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Abstract Looking toward world technology trends over the next few decades, self-powered sensing networks are a key field

of technological and economic driver for global industries. Since 2006, ZhongLinWang’s group has proposed a novel concept

of nanogenerators (NGs), including piezoelectric nanogenerator and triboelectric nanogenerator, which could convert a

mechanical trigger into an electric output. Considering motion ubiquitously exists in the surrounding environment and for any

most common materials used every day, NGs could be inherently served as an energy source for our daily increasing

requirements or as one of self-powered environmental sensors. In this regard, by coupling the piezoelectric or triboelectric

properties with semiconducting gas sensing characterization, a new research field of self-powered gas sensing has been

proposed. Recent works have shown promising concept to realize NG-based self-powered gas sensors that are capable of

detecting gas environment without the need of external power sources to activate the gas sensors or to actively generate a

readout signal. Compared with conventional sensors, these self-powered gas sensors keep the approximate performance.

Meanwhile, these sensors drastically reduce power consumption and additionally reduce the required space for integration,

which are significantly suitable for the wearable devices. This paper gives a brief summary about the establishment and latest

progress in the fundamental principle, updated progress and potential applications of NG-based self-powered gas sensing

system. The development trend in this field is envisaged, and the basic configurations are also introduced.
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1 Introduction

With the rapid development of internet of things (IoTs) and

machine to machine (M2M) technology, the requirement of

wireless, sustainable, multi-functional and independent

operation of sensing networks has been becoming

increasingly important [1–4]. Considering the large number

and small scale of sensors, the implantation of traditional

power supply will be a big challenge, and developing self-

powered sensors that can employ the ambient environ-

mental energy and not dependent on a battery or external

power source is highly desired [5–7]. These innovative

self-powered sensors have been fabricated profiting from

the recent advances in environmental energy harvesting

technologies, which open an access for developing envi-

ronmental friendly, independent, remote and mobile,

maintenance-free operating nanodevices. The concept of

self-powered sensors is based on coupling an external
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energy harvesting or powering unit, such as a solar cell or

electromagnet generator, with the functional nanodevice of

concern to fulfill the demand for the operation [8, 9].

However, the intermittent and unpredictable nature of

solar energy as well as the complexity and heavy weight of

electromagnet generator is an inevitable challenge for their

expansion as a reliable power supply system to some extent.

Since 2006, Zhong LinWang’s group has firstly fabricated a

novel piezoelectric nanogenerator (PENG) that could con-

vert environmental mechanical energy into electrical energy

by means of piezoelectric zinc oxide nanowires (NWs) [10].

After that, in early 2012, they invented a triboelectric

nanogenerator (TENG) based on the conjunction of tribo-

electrification and electrostatic induction with higher output

and more available materials [11–13]. Most recently, Wang

has presented the fundamental theory of the NGs starting

from theMaxwell equations. In the Maxwell’s displacement

current, the second term qP/qt in theMaxwell’s displacement

current is directly related to the output electric current of the

nanogenerators (NGs), meaning that NGs are the applica-

tions of Maxwell’s displacement current in energy and sen-

sors [14].

As new power generation technologies, NGs can be used

to convert mechanical energy into electricity; on the other

hand, by analyzing the electrical output signals (including

Voc, Jsc, frequency, etc.), information on the mechanical

input (magnitude and frequency) can be successfully

retrieved [15–19]. Since this sensing technology originates

from the output signals of the NG itself, no external power

source is required to apply onto the device, which is a

unique advantage over conventional sensing technologies.

Since then, by correlating the mechanical input with many

other parameters, various self-powered prototypes have

been realized for different practical applications, mainly

including two aspects, one is physical sensing system, such

as pressure detection [20, 21], motion sensing [22, 23],

acoustic sensing [24, 25], security check [26, 27], medical

science [28, 29], and even implantable biosensors [30, 31],

and another is chemical sensing system, such as water

splitting [32, 33], cleaning pollution [34, 35], anti-corro-

sion protection [36, 37], electrochromic reaction [38, 39],

and electrochemical active sensor [40, 41]. Among above-

mentioned applications, monitoring the concentration of

gases is one of the most important permanent requirements

in many fields of industrial processes as well as in everyday

life. Applications typically involve safety supervision of

important process parameters, environmental monitoring

and issues concerning the air quality [42–45]. Owing to the

high demand for reliable, independent, minimization, sus-

tainable, maintenance-free and continuous operation of gas

sensing devices, one major field is the improvement in self-

powered system. The self-powered gas sensing system

based on NGs will be an optimum solution.

In reviewing the studies, the recent works have shown

promising concept to realize self-powered gas sensors that

are capable of detecting gases using NGs as external power

sources to actively generate a readout signal or to activate

the sensor–gas interaction. These self-powered gas sensors

drastically reduce power consumption compared with

conventional sensors and additionally reduce the required

space for integration. Herein, the objective of this paper

focuses on a review of the fundamental principle, updated

progress and potential applications of NG-based self-

powered gas sensing system. The development trend in this

field is envisaged, and the basic configurations are also

introduced.

2 PENG-Based Self-powered Gas Sensing System

The concept of a PENG was firstly presented for convert-

ing nanoscale mechanical energy into electricity in 2006,

by scanning across vertical piezoelectric ZnO NW with a

conductive atomic force microscope (AFM) tip, as shown

in Fig. 1 [10]. The fundamental of electricity generation in

piezoelectric materials is the breaking of central symmetry

in the crystal structure under external force, thereby

forming a piezoelectric potential, or piezopotential. When a

piezoelectric NW is deflected, a piezoelectric potential can

be generated on the side surfaces due to the crystal lattice

distortion. For ZnO NWs, the tensile side surface gives a

positive potential, while a negative potential appears on the

compressive side surface [47, 48]. In 2012, Seong Min Kim

and co-workers theoretically investigated that external

surface charges on ZnO NWs or AlN nanotubes (NTs) can

affect the piezoelectric behavior under uniform compres-

sion. The free-carrier depletion caused by negative surface

charges via surface functionalization on vertically com-

pressed ZnO and AlN NWs/NTs indicates the enhancement

of piezoelectric potential is due to the free carriers being

fully depleted at the critical surface charge density [49, 50].

Since then, substantial progress has been made to couple

the piezoelectric and functional properties, aiming at

achieving PENG-based self-powered sensing system

[6, 51]. On the basis of the piezoelectric-semiconductor

materials such as ZnO, GaN and CdS with wurtzite or zinc-

blende structure, the emerging field of PENG-based self-

powered sensing system has been demonstrated in different

forms, such as self-powered UV sensor [52] and self-

powered pH sensor [53].

Recently, a new research field mainly aimed at con-

structing a portable gas sensing system without using

external electric power. By coupling the piezoelectric and

gas sensing characteristics, the piezoelectric output of

PENG could act as both the power source and sensing

signal. The gas adsorption on the surface of piezoelectric-
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semiconductor nanomaterials can change the free-carrier

density, which can vary the piezoelectric output upon

applied deformation through the piezoelectric screening

effect. The key to realize the self-powered sensor is to

choose the appropriate piezo-gas sensing materials. In this

section, we would like to introduce the PENG-based self-

powered gas sensing system systematically in the form of

nanomaterials.

2.1 Pure ZnO Nanomaterials

ZnO, benefiting from lacking central symmetry in wurtzite

structures, exhibits strong piezoelectric properties in addi-

tion to having a large exciton binding energy and an

excellent gas sensing property [54, 55]. Thus, it has

potential for application in diverse fields, particularly in

realizing a new generation of self-powered sensing system

[56–58].

In this regard, Xinyu Xue and co-workers, for the first

time, reported the application of an unpackaged PENG

based on ZnO NWs as a self-powered active H2S gas

sensor, as shown in Fig. 2. This device is composed of

three major components: Ti foil acts as both the substrate

for the ZnO NW arrays and the conductive electrode that

collects the piezoelectric voltage signal generated by ZnO

NWs when being deformed by external compression. As

the counter-electrode, a sheet of flexible Al foil is posi-

tioned on top of the ZnO NW arrays. In order to ensure
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Fig. 1 Design for converting nanoscale mechanical energy into electrical energy by a vertical piezoelectric ZnO NW-based PENG. a SEM

images of aligned ZnO NWs grown on a-Al2O3 substrate. b TEM images of ZnO NWs, showing the typical structure of the NW without an Au

particle or with a small Au particle at the top (inset at center shows SAED pattern). c Experimental setup and procedures for generating

electricity by deforming a piezoelectric NW with a conductive AFM tip. d Potential distribution for a ZnO NW in side view. e Electric signal

collected by AFM on a ZnO NW array. Figures adapted from [10, 46]
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good contact, the device was beat repeatedly for more than

40 min by a vibration shaker. Two sheets of Kapton board

are fixed at two sides as bracing frames (Fig. 2a). Scanning

electron microscope (SEM) images of top view and cross-

sectional view of the ZnO NW arrays, respectively, reveal

their diameters of 500 nm and lengths of*5 lm (Fig. 2b).

A high-resolution transmission electron microscope

(HRTEM) image and the corresponding selected area

electron diffraction (SAED) pattern taken from the tip

region of a ZnO NW indicate that the ZnO NW is single

crystalline with a length direction along the c-axis

(Fig. 2c). As the c-axis of ZnO NW is under externally

applied deformation, a piezoelectric field is created along

the surface. The output of a PENG fabricated using ZnO

NW arrays is largely influenced by the density of the

surface charge carriers at the NW surfaces. Adsorption of

gas molecules could modify the surface carrier density

through a screening effect; thus, the output of the PENG is

sensitive to the gas concentration (Fig. 2d). The demon-

strated sensitivity to H2S to a level is as low as 100 ppm.

The sensitivity against 100, 250, 400, 550, 700, 850 and

1000 ppm H2S is about 13.1, 25.5, 55.7, 79.3, 121.7, 122.8

and 127.3%, respectively (Fig. 2e). It is the first work

which demonstrates the piezoelectric signal generated by

pure ZnO NWs acts not only as a power source, but also as

a response signal to the gas, suggesting a possible approach

as a self-powered gas sensor [59]. The piezoelectric and

gas sensing properties of ZnO NWs are coupled into one

single physical process through the atmosphere-dependent

screen effect on the piezoelectric output. This new
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Fig. 2 Surface free-carrier screening effect on the output of a ZnO NW-based PENG and its potential as a self-powered active gas sensor.

a Schematic diagram showing the structural design of the PENG (the inset is a photograph of a typical device). b SEM image of ZnO NW arrays

grown on Ti foil in a top view (the inset shows SEM the cross-sectional view image). c HRTEM and SAED pattern taken from the tip region of a

ZnO NW. d The working mechanism of the PENG was driven by compressive strain. e The dependence of sensitivity on the ranging

concentrations of H2S vapor. Figures adapted from [59]
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mechanism opens a new direction for the development of

the next generation of gas sensors and expands the scope of

self-powered nanosystems.

Followed work of 2D ZnO nanosheets (NSs) network

for a room-temperature self-powered humidity sensor has

also been demonstrated [60]. However, compared with the

traditional metal oxide semiconductor-based gas sensors, it

is highly expected to achieve high response and selectivity

of self-powered active gas sensor. Much efforts have been

made to improve the sensing performance, including dop-

ing noble metal, introducing heterostructures, decorating

proper element and UV enhancement [61–63].

2.2 Noble Metal-Doped ZnO Nanomaterials

In gas sensing field, the conductivity response is deter-

mined by the efficiency of catalytic reactions of sensing

materials with detected gas taken place at the surface of gas

sensing materials. The control of catalytic activity of gas

sensor material is one of the most commonly used methods

to enhance the performance, especially in detection of low

reducing gases, such as ethanol vapor, H2 and CO.

Therefore, the pure ZnO thin film exhibits a very poor

sensitivity and selectivity [64, 65]. Usually, noble metals

are high-effective catalysts, which can be used to enhance

the reactions on gas sensor surfaces. Thus, if the noble

metal decoration can be introduced into self-powered

active gas sensing, then higher-performance gas sensor can

probably be realized.

In this case, Fu et al. realized a room-temperature self-

powered H2S sensing with high response and selectivity

from a Cu–ZnO NW-based PENG, as shown in Fig. 3 [66].

The brief fabrication of a Cu–ZnO-based self-powered/

active H2S sensor was composed of three major parts: Cu–

ZnO NWs as the power source and the sensing material, Ti

and Al foils as the electrodes and Kapton films as the

frames (Fig. 3a). The diameter and length of 5 at% Cu–

ZnO NWs are *230 nm and *3.5 lm, respectively

(Fig. 3b). A typical HRTEM image and corresponding

SAED pattern show that the Cu–ZnO NW grows along the

[0001] direction, and no secondary growth, visible defects

or stacking fault can be observed (Fig. 3c). The enhanced

room-temperature H2S sensing performance can be attrib-

uted to the coupling of the piezoelectric screening effect of

ZnO NWs and the synergistic effect of the Cu dopant. Cu

element has a similar ionic radius and electronic shell

structure as Zn. Cu atoms can replace either substitutional

or interstitial Zn atoms in the ZnO lattice, and Cu has

higher attraction to H2S than Zn for the initial bridge-top

(H-SH) configuration (Fig. 3d). A continuous responding-

recovering process under compressive force (30 N, 1 Hz)

at room temperature against 500 ppm H2S displays that the

response and recovery time are 100 and 60 s, respectively

(Fig. 3e). Upon exposure to 1000 ppm H2S, the piezo-

electric output voltage of the device under compressive

force decreases from 0.552 to 0.049 V, and the response is

up to 1045, over 8 times larger than that of undoped ZnO

(Fig. 3f).

Such a development of Cu–ZnO-based self-powered

active H2S sensor is an important step for the practical

applications in actively detecting gases at room tempera-

ture. The catalytic property of Cu greatly improved the

sensing performance. This study demonstrates that intro-

ducing elemental doping into the self-powered active gas

sensor is a very effective way to enhance its piezo-gas

sensing performance. Meanwhile, this study could stimu-

late research into designing a new series of gas sensors for

detecting more gas species at room temperature [66–70].

2.3 ZnO-Based Heterostructures

Pure metal oxide materials appear favorable in some

functional properties, but very few of them are suitable to

all requirements. The heterostructures have been confirmed

to improve the performance of metal oxides against various

gases. More recent works have reported that upon exposure

to the detected gas, the introduction of heterostructures

significantly increases or decreases the resistance of the

heterostructured nanomaterials, resulting in extremely high

sensitivity. Also, the heterostructures can be introduced

into self-powered active gas sensors to realize room-tem-

perature gas sensor with high sensitivity.

Nie et al. have fabricated a CuO/ZnO heterostructure

nanoarray-based self-powered/active gas sensor for room-

temperature H2S detection, as shown in Fig. 4 [71]. The

self-powered active gas sensor contains CuO/ZnO PN-

junction nanoarrays as both piezoelectric and gas sensing

materials. Flexible Kapton films as substrates can follow

the height profiles of the NW arrays and make effective

contacts between the tips of NWs and electrodes (Fig. 4a).

The top-view SEM image of CuO/ZnO PN-junction

nanoarrays indicates that CuO nanocones are uniformly

distributed on the whole surface of ZnO NW arrays with

the thickness of about 400 nm (Fig. 4b). Upon exposure to

800 ppm H2S at room temperature, the piezoelectric output

of the device greatly decreases from 0.738 V (in air) to

0.101 V. The sensitivity increases to 629.8, much higher

than that of bare ZnO nanoarrays (Fig. 4c). As the device

was exposed to H2S, the CuO/ZnO PN junction was con-

verted into a CuS/ZnO ohmic contact, which greatly

increased the electron density in the NW and enhanced the

screen effect on the piezoelectric output (Fig. 4d).

This result could stimulate a research trend on designing

new composite piezoelectric material for high-performance

self-powered active gas sensors. The combination of other

components, such as organic composite, were also
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investigated. The high feasibility of organic surface mod-

ifications in terms of functional groups, as well as their

steric and electronic structures might possibly enable the

targeted design of various specific gas sensors.

Martin W. G. Hoffmann and co-workers have demon-

strated a selective and self-powered gas sensor by micro-

fabricated p-Si/n-ZnO diodes upon visible-light

illumination, as shown in Fig. 5. The selective sensing

qualities were introduced by the functionalization of the n-

ZnO surface with amine- as well as thiol-terminated

organic self-assembled monolayer (SAM), capable of

detecting low NO2 concentrations in the ppb range without

the need of an external power source (Fig. 5a, b). After

patterning of a p-Si layer on SiO2 via reactive ion etching,

photolithographic methods were used to deposit layers of

20 nm of ZnO selectively on the p-Si sidewalls that served

as a seed layer for site selective growth of n-ZnO NWs, to

form p-Si/n-ZnO heterojunctions (Fig. 5c). Furthermore,

the use of an organic SAM facilitated the gas–surface

interaction without the need of heat or UV activation, as is

required for bare inorganic gas sensors (Fig. 5d). Detailed

density functional theory (DFT) simulations of the SAM–

NO2 binding interactions and subsequent changes of the

organic surface group frontier molecular orbitals indicate

that the nature of the chemical SAM structure directly

determines the gas response of the hybrid material

(Fig. 5e). The contrary relative changes of the ionization

potential and electron affinity upon NO2 binding for amine-

and thiol-terminated SAMs correlate well with the exper-

imentally observed sensing results (Fig. 5f).

This work gives an insight into the complex sensing

mechanism of inorganic–organic hybrid gas sensors and

shows the feasibility of transferring chemical signals from

specific organic–gas interactions into active electronic

signals solely driven by visible light [72]. Heterostructures

can stimulate a research trend on the development of the

next generation of room-temperature gas sensors and will

further expand the scope for self-powered nanosystems.

2.4 Non-ZnO Nanomaterials

It should be noted that ZnO NWs in the prototype piezo-

driven active gas sensors may be corroded by H2S.

Therefore, there is an urgent demand to explore new

nanostructured materials that have good gas sensing
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performance, high piezoelectric output and high chemical

stability as well.

By coupling the piezoelectric and gas sensing properties

of CdS nanorods (NRs), a flexible piezo-driven self-pow-

ered/active H2S sensor has been fabricated by Penglei et al.

[73], as shown in Fig. 6. The piezo-driven H2S sensor was

fabricated from three parts: CdS NR arrays, Ti foil and Al

layer as electrodes, and Kapton boards (Fig. 6a). The CdS

nanorods are vertically aligned on the Ti substrate with the

average diameter of about 200 nm. The inset of Fig. 6b

shows that the cross-sectional shape of the CdS nanorods is

hexagonal. The HRTEM image of the tip region of a CdS

nanorod and the corresponding SAED pattern reveal that

the CdS nanorod is single crystalline with a growth along

the [001] direction (Fig. 6c). Upon exposure to 600 ppm

H2S, the piezoelectric output of the device decreased from

0.32 V (in air) to 0.12 V. Such a flexible device can be

driven by the tiny mechanical energy in our living envi-

ronment, such as human finger pinching (Fig. 6d). When

the device in H2S is under compressive strain, the screen-

ing effect of free electrons is extremely strong because of

the high electron density, and the piezoelectric output is

lower than that in air (Fig. 6e).

3 TENG-Based Self-powered Gas Sensing System

Triboelectrification has been conventionally known since

the ancient Greek era and usually taken as a negative

effect. However, tactfully based on a conjunction of tri-

boelectrification and electrostatic induction, in 2012, a

simple, cost-effective and all-polymer-based flexible
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TENG was invented by Zhong Lin Wang’s group, as

shown in Fig. 7 [11, 75]. A TENG mainly consists of two

polymer films that have different electron-attracting abili-

ties, with metal films deposited on their back sides as

electrodes (Fig. 7a). When the two films contact, friction

happens, owing to the natural nanoscale surface roughness,

which leads to equal amount but opposite signs of charges

generated on the two films’ surfaces. Thus, an electric

potential is formed at the interface region. When the two

films contact and separate, the alternative potential will

drive electrons in the external load to flow back and forth

(Fig. 7b) [76–81]. Based on such a principle, four different

modes of TENGs were invented, vertical contact-separa-

tion mode, lateral sliding mode, single-electrode mode and

freestanding triboelectric-layer mode, respectively [82–87].

In the basic working principles of TENGs, the ampli-

tudes of generated signals are all proportional to the tri-

boelectric charge density when all of the other conditions

are maintained the same [88–90]. The triboelectric charge

density is greatly influenced by the surface alteration of

certain chemical molecules or environmental factors, so

self-powered electrochemical active sensors based on

TENGs can be developed [91, 92]. In comparison with

PENG, TENG-based gas sensors work simply by the

formation of a dipole layer after triboelectric contact and

static separation between two materials of the triboelectric-

series. The resistivity of the triboelectric material changes

due to the chemisorptions of the molecular oxygen species

by the surface, which can be affected by a bit of opposite

charges [93, 94]. Since 2015, extensive works have been

carried out to develop triboelectric-based self-powered

active gas sensors, as elaborated in the following.

3.1 ZnO-Based Triboelectric Materials

The working mechanism of TENG-based self-powered gas

sensors can be ascribed to the coupling of triboelectrifica-

tion effect and surface reaction of triboelectric materials.

Among various triboelectric materials, although ZnO is not

a tribo-series material, it exhibits triboelectric properties

due to its finite conductivity characteristics. The discrete

surfaces of ZnO NRs would be desirable for TENG, which

require an efficient contact and interface to the surface of

triboelectric polymer materials [95]. Regarding combina-

tion of outstanding gas sensing property and electrification

ability, in 2015, Jeong Min Baik’s group proposed the first

TENG-based self-powered gas sensor based on triboelec-

trification by the physical contact between the ZnO NWs
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and the dielectric layers polytetrafluoroethylene (PTFE)

films, and the heterogeneous catalytic reaction occurring on

the ZnO NWs and the decorated NiO nanoparticles (NPs).

The self-powered gas sensing system has been demon-

strated in the form of electronic nose strategy with highly

selective gas detection, as shown in Fig. 8. The electronic

nose is a two-dimensional microarray where the individual

sections orthogonally vary in their properties on account of

two response-modifying strategies (Fig. 8a). Along one

axis, a NiO NP functionality was applied to the ZnO NWs

(Fig. 8b). The NiO functionality (Fig. 8c) was found to be

more reactive for all volatile organic compound (VOC)

gases, whereas only acetone gas was reactive on the surface

of the ZnO NWs due to its small dissociation energy. The

electron transfer to the NWs by the catalytic oxidation

increased the triboelectric charge density at both surfaces,

thereby increasing the output voltage of the devices. The

slow response time also supported the contribution of the

catalytic oxidation to the output power. Two dielectric

layers [PTFE and polyimide (PI)] with different surface

tensions were placed along the orthogonal axis. When the

surfaces are exposed to the VOC gases, the output voltage

decreases because the molecular species on both surfaces

reduce the triboelectrically charged area. The sensor

comprising a polyimide layer shows a faster response than

the one including a PTFE layer, because of the higher

surface energy of PI compared to that of PTFE (Fig. 10d,

e). This self-powered sensor may be applicable in many

places with limited accessibility to monitor gases and

chemicals over long periods of time or in portable appli-

cations, such as electronic skins or textiles [96].

In another work, A. S. M. Iftekhar Uddin and Gwiy-

Sang Chung have successfully fabricated a triboelectric-

based H2 sensor (TEHS) by combining a uniformly grown

Pd NPs/ZnO NRs/Au/PET (polyester, PET) film with a

micropyramid PDMS film. PDMS has already got consid-

erable priority as a structure material due to its greater

ability to attract and retain electrons upon contact with any

positively charged triboelectric materials (Fig. 9a–c). In

air, the TEHS device shows a peak-to-peak Voc and Isc of

about 5.2 V and 80 nA, respectively. The as-fabricated

device also shows an effective and reliable detection ability

of H2 molecules at room temperature, in which a contin-

uous decrease in output voltages with increasing H2 gas

concentrations was observed (Fig. 9d). A maximum

response of *373% and a short response time of 100 s

were obtained, while the TEHS was exposed to

10,000 ppm H2 (Fig. 9e). The working mechanism of the

TEHS device can be explained through the conjunction of

the triboelectric effect and surface reaction mechanism.

The polarized charges resulted from the friction (tribo-

electric effect) also regulated the charge carrier transport
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through the Pd/ZnO interfaces and modulated the interfa-

cial energy at the junction area. Moreover, with the

increasing H2 concentrations this phenomenon was accel-

erated, resulting in further decrease in output voltages

(Fig. 9f, g). The aforementioned features of the TEHS

device along with the major advantages in gas sensitivity,

reliability, cost, scalability, durability and implementation

will open up a new paradigm for widespread adoption of

self-powered active H2 sensing in the near future.

3.2 Non-ZnO-Based Triboelectric Materials

Except for ZnO nanomaterials, researchers have been

looking for other good tribo- as well as gas sensing

materials for self-powered gas sensing system, such as

conductive polyaniline (PANI), which is a good gas sens-

ing material since PANI chains can react with various

volatile organic compounds at room temperature.

Xue et al. fabricated a flexible smelling e-skin that based

on the triboelectrification/gas sensing coupling effect of

PANI/PTFE/PANI sandwich nanostructures, as shown in

Fig. 10. The PTFE film acts as the triboelectrification

material. The two PANI films act as both the functional

(sensing/triboelectrification) materials and the electrodes

(Fig. 10a–c). The flexible e-skin has two operation modes:

gas flow (human breath) driving the vibration of PTFE film

(Fig. 10d, e); pressure (human motion) driving the move-

ment of PANI films (Fig. 10f, g). The self-powered system
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consists of a gas flow processor, a smelling e-skin and a

visualization panel. The visualization panel can directly

display breath–alcohol concentration by counting the alight

LED (Fig. 10h). The gas flow-induced output cur-

rent/voltage is significantly dependent on the environ-

mental atmosphere, which can act as olfactory bionic

electric impulse. Against ethanol, the detection limit of the

e-skin is 30 ppm, and the response is up to 66.8 against

210 ppm ethanol gas flow. Interestingly, the response of

the e-skin keeps stable under different gas flow rates or

with different device sizes/bending status. Also, the e-skin

has relatively short response/recovery time (\25 s) and can

detect various volatile organic compounds (Fig. 10i).

When an adult without drinking alcohol blows the system,

all the 8 LEDs can be lighted. When a drunken adult blows

the system, the ethanol in the breath can dramatically

decrease the output of the e-skin, and the alight LEDs are

dependent on the ethanol concentration (Fig. 10j). Finally,

an application of the flexible smelling e-skin for visually

identifying drunken driver without any external electricity

power has been demonstrated [98].

The present results shed light on designing new spe-

cialized-function e-skin and novel self-powered nanosys-

tem. Some other non-ZnO materials have also been studied

for TENG-based self-powered gas sensing system, such as

Pd-functionalized ITO surface and PET film for self-

powered H2 sensor [93], PDMS and PEDOT:PSS film with

nylon fiber film for self-powered active acetylene gas

sensing [99].

3.3 Novel Mutual Independent System

The approach of realization of self-powered sensors nor-

mally is to actively generate electrical signal by itself as a

response to the stimulation or triggering from the ambient

environment, as described in above-mentioned works.
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However, it still requires external monitoring circuits to

collect the signal generated by NGs, which means these

sensing systems are not genuinely and authentically ‘‘self-

powered’’ [19, 100, 101]. Obviously, developing appro-

priate NGs to directly charge or monitor sensors is another

approach to achieve real ‘‘self-powered’’ system.

Facing this problem, Zhong Lin Wang’s group, for the

first time, introduced a completely new working principle

of self-powered gas sensing system by fabricating a blow-

driven TENG to supply power for active alcohol detection,

as shown in Fig. 11. The basic structure of the self-pow-

ered gas sensing system mainly consists of three functional

parts, a traditional gas sensor, an alarm as well as a blow-

driven TENG as power source, which can be driven by

mouth blowing (Fig. 11a, b). The vertically aligned fluo-

rinated ethylene propylene (FEP) NWs with the average

clustering diameter of *100 nm and length of *1 lm
have been prepared for enhancing triboelectric output
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(Fig. 11c). The stator, as one triboelectric material, is

composed of two copper electrodes with complementary

patterns, which have been separated by fine trenches in

between (Fig. 11d). The alcohol vapor would dramatically

increase the resistance of the sensor that led to an increased

voltage drop across the sensor, when the blow-driven

TENG was blown by a tester after alcohol drinking

(Fig. 11e). The as-developed active alcohol breath analyzer

based on the BD-TENG is featured as high detection

response of about 34–100 ppm alcohol gas under an opti-

mized sensor working temperature, fast response time of

11 s as well as a fast recovery of 20 s (Fig. 11f). A signal

processing circuit diagram of a complete self-securing

warning system which can be triggered by an increased

voltage signal is shown in Fig. 11g.

The induced voltage across the sensor holds a propor-

tional relationship with the breathed-out alcohol concen-

tration regardless of the blow speed and quality airflow so

that this blow-driven TENG-based self-powered gas sensor

makes a significant progress toward the practical applica-

tion. All the results indicate that the novel self-powered

sensing system enables to work stably and reliably.

Besides, given other competitive features, including being

light weight, easy fabrication, cost-effectiveness, the jus-

tified concept in this work not only launches a new

approach with extensive potential in the field of gas sens-

ing, but also make a significant progress toward the prac-

tical application of a novel mutual independent TENG-

based self-powered gas sensing system [102].

4 Conclusions and Outlook

In this review, the establishment and latest progress in NG-

based self-powered gas sensors are systematically sum-

marized. We have also summarized recent researches about
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various NG-based self-powered gas sensors in Table 1. As

an important functional application, self-powered gas

sensors can operate independently based on two main

technologies including PENG and TENG, without the use

of external electricity storage/supply systems.

For PENG, it has been achieved in a series of works

through the coupling of piezoelectric effect and gas sensing

characteristics, in which the piezoelectric output of PENG

acts as both the power source and sensing signal. The gas

adsorption on the surface of piezoelectric-semiconductor
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materials can change the free-carrier density, which can

vary the piezoelectric output upon applied deformation

through the piezoelectric screening effect. However, com-

pared with the traditional gas sensors, the conventional

PENG-based self-powered gas sensors have some limita-

tions. Firstly, the requirements of materials both having

piezoelectric and semiconducting gas sensing properties,

mainly referring to ZnO as building block, seriously restrict

the most use of other non-piezoelectric but owning excel-

lent gas sensing materials. Introducing noble metal deco-

rated material, heterostructure and organic material-based

gas sensors will further expand the scope for self-powered

gas sensing systems. Secondly, due to their compact and

completely sealed device structures, the response time of

these gas sensors is in the range of tens of seconds, which is

not fully well-suited for gas exposure on the sensing

materials. Therefore, the complexities of the requirements

demand to search for some simple sensor packaging system

for better sensor performances. Thirdly, in most cases, the

adsorption of gas molecules will happen for more than one

kind, a better method of ascribing the variation of the

piezoelectric output to a specific gas or optimizing its

selectivity should be considered. Fourthly, theoretically,

high piezoelectric potential would be generated when a

large external force is applied onto a nanowire with a small

thickness, because large deflection can be produced.

Table 1 A summary of various

NG-based self-powered gas

sensors

Type Materials Morphology Gas Concentration Sensitivity References

Piezo ZnO NW H2S 100 ppm 13.1A [59]

Piezo ZnO NS Humidity 10 ppm 2.96A [60]

Piezo ZnO ? UV NW Ethanol 700 ppm 85A [103]

Piezo Cu/ZnO NW H2S 1000 ppm 1045.76B [66]

Piezo Pd/ZnO Nanoarray Ethanol 800 ppm 108B [67]

Piezo Au/ZnO NW Array Ethanol 1200 ppm 72.1A [68]

Piezo Cd/ZnO NW Humidity 70% RH 85.7A [70]

Piezo Pt/ZnO Nanoarray Ethanol 1000 ppm 37.14B [69]

Piezo SnO2/ZnO Nanoarray H2 800 ppm 471.4B [104]

Piezo ZnSnO3/ZnO NW Liquefied

petroleum

8000 ppm 83.23A [105]

Piezo a-Fe2O3/ZnO NW Array Ethanol 700 ppm 706.8B [106]

Piezo NiO/ZnO NW H2S 1000 ppm 84.3B [107]

Piezo In2O3/ZnO Nanoarray H2S 700 ppm 925B [108]

Piezo CuO/ZnO Nanoarray H2S 800 ppm 629.8B [71]

Piezo CeO2/ZnO Nanoarray Humidity 95% RH 82.1A [109]

Piezo p-Si/n-ZnO NR NO2 750 ppb(amine)

750 ppb(thiol)

23.5(amine)A

12.8(thiol)A
[72]

Piezo CdS NR H2S 600 ppm 62.5A [73]

Tribo NiO-ZnO

PDMS

NW

Film

Ethanol 0.1% 37.5A [96]

Tribo Pd/ZnO

PDMS

NW

Film

H2 10,000 ppm 373B [97]

Tribo PANI

PTFE

Film

Film

Ethanol 210 ppm 66.8C [98]

Tribo PEDOT:PSS

Ag-ZnO/nylon

Film

Fiber film

C2H2 1000 ppm 70.9 (indoor)A

89 (outdoor)A
[99]

Tribo Pd-ITO

PET

Film

film

H2 1% 75A [93]

Tribo Pd/ZnO

PDMS

NW

Film

H2 3 vol% 1457.69B [94]

Tribo Co3O4

Cu and PTFE

NR

Film

Ethanol 100 ppm 34D [102]

A: S % = (Va - Vg)/Va 9 100%; B: S % = (Va - Vg)/Vg 9 100%; C: S % = (Ia - Ig)/Ia 9 100%; D:

S = Va/Vg, where Va and Vg are the output voltages of the device under the same conditions in dry air and

the test gas, respectively; Ia and Ig represent the output current in air and test gas, respectively
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However, in real cases, the deflection of nanodevice is

restricted by their mechanical strength and flexibility.

While TENG-based self-powered gas sensors work

simply by the formation of a dipole layer after triboelectric

contact and static separation between two materials of the

triboelectric series and the triboelectric charge density is

greatly influenced by the surface alteration of certain

chemisorptions of the molecular oxygen species. In com-

parison with PENG, even though most gas sensing mate-

rials are not in the tribo-series list, ZnO, SnO2, etc. exhibit

triboelectric properties due to their finite conductivity

characteristics, which are widening the range of choosing

tribo-gas sensing materials. Meanwhile, a variety of

structural designs also solve the problem of gas exposure

on the sensing materials. However, it also exists some

limitations, such as firstly, the introduction of motion will

cause the mechanical disturbance of measuring equipment;

Secondly, the output of TENG is unstable, and it may

change with respect to the environment when used for real-

time self-powered systems; thirdly, it still requires external

monitoring circuits to collect the signal generated by NGs,

which means these sensing systems are not genuinely and

authentically ‘‘self-powered.’’ Developing appropriate

TENGs to directly charge or monitor sensors is the trend of

self-powered gas sensors. The whole system does not

require external monitoring circuits to collect the signal,

which have achieved genuinely and authentically ‘‘self-

powered.’’ Meanwhile, the three main parts of this system

work independently and do not interfere with each other.

Moreover, the voltage output of TENG remains constant

under various working frequencies. All the results indicate

that the novel system enables to work stably and reliably,

which provides a strong theoretical basis and technical

support for the next generation of self-powered gas sensing

system.

As a new field by coupling piezoelectric or triboelectric

with semiconducting gas sensing characteristics, the NG-

based self-powered gas sensing system has been demon-

strated with sustainable, flexible, light weight, high effi-

cient, cost-effective and environmental friendly designs.

Continued progress in this field will lead to a class of self-

powered gas sensors with superior sensitivity, excellent

selectivity, high reliability and extended lifetimes for a

wide range of environments and applications. It will be a

collaborative developing field with various disciplines such

as materials, energy, chemistry, automation, mechatronics

and information.
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