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Abstract Comparing with hot researches in absorber layer,

window layer has attracted less attention in PbS quantum

dot solar cells (QD SCs). Actually, the window layer plays a

key role in exciton separation, charge drifting, and so on.

Herein, ZnO window layer was systematically investigated

for its roles in QD SCs performance. The physical mecha-

nism of improved performance was also explored. It was

found that the optimized ZnO films with appropriate

thickness and doping concentration can balance the optical

and electrical properties, and its energy band align well with

the absorber layer for efficient charge extraction. Further

characterizations demonstrated that the window layer

optimization can help to reduce the surface defects, improve

the heterojunction quality, as well as extend the depletion

width. Compared with the control devices, the optimized

devices have obtained an efficiency of 6.7% with an

enhanced Voc of 18%, Jsc of 21%, FF of 10%, and power

conversion efficiency of 58%. The present work suggests a

useful strategy to improve the device performance by

optimizing the window layer besides the absorber layer.

Keywords ZnO � Window layer � Thin film solar cells �
PbS quantum dots � Physical mechanism

Highlights

• The efficiencies of PbS solar cells was significantly improved from 4.3% to 6.7% by optimizing ZnO window layer.

• Optimized ZnO window layer can reduce the surface defects, extend thedepleted-heterojunction width and align with

energy band of absorber layer.
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1 Introduction

Colloidal quantum dots (CQDs) have attracted significant

attention for potentially wide applications in optoelectronic

devices such as solar cells [1–3], photodetectors [4–6], and

light-emitting diodes [7, 8] due to low-temperature fabri-

cation, solution-based processing, and their peculiar opto-

electronic properties [9–11]. For solar cell applications, the

QDs’ bandgap can be conveniently tuned via the quantum

size effect in order to match the wide absorption of solar

spectra. Furthermore, recently the multi-exciton generation

(MEG) effect in CQD-based solar cells (SCs) was reported,

which can efficiently utilize high energy photons [1]. The

above superior properties enable them as a promising light-

absorbing material. In terms of device architecture,

depleted-heterojunction ZnO–PbS SCs have achieved the

state-of-art highest efficiency and demonstrated the out-

standing atmosphere stability [12–14].

In depleted-heterojunction CQD SCs, there were

numerous researches for optimizing absorber layers. In

contrast, the window layer attracts less attention in spit that

it plays the key roles in extracting and transporting charge

carriers in heterojunction. As an n-type window layer, ZnO

is an ideal candidate due to its relatively high electron

mobility, environment stability, and high transparency

[15]. Even utilizing the same window layer of ZnO, dif-

ferent groups utilized varied thickness and obtained over

8% conversion efficiency [12, 14, 16, 17]. Bawvendi et al.

utilized 120 nm ZnO layer to achieve 8.5% certified effi-

ciency [14]. Recently, Sargent group adopted 80 nm ZnO

layer as n-layer and molecular-halide-passivated PbS QDs

as absorber to obtain 9.9% certified efficiency [12]. Con-

sidering the optoelectronic function of the window layer,

the varied thickness of ZnO layer needs further optimiza-

tion for CQD SCs.

For ZnO layer fabrication, a sol–gel method was com-

monly used to prepare ZnO layer due to its low cost and

simplicity [18–20]. However, the quality of solution-based

ZnO film suffers from the surface defects or dangling

bonds, which may act as charge trap sites or recombination

centers [21–23]. To solve the above-mentioned problems,

several strategies such as surface passivation or doping

were reported to control the interfacial properties of

heterojunction [24–28]. All of them have made promising

progresses in the improvement of interface quality.

Herein, we adopted a layer-by-layer (LBL) sol–gel

method to optimize the ZnO window layer. The modified

sol–gel method could hold stronger capability to obtain

smooth junction interface and finely control film process-

ing. On the other hand, each layer deposition was followed

one time of annealing. Thus, different ZnO layer

thicknesses were corresponding to varied thermal treatment

time as well as varied doping concentration [29, 30]. The

performance of ZnO–PbS-QD solar cells was improved by

optimizing ZnO window layer. The physical mechanism

was also systematically investigated. Our work was

expected to support an efficient routine for device perfor-

mance improvement.

2 Experimental Section

2.1 Synthesis of PbS Quantum Dots

PbS CQDs were synthesized according to the modified

literature method [31]. In this work, 0.9 g lead oxide (PbO,

99.9%) and 3 mL oleic acid (OA, 90%) were mixed with

20 mL 1-octadecene (ODE, 90%) in a 50-mL three-neck

flask. The mixture was stirred and degassed at room tem-

perature for 8 h and heated to 90 �C for 2 h. The obtained

solution was then heated to 100 �C under nitrogen for

5 min, followed by injection of TMS (hexamethyldisi-

lathiane (bis (trimethylsilyl) sulfide) solution (300 lL TMS

mixed with 10 mL pre-degassed ODE) at 90 �C. After the
reaction, the resulting solution was cooled to room tem-

perature naturally. The obtained product was washed and

purified 4 times by dispersion/precipitation in hexane/ace-

tone. Finally, the cleaned QDs were dispersed in hexane

and octane (vol:vol = 4:1) mixed solvents with

*15 mg mL-1 to be ready for use.

2.2 Layer-by-Layer Sol–Gel Method Deposition

of ZnO Film

The ZnO precursor was prepared by dissolving 1.5 g zinc

acetate dehydrate (Zn(Ac)2�2H2O, sinopharm, 99%) and

400 lL ethanolamine (NH2CH2CH2OH, sinopharm, 99%)

in 20 mL 2-methoxyethanol (CH3OCH2CH2OH, sino-

pharm, 99%) under vigorous stirring at 60 �C for 10 h for

the hydrolysis reaction in air. On a precleaned ITO/glass

substrate, ZnO precursor solution was spin-coated at 4000 r

min-1 for 30 s and annealed at 400 �C for 15 min, fol-

lowed by repeating this process some times to reach the

required thickness.

2.3 Device Fabrication

PbS CQD films were fabricated by layer-by-layer spin-

coating according to the published reports [14]. For tetra-

butylammonium iodide (TBAI) ligand exchange process,

QDs dispersed in hexane/octane mixed solvents was

dropped on ZnO-coated substrate and then immediately
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spinned at 2500 r min-1 for 10 s. The obtained film was

soaked in TBAI (10 mg mL-1 in methanol) solution for

1 min, followed by two-time methanol rinsing. This pro-

cess obtained a TBAI-treated QD layer and the number of

layers was 10–12. For PbS-EDT (1,2-ethanedithiol) layer,

0.01 vol% EDT/acetonitrile solution was used and spinned

after 30 s soaking, which was followed by a 3-time ace-

tonitrile rinsing. This process was repeated two times. The

total thickness of PbS CQD film was *240 nm. Finally,

100 nm Au was evaporated on PbS film to complete the

device fabrication. The active device area (9 mm2) was

defined by shadow mask. It is noted that majority of high-

efficiency PbS QDSCs reported so far were obtained based

on small area (\5 mm2) which was almost half of our

device area.

2.4 Characterizations

The ZnO films were investigated by X-ray diffraction

(XRD) with Cu Ka radiation (Philips, X pert pro MRD,

Netherlands), UV–Vis absorption spectra (Cary, Lambda

950, America), Hall effect (Ecopia, HMS-5500, Korea),

photoluminescence (PL, LabRAM HR800, France), and

X-ray photoelectron spectroscopy (XPS, EDAX Inc. Gen-

esis, America). The device cross-section was obtained from

using scanning electron microscopy (FEI Nova 450,

America). The J–V characteristics were measured by a

Keithley 2400 source unit with Xenon lamp (Newport, 3A

solar simulator, 94023A-U, Germany) as the light source

with simulated air mass (AM) 1.5G irradiation at 100 mW

cm-2. The external quantum efficiency (EQE) measure-

ments were taken by a home-made setup containing a

Keithley 2400 Source Measure unit and Newport

monochromator. The output power was also calibrated by

Si photodetectors. The work function of various ZnO films

was measured by using a Scanning Kelvin Probe micro-

scopy (SKPM, UHV-KP, KP technology, Britain) in air at

dark condition. The C–V measurements were acquired with

an Agilent 4200A at a frequency of 10 kHz and AC signal

of 50 mV, scanning from -1 to ?0.6 V, with a step size of

50 mV. The EIS of the QD SCs was performed on an

electrochemical workstation (Autolab PGTSAT302N,

Metrohm Autolab, Utrecht, Netherlands) in the dark with

the frequency ranging from 0.1 to 106 Hz.

3 Results and Discussion

As a window layer, the optical transmittance determined

the light response of absorber layer in solar cells. Consid-

ering the varied window layer thickness effect, three typ-

ical thicknesses of 30, 90, and 150 nm were prepared to

investigate the thickness-dependent optoelectronic

properties. Figure 1a shows the UV–Vis transmittance

spectra of three typical ZnO layers. As the ZnO film

thickness increases, the onset absorption is red shift. The

optical band gaps (Eg) extracted from Tauc plots [32] (inset

of Fig. 1a) are 3.35, 3.26, and 3.18 eV, respectively. From

the onset of absorption spectra, there are tail states

extending into the bandgap (inset), which may have arisen

from impurities and defects at grain boundaries [33–35].

Interestingly, the increased thickness would increase the

losses of light absorption, while it simultaneously reduces

the densities of tail states, which would be explained in the

latter part by different thermal treatment times. Therefore,

it is necessary to optimize the ZnO film thickness to bal-

ance the transmittance and the density of tail states. XRD

patterns (Fig. 1b) for different thicknesses of ZnO films

indicate that the crystallinity with wurtzite structure could

be enhanced as the thickness increased [15, 36]. Moreover,

the c-axis oriented (002) intensity of thicker ZnO film is

stronger than the thinner ones, demonstrating the orienta-

tion growth which may improve the carrier transport

mobility [37].

The thickness-dependent electrical properties were

characterized by Hall measurement (Fig. S1b) or field-ef-

fect transistors (FET) [38] (Fig. S1c–d). It is worth noting

that electrical properties of the thinner ZnO (30 nm) film

was too insulating to be tested by Hall measurement, and

thus we converted to FET testing. The extracted electrical

results are listed in Table 1. The carrier mobility of thicker

ZnO films increases one order more than the thinner ones.

And the corresponding carrier concentrations increase by

two orders as the film thickness increased. The higher

carrier mobility of thick film can be explained with the

decreased concentration of grain boundaries in thicker

films [39].

Figure 2a shows the schematic device structure of ZnO–

PbS QD SCs consisting of n-type ZnO layer and p-type

PbS QD absorber layer. The bandgap of QDs used in this

work is 1.39 eV (Fig. S1a). The thickness of ZnO and PbS

films was strictly confirmed by scanning electron micro-

scopy (SEM) characterization. Figure 2b shows the sharp

contrast from different functional layers in cross-section

image.

The J–V characteristics of ZnO–PbS QD SCs with three

representative thicknesses (30, 90, and 150 nm) are shown

in Fig. 2c, where the corresponding ZnO film layers are

denoted as C-ZnO (control ZnO layer, 30 nm), O-ZnO

(optimized ZnO layer, 90 nm), and T-ZnO (thicker ZnO

layer, 150 nm). The control devices with C-ZnO exhibit a

Jsc of 17.42 mA cm-2, a Voc of 0.51 V, and a FF of 48%,

leading to a PCE of 4.26%. According to the Site’s method

[40], the series resistance (RS) and shunt resistance (Rsh)

are 7.6 and 160.56 X cm2, respectively. As the ZnO layer

thickness increases, the PCE of CQD SCs is firstly
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increased and the champion device (O-ZnO) reaches 6.7%

with a Jsc of 21.08 mA cm-2 when the thickness of ZnO

films is 90 nm. Further increase would lead to the

deterioration of PCE. The detailed ZnO film and device

parameters are summarized in Table 2. From the compar-

ison between them, all the parameters of O-ZnO are
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Fig. 1 a Transmittance spectra (Inset: the Tauc plots of various thickness ZnO layers). b XRD patterns of ZnO films on ITO/glass substrate. ITO

peaks are marked by black diamonds and ZnO peaks are identified by their Miller indices

Table 1 Thickness-dependent electrical properties for varied thickness of ZnO layer

Thickness of ZnO film (nm) Carrier concentration (cm-3) Mobility (cm2 v-1 s-1) Conductivity (S cm-1)

30 1.05 9 1016 8.7 9 10-3 a 2.25 9 10-3

90 1.02 9 1018 3.64 9 10-1 b 5.92 9 10-2

150 1.70 9 1018 1.04 9 10-1 b 2.83 9 10-2

a The values are extracted from FET measurements
b The data are obtained from Hall measurements
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devices with various ZnO film thicknesses
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simultaneously improved. In order to guarantee the credi-

ble device performance, sixteen to twenty devices of each

type were fabricated and their parameter distribution is

shown in Fig. 3. Their statistical deviations are small, and

thus our improvement is reliable.

To study the origin of Jsc improvement, EQE spectra of

three types of ZnO film-based devices are shown in

Fig. 2d. There are three characteristic regions from EQE

comparison. In ultra-violet region (300–400 nm), the

response in control devices is highest, which agreed well

with aforementioned absorption measurement results of

ZnO films. Thus, the response loss for devices based on

O-ZnO and T-ZnO film is mainly caused by window layer

absorption. In visible region (500–800 nm), O-ZnO devi-

ces demonstrate higher and broader response. This result

demonstrates that O-ZnO devices could more efficiently

extract electrons from PbS QD layers. In infrared region,

all three EQE values are similar among these devices,

which confirm the efficient back field in PbS-TBAI/PbS-

EDT device structure [14]. To investigate the contribution

of Jsc for various ZnO–PbS devices, Fig. S3a shows the

integrated short-currents for C-ZnO and O-ZnO devices.

Compared with C-ZnO film devices, although a loss of

light absorption is found in first region (Region I, UV

spectrum) for O-ZnO device, the more contributions of

short-currents can be obtained from second and third

regions (Region II and III, visible and infrared regions).

The current density variations corresponding to Region I–

III are 0.25, 2.21, and 1.09 mA cm-2, respectively. Con-

sequently, the O-ZnO devices could more efficiently con-

vert visible and infrared spectra into photocurrent. On the

other hand, UV spectra energy only takes 4% while the

visible and infrared spectra energy takes more than 90% in

solar spectra energy distribution. Based on the above

Table 2 Device performance parameters obtained from Fig. 2c

Device l (cm2 (v s)-1) Voc (V) Jsc (mA cm-2) FF (%) g (%) Rs (X cm2) Rsh (X cm2) J0 (mA cm-2)

30-nm (C-ZnO) SCs 8.7 a 0.51 17.42 47.89 4.26 7.6 160.58 1.3 9 10-3

90-nm (O-ZnO) SCs 3.64 9 10-1 b 0.60 21.08 52.79 6.73 2.6 273.2 1.4 9 10-4

150-nm (T-ZnO) SCs 1.04 9 10-1 b 0.54 17.63 49.87 4.78 8.8 151.47 7.8 9 10-4

a The values are extracted from FET measurements
b The data are obtained from Hall measurements
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analysis, the improved quantum efficiency in visible and

infrared regions is the main contribution to achieve the

higher short-currents of ZnO–PbS SCs.

In order to gain the physical origins of the improved

parameters (Voc, Jsc, FF) in O-ZnO device, further char-

acterizations were carried out for various thicknesses of

ZnO film and their corresponding devices. Figure 4a shows

the logarithmic plots of dark J–V curves. The reverse sat-

uration current is greatly suppressed in O-ZnO devices.

The lower J0 value (2.18 9 10-4 mA cm-2) demonstrates

the superior heterojunction quality which also can be

confirmed from the higher Rsh in Fig. S2b. It is known that

Voc depends strongly on the ideal factor (n) and reversed

saturation current density (J0), described by Eq. 1 [41].

VOC ¼ nKT

q
ln
JSC

J0
þ 1

� �
; ð1Þ

where q is the elementary charge. According to Eq. 1,

O-ZnO device has higher Voc than others due to its lower

reverse saturation current and higher Jsc. For the hetero-

junction analysis, the work function (Wf) of three kinds of

window layers was measured from the SKPM results

(Fig. S3b). With the increase of ZnO film thickness, the Wf

became shallower which could help to improve the Voc of

corresponding devices [42].

Because of the higher Jsc, we further analyzed the

depletion region of ZnO/PbS QD SCs by capacitance

versus voltage (C–V) measurements as shown in Fig. 4b

and S3d. The built-in voltage (Vbi) is extracted from the

intercept of 1/C2 curve on horizontal axis. The dopant

concentration (NA) for PbS QD layer could be extracted

from the slope of the Mott–Schottky plot from Eq. 2

[43, 44],

NA ¼ 2

A2qeQDe0 d

dV
1
C2

� � ; ð2Þ

where e0 is the dielectric constant of vacuum, eQD is the QD

dielectric constant extracted as shown in Fig. S3c, and A

corresponds to the device active area. Substituting all the

parameters in Eq. 2, the carrier concentration of PbS QD

layer is extracted as 4.79 9 1016 cm-3, which is in

accordance with reported values of TBAI-treated PbS QD

films [12]. Utilizing the above carrier concentration, we

can calculate the depleted width of QD layer (WPbS) at zero

bias according to Eq. 3 [44].

WPbS ¼ 1

NA

2eQDe0

q 1
ND

þ 1
NA
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where ND is the carrier concentration of ZnO film, which is

extracted by FET or Hall measurements as mentioned

above (Table 1). The obtained parameters are summarized

in Table 3. The carrier concentration evolution with varied

thickness is mainly attributed to our LBL sol–gel method.

The thicker ZnO film faces longer thermal treatment time,

inducing varied doping concentration [45, 46]. It is note-

worthy that Mott–Schottky analysis in a Schottky junction

or an abrupt heterojunction must be based on the premise,

in which the carrier concentration of N-type layer must be

much higher than that of p-type layer [47]. Therefore, the

C-ZnO-based parameters could not meet the Mott–Schot-

tky equation. Here we roughly estimate WPbS according to

the device based on 60 nm ZnO film (Table S1) and Eq. 4

[48],

ND �WZnO ¼ NA �WPbS ð4Þ

The WPbS for C-ZnO-based devices (\151 nm, referring

to Table S1) is much narrower than the other two devices.

The WPbS for O-ZnO-based devices extends to 185 nm

(Table 3). The higher carrier concentration of ZnO films

could help to extend the WPbS and enhance the electrical

field resulting in the improvement of the charge-collection

efficiency.

For FF enhancement analysis, EIS was measured to

investigate the interfacial properties. Figure 4c shows the

Nyquist plots of varied thickness of ZnO film-based devi-

ces. Only one semicircle is obtained in these devices

regardless of the ZnO film thickness. From their equivalent

circuit diagrams and intercept with the horizontal axis, the

O-ZnO-based devices extract a smaller series resistance.

Thus, the higher FF in O-ZnO PbS QDSCs is ascribed to

the decreased Rs [26].

In addition, the window layer ZnO film itself also plays

the key role in device performance. Photoluminescence

(PL) spectra and X-ray photoelectron spectroscopy (XPS)

reveal more details for its functionality. As shown in

Fig. 5a, there are approximately two emission peaks in PL

spectra. One is centered at *365 nm corresponding to

band-edge emission, and the other broad one located at

*530 nm is attributed to the oxygen vacancy (VO) defect-

related emission [49–51]. It is clearly shown that the

Table 3 Device performance

parameters extracted from the

Mott–Schottky analysis

Devices Vbi (V) ND (cm-3) NA (cm-3) WD, ZnO (nm) WPbS (nm)

C-ZnO–PbS – 1.6 9 1016 *4 9 1016 B30 \151

O-ZnO–PbS 0.79 1.0 9 1018 4.8 9 1016 8.8 185

T-ZnO–PbS 0.76 1.7 9 1018 4.5 9 1016 5.1 190
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visible emission is strongly suppressed in thicker film.

Thus, the rich defects in C-ZnO-based devices may lead to

the EQE losses within 500–600 nm region corresponding

to the defect absorption [49]. As mentioned above, the

depletion region is mainly located at PbS layers because

ZnO has a higher carrier concentration (1018 cm-3) than

that of PbS-CQDs (1016). With the help of built-in electric

field in the depletion region, the separated carriers can be

more efficient drift and collection than diffusion region.

Thus, the effective passivation by annealing in thick ZnO

film may be the crucial origin of the reduced charge

recombination [52].

The XPS spectra provide more details in terms of the

surface component of ZnO. The O1s core level spectra of the

C-ZnO andO-ZnO are shown in Fig. 5b. In general, the peak

for ZnO are deconvoluted into three peaks: the lower-bind-

ing-energy peak (530.2 eV) is associated with the oxygen

atoms in a ZnO matrix, the higher-binding-energy peaks

(532.17 and 531.43 eV) are attributed to the oxygen-defi-

cient defects such as oxygen vacancies and hydroxyl OH

groups (Fig. 5c, d) [37]. After increasing the thickness (an-

nealing time), the relative intensities of higher-binding-en-

ergy components decreased (Fig. 5b, d), suggesting that the

oxygen-deficient defects in the ZnO films are suppressed.

These results, together with PL analyses, indicate that the

thicker film could help to passivate window layer defects.

In consequence, the appropriate thickness of ZnO films

and suitable annealing time suppressed the interfacial

charge recombination at the ZnO–PbS interface to enhance

the charge separation at heterojunctions. It could also

improve the ZnO films dopant concentration, which may be

caused by the interstitial ZnI rather than VO [53]. The

heavier doping of ZnO layer could help to extend depletion

width in QD layer leading to a broader EQE. Thus, charge

extraction properties of C-ZnO and O-ZnO devices can be

schematically described as shown in Fig. 6a, b. Wn and Wp

represent the depletion region widths in the ZnO layer and

QD layer, respectively. The increased doping concentration

of O-ZnO could extend the Wp, suppress the recombina-

tion, and improve the short-current density.

4 Conclusions

In the present work, we have successfully demonstrated an

obvious improvement in the performance of ZnO–PbS QD

SCs via optimizing the window layer. The optimized

O-ZnO window layer-based PbS QD SCs showed an

enhanced PCE of 58% compared with control devices. The

physical mechanism for enhanced parameters (Voc, Jsc, and

FF) was also systematically illustrated. It demonstrated

that the O-ZnO could reduce the surface defects, extend the

depleted width in heterojunction, and align with energy

band of absorber layer. The above effects could be con-

veniently implemented by optimizing the ZnO film thick-

ness and its parasitic thermal treatment. The present simple

and reliable optimizing strategy may provide a viable ref-

erence for depleted-heterojunction solar cells.
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