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Abstract The controllable wire bonding of individual Ag

nanowires onto a Au electrode was achieved at room

temperature. The plastic deformation induced by pressure

using nanoindentation could break the protective organic

shell on the surface of the Ag nanowires and cause atomic

contact to promote the diffusion and nanojoining at the Ag

and Au interface. Severe slip bands were observed in the

Ag nanowires after the deformation. A metallic bond was

formed at the interface, with the Ag diffusing into the Au

more than the Au diffused into the Ag. This nanoscale wire

bonding might present opportunities for nanoscale pack-

aging and nanodevice design.
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1 Introduction

Gold (Au) wire has been used for decades in wire bonding, a

technique to interconnect an integrated circuit chip with

metal leads in the semiconductor industry [1]. The cost of Au

wire has significantly increased in recent years [2]. This has

prompted the study and use of alternatives such as silver (Ag)

[3, 4], copper (Cu) [5–7], and Ag/Au alloys [8, 9]. Cu wire

suffers from oxidation issues, as well as a high hardness and

Young’s modulus. Thus, it is difficult to bond. Various

intermetallic compounds have been prepared that would
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affect the efficiency of a device and thus reduce its lifetime

[10]. Currently, cost concerns are leading to wire diameter

decreases, which is made possible to increase the packing

density using finer pitches. Controllable bonding or welding

at a submicrometer scale or nanoscale is still a great chal-

lenge [11]. Many efforts have been made to push the size

limitation down to the nanoscale [12], including nanoscale

resistance spot welding [13, 14], nanoscale soldering

[15, 16], and ultrasonic bonding [17]. Because of the small

energy requirement [11] and reactivity of nanomaterials,

some new bonding methods have been reported based on

novel concepts, including the cold welding of Au and Ag

nanowires (NWs) by oriented attachment [18, 19], plas-

monic welding of Ag NWs with plasmonic effects [20, 21],

nanowelding using a scanning probe microscope [22], and

optically controlled nanosoldering [23].

The thermo-compression bonding method is used for

wafer bonding with diffusion [24]. Atomic contact can be

achieved by simultaneously applying pressure and heat.

This is usually used for large bonds [25, 26] because the

pressure and heat are difficult to control at the nanoscale.

Recently, the pressure bonding of individual Ag NWs with

large plastic deformation under a cold condition has been

demonstrated [27]. Here, we report the controllable bond-

ing of individual Ag NWs onto Au pads using pressure at

room temperature. The Ag NWs were placed into contact

with the Au substrate under pressure and formed metallic

bonds. This new nanoscale wire bonding method might

create opportunities to direct designing nanodevices or

achieve nanoscale packaging for electronics.

2 Experimental

A sputtered Au electrode on a Si substrate was cleaned and

used for bonding the Ag NWs onto a Au substrate. Ag

NWs with a pentagonal cross section were synthesized

using a previously described method [19]. A

polyvinylpyrrolidone (PVP) organic layer with a thickness

of 2–3 nm was fabricated on the surface of Ag NWs. Their

diameter was approximately 100–300 nm. A nanoindenter

(Hysitron TriboIndenter) with a Berkovich tip (diamond)

and visualization system were employed for both the

locating and bonding processes. The bonding forces had a

range of 200–500 lN, with a loading speed of 20 lN s-1.

The morphologies and microstructures were characterized

using scanning electron microscopy (SEM, LEO 1530,

Zeiss). A focused ion beam (FIB, NVision 40, Zeiss) was

used to slice the Ag–Au bonding interface, which was also

observed using a high-resolution transmission electron

microscope (HRTEM, JEOL 2010) equipped with an

energy-dispersive X-ray spectroscope (EDS).

3 Results and Discussion

Figure 1a shows the scheme for the nanoscale wire-bond-

ing process. The Ag NWs across two Au electrodes could

be seen using an optical imaging lens, although the reso-

lution was fairly low. The scanning mode of the indenter

could also visualize the Ag NWs sitting on the two elec-

trodes and assist with selecting and confirming the bonding

locations. The indenter tip was placed on top of the Ag

NWs and aligned at their center. A force was then loaded at

a rate of 20 lN s-1. After reaching the maximum load, the

load was unloaded at the same rate with or without a

holding time. When one indentation was completed, the tip

was moved to another location where the bonding was

needed. This process was then repeated to complete the

wire bonding at two or more bonding locations. An SEM

image of the bonded wire is shown in Fig. 1b. The Ag

NWs had a thickness of approximately 350 nm, and that of

the Au electrode was approximately 2 lm. Figure 1c

shows a typical load–displacement curve. The elastic

region during loading is quite narrow (*5 nm), followed

by the first ‘‘pop-in’’ event because of the dislocation

nucleation (as indicated by the first arrow on the left). It has

been reported that the stress initiation at this point is quite

high (reaching the theoretical shear stress for the nucleation

of dislocations [28]). The following ‘‘pop-in’’ marks (as

shown by the second to fifth arrows) correspond to the

different slip systems or bands.

During the bonding process, the depth was used as a

reference to predict the bonding quality if all the align-

ments were good. Here, we used the rule of 1/2 the

thickness of the Ag NWs to select the force. It is worth

noting that if the thickness of the Ag NWs was known, the

bonding process could be controlled using the displace-

ment-control mode. If Ag NWs have a 50% plastic strain in

the thickness direction, we would be confident saying that a

bond can be obtained after such a large plastic deformation

under pressure. The statistical results showed that a 50%

plastic strain was good for bonding, whereas a plastic strain

of less than 30% only resulted in an indentation and one

larger than 70% would damage the NWs. Figure 1d shows

the bonding location with a force of 400 lN. After bond-
ing, the Ag NWs became twice as wide at the indent

compared with the original thickness. Because of the good

plasticity of Ag, the Ag NWs showed no significant frac-

ture or crack. A high-magnification image showed that slip

bands occurred close to the indent area after deformation,

as highlighted by the arrows in Fig. 1e. From the measured

angle (60�) between these slip bands and the long axis of

the Ag NWs [011], the slip direction was identified as

\110[, which is the common slip direction of face-cen-

tered cubic (FCC) materials [29, 30]. In the indent (see
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Fig. 1f), the slip bands were invisible because of the large

deformation and confinement of the indenter tip. Interest-

ingly, one side of the Ag NWs showed a ‘‘V’’ groove,

which might have been due to the restriction of the slip

directions during deformation. This was also observed in

other indents.

Different bonding morphologies were observed when

the force was changed. Figure 2 shows the results with

bonding forces of 300–500 lN. When the force is low, the

indent is small, and the widening of the thickness is not

obvious, as shown in Fig. 2a, b. The deformation is also

transmitted away from the indented area. As the force

increases to 450 lN or more, the distinct widening indi-

cates a large deformation (see Fig. 2c, d). Since further

increasing the force might lead to a displacement of the

indenter tip close to or larger than the thickness of the Ag

NWs, the plastic deformation could penetrate into the Au

electrode, which is not desirable in electronics. Because the

thicknesses of the Ag NWs and Au electrode were quite

small (all on the nanoscale) and the strain of the Ag NWs

was more than 50% in the thickness direction, the mea-

sured hardness would be greatly affected by the substrate.

Here, we did not calculate the reduced hardness and

module using the Oliver-Parr relation [31–33].

To observe the Ag–Au interface after bonding, the

indent was cut using the FIB (see Fig. 3a). The cross sec-

tion was less than 100 nm in the TEM observation, as

shown in Fig. 3b. The Au only had a slight deformation

after bonding using a force of 450 lN. This meant that the

substrate could be less affected using this wire-bonding

method compared to conventional techniques. Because the

thickness of the Ag NWs was quite small and the resolution

of the FIB was 20 nm, the cross section was slightly off

center. However, it still clearly shows the Ag–Au interface.

Figure 3c depicts the EDS line scanning profile of the Ag

and Au elements under the scanning transmission electron

microscope (STEM) mode. Under a massive localized

pressure, the organic protective layer could be broken and

allow the Ag atoms to diffuse into the Au at room tem-

perature. Furthermore, the pressure also promoted inter-

diffusion. It was found that the Ag diffused further into the

Au than the Au did into the Ag. This might have been a

result of the different diffusion rates for the Ag in Au and

the Au in Ag. The Arrhenius equation D = D0 exp(-Q/

RT) indicates that the diffusion coefficient D, frequency

factor D0, and activation energy Q determine the diffusion

rate when the temperature is constant. Here, the wire-

bonding process was completed at room temperature. The

activation energy of diffusion for Ag in pure Au is

40.2 kcal (mole)-1, whereas that of Au in pure Ag is

48.3 kcal (mole)-1; D0
Ag?Au was 0.07 cm2 s-1, and

D0
Au?Ag was 0.85 cm2 s-1 [34]. At 820 �C, D (Ag ? Au)

was 6.01 9 10-10 cm2 s-1 and D (Au ? Ag) was

1.88 9 10-10 cm2 s-1 [35]. Thus, it could be speculated

that the Ag diffused into the Au more than the Au did into

the Ag at the same temperature.

At room temperature, according to the measured diffu-

sion distances shown in Fig. 3c, dAg?Au & 66.1 nm and
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Fig. 1 a Schematic illustration of nanoscale wire bonding using pressure. b Wire bonding of Ag NWs onto Au electrodes with two welds. c A
typical F-D curve during bonding of Ag NWs on Au. d SEM image of bonding location, with high-magnification images of e and f close to the

indentation area with a force of 400 lN
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Fig. 2 Microstructures of indentation areas after bonding with different forces from 300 to 500 lN
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Fig. 3 a SEM image of FIB sample after thinning. b The STEM image of a Ag–Au cross section after wire bonding (with 450 lN) sliced with

FIB. c The line profiles of the Ag and Au across the Ag–Au interface from the STEM image. d HRTEM image of Ag–Au interface with matched

(111) lattices showing both the Ag and Au sides. e The severely deformed lattices on the Ag and Au, with the Ag showing a 4H lattice (103) at

the interface. The FFT images were taken from e showing the patterns of f the Ag side, g Au side, and h interface
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dAu?Ag & 13.9 nm. In one dimension, the diffusion length

d can be written as d = 2(Dt)1/2 as Fick’s law of diffusion.

Consequently, the effective diffusion coefficients D
Ag!Au
eff

(Ag in Au) and D
Au!Ag
eff (Au in Ag) could be simply cal-

culated using Deff = d2/4t, where d is the diffusion dis-

tance in one dimension measured using Fig. 3c. The

diffusion time t was difficult to determine because a large

pressure was applied to promote diffusion during bonding

(the total loading and unloading time was 45 s) and then

for six days (May 3rd to 9th) for the TEM observation

(roughly 500,000 s in total). Therefore, D
Ag!Au
eff and

D
Au!Ag
eff were 2.43 9 10-6 and 1.07 9 10-7 cm2 s-1,

respectively, when only considering the 45 s loading–un-

loading time; and 2.18 9 10-10 and

9.66 9 10-12 cm2 s-1, respectively, when considering the

total time at room temperature. These values provide a

reference showing that the diffusion at the nanoscale would

be quite high even at room temperature. On the other hand,

the atomic radius of Ag (0.165 nm) is smaller than that of

Au (0.174 nm), while their lattice constants are almost the

same (0.408 nm for Ag and 0.408 nm for Au), causing the

Ag to diffuse into Au more easily. Moreover, because the

Au electrodes were sputtered with polycrystalline, the

existence of large grain boundaries and vacancies were

expected compared with polyol-synthesized Ag NWs.

However, because the Ag NWs that were synthesized using

the polyol method had a structure that consisted of five

single crystalline prisms bonded with five twin boundaries

[19], there were far fewer defects. These grain boundaries

and defects could be attributed to the larger diffusion rate

of the Ag into the Au compared to that of the Au into the

Ag. The pressure may have played a very important role in

promoting the diffusion, ‘‘squeezing’’ the Ag into the Au

more easily than ‘‘squeezing’’ the Au into the Ag.

The HRTEM images in Figs. 3d and e show that the

Ag–Au interfaces formed a diffusion-metallurgical bond.

No pores are observed at the interface. The moiré fringes in

Fig. 3d indicate that dislocations formed after bonding,

induced by the large deformation. For some locations, the

(111) lattice of the Ag aligned with the (111) of the Au (see

Fig. 3d). Moreover, other locations without good lattice

matching (perhaps because they were not in the right zone

axis) are also identifiable and without voids (see Fig. 3e).

At the Au side, the 2.04 and 2.35 Å values show the (200)

and (111) lattices of Au, respectively. Interestingly, the

(103) lattice at the Ag side shows a 1.97 Å distance, which

might belong to the 4H crystalline structure of Ag. Such a

4H structure could be found in Ag NWs [36] and Au

nanoribbon [37] when their synthesis conditions were

restricted. This metastable phase could transform into the

FCC structure through the displacement of Ag atoms using

an electron beam [36]. The fast Fourier transform (FFT)

images on the Ag and Au sides and their interface are

shown in Fig. 3f–h, respectively. These FFT patterns

confirm the crystalline structure of the FCC structures after

bonding, even if there is a little Ag getting into the 4H

structure.

4 Conclusion

In summary, Ag NWs could be controllably bonded onto a

Au substrate by applying pressure with the assistance of

nanoindentation at room temperature. The Ag NWs

showed good ductility, and severe slip bands were

observed after deformation. Without external heat input,

the plastic deformation could break the organic shell on the

surface of the Ag nanowires and form an atomic contact at

the Ag–Au interface. A metallic bond was formed in this

room temperature wire bonding process. The interface

displayed no pores, but showed lattice matching on the

(111) plane and large lattice mismatching at others. This

nanoscale wire-bonding process might present opportuni-

ties for future nanodevice integration or nanoscale elec-

tronic packaging.
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