-H
MSC-CNPs

100 mV s-1

4
3
2
1
0

−1
−2
−3C

ur
re

nt
 d

en
si

ty
 ( μ

A
 c

m
− 2

)

C
ur

re
nt

 d
en

si
ty

 ( μ
A

 c
m
− 2

)

0 0.2 0.4 0.6
Potential (V)

0.8

MSC-P
MSC-H
MSC-CNPs

500 mV s-1

16
12
8
4
0

−4
−8
−12

0 0.2 0.4 0.6
Potential (V)

0.8

MSC-P
MSC-H
MSC-CNPs

1000 mV s-1

30

20

10

0

−10

−20

−30C
ur

re
nt

 d
en

si
ty

 ( μ
A

 c
m
− 2

)

0 0.2 0.4 0.6
Potential (V)

0.8

1.0

0.8

0.6

0.4

0.2

0

Po
te

nt
ia

l (
V

)

A
re

al
 c

ap
ac

ita
nc

e 
( μ

F 
cm

− 2
)

0 50 100 150 200
Time (s)

250

MSC-P
MSC-H

20
18
16
14
12
10
8
6
4
2
0 0.2 0.4 0.6 0.8

Current (μA)
1.0

MSC-H 0.1 μA
0.2 μA
0.3 μA
0.5 μA
1.0 μA

(a) (b) (c)

(d) (e) (f)

Fig. 2 CV curves of MSCs-H, MSCs-P, and MSCs-CNPs at scan rates of: a 10, b 100, c 500, and d 1000 mV s-1. e Galvanostatic charge–

discharge curves of MSC-H in the voltage range between 0 and 0.8 V at various currents. f Comparison of areal capacitances of MSCs-H and

MSCs-P at the same current
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of MSCs-P (Fig. S4). The calculated areal capacitance of

MSCs-H and MSCs-P from GCD curves with respect to

different discharge currents is plotted in Fig. 2f. As can be

seen from Fig. 2f, the areal capacitance of MSC-H was

calculated to be 19.18 lF cm-2 at a current of 0.1 lA and

15.57 lF cm-2 at a current of 1.0 lA. These results achieve
a high retention ratio of over 81.2%, indicating a high-rate

capability. However, for MSC-P the areal capacitance is

only 2.47 lF cm-2 at a current of 0.1 lA and 1.88 lF cm-2

at a current of 1.0 lA, which shows not only a lower areal

capacitance but also a lower rate capability (76.1%)

because of the limitation of electron/ion transfer in the

close restacked graphene sheets in the absence of CNPs

served as nano-spacers. The nearly 780% enhancement in

areal capacitance directly confirms the remarkable advan-

tage of using commercial pen ink to modify the pure GO

ink to alleviate the flake aggregation for planar MSCs with

high areal capacitance.

We suggest that the highly enhanced areal capacitance

of the MSC-H is mainly attributed to the microstructure of

the electrodes. Figure 3a is a typical cross-sectional SEM

image of the patterned micro-electrodes of MSCs-H. It

shows the irregular porous structure of the electrodes with

the appearance of CNPs between rGO sheets throughout

the thickness of the films with almost no sign of stacked

rGO sheets. These CNPs, served as nano-spacers, can

separate neighboring GO sheets and further effectively

inhibit the agglomeration during solvent evaporation after

printing and restacking of graphene sheets during the

reduction process, thus providing a highly accessible sur-

face area for the microelectrodes. This loose structure is

beneficial for the uptake of electrolyte to facilitate ion

transport between active materials and the electrolyte,

which is favorable for increasing the capacitance of EDLC

[56]. On the contrary, the heavily stacked MSCs-P

(Fig. 3b) could prevent the full access of electrolyte ions to

the surface of rGO sheets and decrease the specific surface

area of rGO, resulting in the lower areal capacitance. The

rate capability and power handling of the MSCs-H was

further tested by CV at high scan rates from 5000 to

20,000 mV s-1. Remarkably, when the scan rate further

increases from 5000 to 20,000 mV s-1 (Fig. 3c–e), the

peak current density of MSCs-H continues to increase

rapidly which is the characteristic of a high instantaneous

power. A linear dependence of the discharge current den-

sity on the scan rate was also recognized at least up to

5000 mV s-1 (Fig. 3f). As shown in Fig. 3d, e, CV curves

of the MSCs-H gradually deviate from a rectangular shape

as the scan rate further increases, indicating the transition

to a more resistive behavior at high scan rate.

MSCs-H with different inter-spaces between interdigital

fingers (200, 400, and 800 lm) were further fabricated to

investigate the relationship between electrochemical perfor-

mance and inter-space (defined as 200-MSCs-H, 400-MSCs-

H, and 800-MSCs-H, respectively). Figure 4a shows CV

results of the as-prepared 200-MSCs-H, 400-MSCs-H, and
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Fig. 3 Cross-sectional SEM images of the printed micro-electrodes of MSCs: a MSCs-H, b MSCs-P. c–e Cyclic voltammetry curves of MSCs-

H. f A linear dependence of the discharge current density on the scan rate up to 5000 mV s-1
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800-MSCs-H in the potential windowof 0–0.8 V at a constant

scan rate of 1000 mV s-1. As shown in Fig. 4a, the current

density slightly increases at the same scan rate, indicating

enhanced capacitance of the device with the decrease of the

inter-space between interdigital micro-electrodes. The GCD

curves of MSCs-H with different inter-spaces at a constant

current of 0.1 lA are shown in Fig. 4b, and the 200-MSCs-H

shows obviously longer charge–discharge time compared

with 400-MSCs-H and 800-MSCs-H. The calculated areal

capacitance of MSCs-H with respect to different discharge

currents is plotted in Fig. 4c. It shows that 200-MSCs-H has

obviously larger areal capacitance compared to 400-MSCs-H

and 800-MSCs-H, which can be attributed to a decrease of the

inter-space between the fingers.

According to the previous reports, the smaller inter-

space will reduce the ions and charge transport path that is

conductive to make use of active materials completely and

improve rate capability [33, 57]. Since the same electrodes

(the same width and length of each interdigital finger and

deposition time) were utilized for all the MSCs-H in this

study, an increase in inter-space between two electrodes

must result in the increase of pathway of ions transport

from one electrode to the counter electrode. Thus, areal

capacitance decreased as the inter-space between the

interdigital finger line-width increased. The enhanced

electrochemical performance of 200-MSCs-H was further

confirmed by EIS measurements from 100 kHz to 10 mHz.

The intercept of the Nyquist curve with the real axis at high

frequencies represents the equivalent series resistance of

the device with two-electrode configuration [7, 26]. From

Fig. 4d, 200-MSCs-H shows a smaller intrinsic resistance

than those of 400-MSCs-H and 800-MSCs-H due to the

decrease of the inter-space. This is greatly important since

less energy and power will be wasted to produce unwanted

heat during the charge–discharge processes. Therefore, the

performance of the as-presented MSCs could be further

improved with a shorter inter-space between two micro-

electrodes, if the viscosity and surface tension of the ink

were further finely tailored to be more compatible with the

printing substrate for a better inkjet printing precision.
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Considering practical use of MSCs, it is needed to

connect SCs in series and/or in parallel to increase oper-

ating voltage and capacity in some situations. The perfor-

mance of integrated MSCs pack with three 200-MSCs-H

connected in parallel and series were tested. Figure 5a, b is

the photographs of printed three devices connected in

parallel and series. Figure 5c shows the CV curve of single

device and the pack (three devices connected in parallel) at

1000 mV s-1 with a potential window of 0–0.8 V, where

the output current of the pack increases by a factor of *3

compared with a single device. In addition, as shown in

GCD curves of a single device and the pack at the same

constant current of 0.2 lA (see Fig. 5e), the runtime of the

pack also increases by a factor of *3 compared with a

single device. The calculated capacitance of the electro-

chemical capacitor pack and a single device from GCD

curves are 12.36 and 37.77 lF, respectively, revealing that

the device roughly obeys the basic rule of parallel con-

nections. The intercept of the Nyquist curve with the real

axis at high frequencies represents the equivalent series

resistance of the device [8, 10]. As shown in Fig. 5g, the

inner resistance of three parallel-connected devices is only

about a third of single device unit. Therefore, putting the

devices together in parallel can effectively enhance the

output current and the capacitance, while the operating

voltage still remains the same. Figure 5d is the CV curves
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of single device unit and three devices units connected in

serial at a high scan rate of 1000 mV s-1. One can see

adding electrochemical capacitors in a serial string can

effectively increase the voltage when portable equipments

need higher voltages. However, due to the inner resistance

was superimposed after MSCs units connected in series

(Fig. 5h), the current of three devices units connected in

series is reduced compared with the single device unit. The

calculated capacitance of the pack is 4.04 lF, which is

about one third of that of the single device (12.36 lF).
These results show a good consistency of the electro-

chemical performance of the on-chip and all-solid-state

MSCs based on all-carbon-based hybrid ink. The as-ob-

tained planar on-chip MSCs also possess excellent

mechanical flexibility, which can be bent outwards to 90�
at least (radius of curvature is 4.6 mm) and still remain the

CV curves nearly unchanged compared with that of the

normal configuration at a high scan rate of 500 mV s-1

(Fig. 5i). Furthermore, the CV curves after repeatedly

bending for 500 times also remain nearly unchanged at a

high scan rate of 500 mV s-1 as shown in Fig. S5. All the

results demonstrate its potential application in flexible

energy storage. As a potential energy storage device, the

long-term stability of MSCs should also be examined. The

cycling performance of the device was further tested by

GCD at a current of 1 lA over 10,000 cycles. As shown in

Fig. 5j, after the initial 1500 cycles, a small increase of

capacitance is observed for the subsequent cycles. This

phenomenon is due to the incomplete exposure of active

sites of the printed micro-electrodes to the gel electrolyte

[58–60]. The capacitance of the device decreases to the

initial capacitance, indicating the full infiltration of the gel

electrolyte to the active sites. However, there is almost no

attenuation in the capacitance of the device as the number

of cycle increases to 10,000 and the capacitance still retains

about 100% after 10,000 cycles with respect to the first

cycle, which demonstrates its excellent electrochemical

stability.

4 Conclusions

In summary, it is shown that carbon-based hybrid ink

composed of GO ink and commercial pen ink can be for-

mulated successfully. A commercially scalable inkjet

printing technique can be used to prepare flexible and all-

solid-state MSCs without using traditional lithography or

screen printing method. The MSCs formed with the binder-

free hybrid planar interdigital micro-electrodes exhibit

nearly 780% enhancement in areal capacitance compared

to that of printed devices using pure GO ink. It also has

excellent flexibility and cycling stability. Moreover, these

all-solid-state devices can be optionally connected in series

or in parallel to meet the voltage and capacity requirements

for a given application. The key result of this work is the

applicability of the inkjet printing technique used carbon-

based hybrid ink from cheap, abundant, commercially

available materials to allow an industrially scalable route to

achieve printable energy storage devices with high

performance.
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