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Highlights

• Co3O4 nanoparticles/nitrogen-doped carbon (Co3O4/NPC) composites were successfully fabricated from zeolitic imi-

dazolate framework 67 (ZIF-67), and the composite structure could be well controlled by adjusting the structure of ZIF-

67.

• M-Co3O4/NPC composites derived from flower-like ZIF-67 showed the highest activities for the oxygen evolution

reaction (OER).

Abstract Herein, Co3O4 nanoparticles/nitrogen-doped

carbon (Co3O4/NPC) composites with different structures

were prepared via a facile method. Structure control was

achieved by the rational morphology design of ZIF-67

precursors, which were then pyrolyzed in air to obtain

Co3O4/NPC composites. When applied as catalysts for the

oxygen evolution reaction (OER), the M-Co3O4/NPC

composites derived from the flower-like ZIF-67 showed

superior catalytic activities than those derived from the

rhombic dodecahedron and hollow spherical ZIF-67. The

former M-Co3O4/NPC composite displayed a small over-

potential of 0.3 V, low onset potential of 1.41 V, small

Tafel slope of 83 mV dec-1, and a desirable stability.

(94.7% OER activity was retained after 10 h.) The excel-

lent performance of the flower-like M-Co3O4/NPC com-

posite in the OER was attributed to its favorable structure.

Keywords Co3O4 nanoparticles � Nitrogen-doped carbon �
ZIF-67 � Catalytic � Oxygen evolution reaction (OER)
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1 Introduction

Depletion of fossil fuels and the rapidly growing energy

demands have necessitated the development of sustainable

energy conversion and storage systems such as metal–air

batteries, water splitting devices, and fuel cells [1–4]. The

development of durable, highly efficient, low-cost, and

eco-friendly electrocatalysts for the oxygen evolution

reaction (OER) is crucial for the commercial application of

these renewable energy technologies [5, 6]. To date, pre-

cious metal-based materials, such as RuO2 and IrO2, have

been considered as the most optimal catalysts for OER

owing to their lowest over-potentials at practical current

densities [7]. However, their commercial applications have

been severely impeded because of their poor stability,

prohibitive cost, and low selectivity [8].

Recently, significant efforts have been made to explore

transition metal-based electrocatalysts for the OER because

of their low cost, abundant reserves, environmental

benignity, and resistance to corrosion in alkaline solutions

[9–12]. Among them, Co-based catalysts have emerged as

promising alternatives for precious metal-based catalysts

[13–16]. The electrocatalytic activity for OER is closely

related to the active sites and electronic conductivity of the

catalysts. Previous research has demonstrated that active

sites can be engineered by modulating the particle size,

pore structure [17, 18], and the crystallinity [19, 20] of

Co3O4. Furthermore, coupling with carbon effectively

improves the electronic conductivity of the catalysts

[21–23]. Nevertheless, carbon itself as a catalyst displays

relatively low catalytic OER activity. Recent studies have

shown that doping with either nitrogen or transition metals

into carbon nanostructure can efficiently promote its cat-

alytic performance [23–26]. The template method has

proven to be an effective protocol for obtaining nitrogen-

doped Co3O4/C composites. In this method, various

organic hybrids, which contain both the transition metal

and nitrogen, are used as precursors such as melamine [27],

porphyrin [28], polyaniline [29, 30], and salen [31].

However, it is hard to control the size, structure, and

morphology of these organic hybrids in an exact manner;

therefore, deficiencies and non-uniform distributions of

active sites are prevalent, which are also crucial for elec-

trocatalytic activity.

Metal organic frameworks (MOFs) have attracted a

significant attention as materials for the preparation of non-

precious metal electrocatalysts because of their inherent

advantages such as a controllable porous structure, innate

doping with heteroatoms, and an ultrahigh surface area

[32, 33]. Zeolitic imidazolate frameworks (ZIFs) have

proven to be promising as pyrolytic precursors for various

porous metal oxides/doped carbon composites [34–36]. Via

direct pyrolysis, carbon layers with a porous structure can

be formed in situ with metal nanoparticles encapsulated

homogeneously, and sufficient contacts can be formed

between the metal nanoparticles and the carbon matrix.

Notably, a highly ordered three-dimensional structure

promotes the structural stability of MOFs against pyrolysis,

and the remarkable surface-to-volume ratio of MOFs can

effectively promote the electrochemical catalytic reactions.

Among the variety of MOF materials available, ZIF-67

is one of the most widely investigated ones because of its

high concentration of active cobalt sites as well as a facile

synthetic method. Herein we have proposed a facile

method to prepare Co3O4/NPC composites with different

morphologies derived from ZIF-67. By slightly modulating

the synthetic route of the ZIF-67 precursors, it was possible

to control the morphology of the product. Thus, in addition

to the typical rhombic dodecahedron morphology, novel

flower-like ZIF-67 and hollow spherical ZIF-67 were fab-

ricated. These ZIF-67 precursors were then pyrolyzed to

obtain the Co3O4/NPC composites of different structures,

named T-Co3O4/NPC, M-Co3O4/NPC, and H-Co3O4/NPC,

respectively. The electrocatalytic activities for OER of the

three composites were then investigated to determine the

most favorable morphology for the highest electrocatalytic

performance for the OER.

2 Experimental

2.1 Chemicals

Cobalt nitrate hexahydrate (Co(NO3)2�6H2O,[ 99.8%)

was purchased from Shanghai Titanchem Co. Ltd., and

methanol (CH3OH,[ 99.5%), cobalt sulfate heptahydrate

(CoSO4�7H2O,[ 99.8%), 2-methylimidazole (C4H6N2,

99%), and polyvinylpyrrolidone ((C6H9NO)n) were

obtained from Sinopharm Chemical Reagent Co. Ltd. All

reagents were used as received without further purification.

2.2 Preparation of ZIF-67 Precursors

T-ZIF-67 was synthesized according to a previously

reported method [37]. In a typical procedure, solutions of

Co(NO3)2�6H2O (5.82 g) in methanol (400 mL) (solution

A) and 2-methylimidazole (6.48 g) in methanol (400 mL)

(solution B) were prepared. Solution B was gradually

added into solution A with continuous stirring. After

standing for a while, layers were observed and the super-

natant was eliminated. The solution was then centrifuged

and washed with methanol for 3–5 times to remove the

excess Co2?. T-ZIF-67 was finally acquired as a purple

solid after drying at 60 �C for 3 h.
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The synthetic route to M-ZIF-67 was almost the same as

that of T-ZIF-67, except that Co(NO3)2�6H2O was replaced

by CoSO4�7H2O (5.62 g). During the synthesis of H-ZIF-

67, 1.00 g PVP was added to the methanol solution of

2-methylimidazole as a morphology modifier, and other

steps were the same as that for the synthesis of M-ZIF-67.

2.3 Preparation of Co3O4/NPC Composites

The as-prepared M-ZIF-67, H-ZIF-67, and T-ZIF-67

materials were first ground into powders. They were then

individually heated to 550 �C in air at a heating rate of

5 �C min-1. After keeping at 550 �C for 5 h, the powdered

materials were cooled down to room temperature at a

cooling rate of 5 �C min-1 and black M-Co3O4/NPC,

H-Co3O4/NPC, and T-Co3O4/NPC powders were obtained,

respectively.

2.4 Characterization

Powder X-ray diffraction (PXRD) analysis of the materials

was performed on a Bruker-AXS D8 Advance X-ray

diffractometer with Cu Ka radiation (k = 0.15406 nm).

The morphologies and elemental mappings of the samples

were obtained from a Hitachi SU70 field-emission scan-

ning electron microscopy (SEM) instrument at 10 kV and

20 kV. The high-resolution transmission electron micro-

scopy (HRTEM) characterization was carried out on a

Tecnai F30 microscope at an accelerating voltage of 300

kV. Elemental analysis was performed on a Vario EL III

elemental analyzer. The specific surface area and pore size

distribution were determined by the Brunauer–Emmett–

Teller (BET) method conducted by the TriStar II 3020

surface area and porosity analyzer. Thermogravimetric

analysis (TGA) of the samples was carried out on a

SDTQ600 thermoanalyzer in air. X-ray photoelectron

spectroscopy (XPS) was performed on a Thermo Scientific

ESCALAB 250Xi with Al Ka radiation (hm = 1486.8 eV).

2.5 Electrochemical Measurements

Cyclic voltammetry (CV) and linear sweep voltammetry

(LSV) measurements were taken on an Autolab

PGSTAT302N electrochemical workstation (NOVA 1.9).

The evaluation of the catalytic activity for the OER was

conducted at room temperature in a conventional three-

electrode system. Co3O4/NPC composites were used as the

working electrode, a platinum foil acted as a counter

electrode, and a reversible hydrogen electrode (RHE) was

employed as the reference electrode. To prepare the

working electrode, 5 mg of the active material was

dispersed in a mixture of 0.95 mL ethanol and 0.05 mL 5

wt% Nafion solution with sonication for 60 min. Next, the

catalyst (20 lL) was pipetted out and dropped onto a glassy
carbon electrode with a diameter of 5 mm. It was then fully

dried at room temperature for 12 h before measurements

(loading *0.510 mg cm-2).

3 Results and Discussion

Figure S1 shows the PXRD patterns of M-ZIF-67, H-ZIF-

67, and T-ZIF-67. Apparently, these three materials exhibit

the same XRD pattern with principal diffraction peaks at

7.39�, 10.43�, 12.73�, and 18.07�, which are exactly mat-

ched with the simulated ZIF-67 pattern. This suggests that

the three ZIFs have the same composition. This result was

also supported by their FTIR spectra (Fig. S2). The

diffraction peaks of T-ZIF-67 were much higher than those

of M-ZIF-67 and H-ZIF-67, implying a higher crystallinity

of T-ZIF-67 in comparison with the other two ZIF-67

precursors.

The morphologies of the ZIF-67 precursors and the as-

prepared Co3O4/NPC composites were studied by SEM.

T-ZIF-67 showed a rhombic dodecahedron morphology

with particle sizes of *1 lm, which is the typical mor-

phology of ZIF-67 (Fig. 1a). On the other hand, the mor-

phology of M-ZIF-67 was flower-like with particles of

size *1.6 lm (Fig. 1b) and that of H-ZIF-67 was hollow

spherical with a diameter of *800 nm and shell thick-

ness *200 nm (Fig. 1g, h). After pyrolysis at 550 �C for

5 h under air, all three ZIF-67-derived composites inherited

the morphologies of their precursors without either particle

agglomeration (Fig. S3) or structural collapse, indicating a

high structural stability of the obtained Co3O4/NPC com-

posites. Specifically, the surfaces of T-ZIF-67 shrunk into a

rhombic dodecahedron center with Co3O4 nanoparticles

uniformly embedded in the carbon scaffold (Fig. 1b).

M-ZIF-67 and T-ZIF-67 underwent similar changes in

morphology to yield M-Co3O4/NPC (Fig. 1e) and

H-Co3O4/NPC (Fig. 1h), respectively. To determine the

elemental composition of the composites, elemental map-

ping analysis was conducted. As shown in Fig. 1c, f, i and

Table S1, all three composites were mainly comprised of

cobalt and oxygen, with trace amounts of carbon and

nitrogen. This implied that the pyrolysis of ZIF-67 yields a

nitrogen-doped carbon scaffold encapsulated in situ with

Co3O4 nanoparticles. Further detailed investigations were

performed by using HRTEM (Fig. 2). The Co3O4

nanoparticles adsorbed on the M-Co3O4/NPC and

H-Co3O4/NPC composites were of similar sizes

at *12 nm. The lattice distance in the related high-reso-

lution TEM images matched the (311) interplanar distance

of the Co3O4 nanoparticles.
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To clearly illustrate the process of morphology control,

the schematic diagrams of the synthetic procedure are

presented in Fig. 3. In the traditional synthetic method of

ZIF-67, Co(NO3)2�6H2O has been used as the metal source.

In this work, we used CoSO4�7H2O as the metal source

instead. The introduction of SO4
2? species accelerated the

nucleation of ZIF-67, leading to multiple polyhedrons

being embedded mutually, until finally flower-like ZIF-67

particles had formed. As for H-ZIF-67, PVP was employed

as a template. As shown in Fig. 3, 2-methylimidazole

combined with the PVP molecular chain via hydrogen

bonds when they were dissolved together in methanol. This

interaction between the ligands and the template forced

ZIF-67 to grow along the chain, resulting in flake-like ZIF-

67, which then piled together to form a hollow sphere.

The PXRD patterns of the T-Co3O4/NPC, M-Co3O4/

NPC, and H-Co3O4/NPC composites were obtained to

investigate their compositions. As shown in Fig. 4, apart

from the differences in diffraction intensities, the XRD

patterns of the three composites were the same. Peaks at

31.27�, 36.85�, 44.81�, 59.36�, and 65.24� could be

indexed to the (220), (311), (400), (511), and (440) planes

of spinel cobalt oxide (JCPDS No. 42-1467), respectively.

Since intense diffractions imply higher degree of crys-

tallinity, it was concluded that the structure of M-Co3O4/

NPC was the least ordered.

To gain an in-depth understanding of the pore structure

of the three composites, the nitrogen adsorption–desorption

isotherms and the corresponding pore size distribution

curves of ZIF-67 precursors and Co3O4/NPC composites

were determined. As shown in Fig. 5a, the nitrogen

adsorption–desorption isotherms of M-ZIF-67, H-ZIF-67,

and T-ZIF-67 agreed with Langmuir I. In M-ZIF-67, the

quantity of adsorbed N2 increased dramatically at a low

relative pressure, indicating abundant micropores in the

flower-like particles. Besides, at the tail of the isotherm

(high relative pressure), the absorbance increased quickly,

suggesting a large amount of mesopores. Similarly, T-ZIF-

(a) (b) (c)

Co
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Co O

C N

C N

C N

(d) (e) (f)
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Fig. 1 SEM images of a T-ZIF-67, b T-Co3O4/NPC, d M-ZIF-67, e M-Co3O4/NPC, g H-ZIF-67, and h H-Co3O4/NPC. Elemental mapping of

c T-Co3O4/NPC, f M-Co3O4/NPC, and i H-Co3O4/NPC
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67 possessed numerous micropores with a relatively neg-

ligible number of mesopores. In contrast, H-ZIF-67 had

much less of both micro- and mesopores. These differences

are also evident in the pore size distribution curves

(Fig. 5b). The BET surfaces of M-ZIF-67, H-ZIF-67, and

T-ZIF-67 were determined to be 2375.343, 149.292, and

1187.203 m2 g-1, respectively. Accordingly, after

pyrolysis, their BET surface areas were 25.869, 2.742, and

11.703 m2 g-1, respectively. Noticeably, the adsorption

type changed from Langmuir I to Langmuir III after

pyrolysis (Fig. 5c), and the pore sizes became larger and

the distribution was more dispersive (Fig. 5d). On the basis

of these results, it could be concluded that the pores in the

Co3O4/NPC composites were mainly mesopores.

N C PVP Co

+

+

Accelerating
nucleation

SO4
2+

Co2+

Co2+ H-ZIF-67

M-ZIF-67Seed crystals

Hollow
300 nm2-Hmim/PVP

2-Hmim

Hydrogen
bond

Fig. 3 Schematic diagram of the preparation of a M-ZIF-67 and b H-ZIF-67
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Fig. 2 TEM images of a–c M-Co3O4/NPC and d–f H-Co3O4/NPC composites
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The thermal stabilities of the three composites were

investigated by TGA under air atmosphere. As shown in

Fig. 6, heavy mass losses for M-ZIF-67, H-ZIF-67, and

T-ZIF-67 started at 550, 300, and 400 �C, respectively.
When the temperature increased to 950 �C, the weights

remained at 44.85%, 11.17%, and 36.96%, respectively. The

dramatic weight loss was attributed to the combustion of the

carbon species. It is noteworthy that both H-ZIF-67 and

T-ZIF-67 went through a slight mass loss before decom-

position, while M-ZIF-67 was stable below 500 �C. This
phenomenon indicated that the thermal stability of M-ZIF-

67 was much superior to that of H-ZIF-67 and T-ZIF-67.

Figure 7 shows the XPS results of the M-Co3O4/NPC

catalyst. As shown in Fig. 7a, the full XPS spectra pro-

vided evidence for the presence of Co, O, and C. For the

regional Co 2p spectrum, two major peaks at 780.0 and

795.0 eV were observed, which were correlated to the Co

2p3/2 and Co 2p1/2 spin–orbit peaks of Co3O4, respectively.

In addition, two shakeup satellites, which were character-

istic of Co3O4, were clearly observed at 789.9 and

804.3 eV [38]. The high-resolution spectrum of O 1s could

be deconvoluted to three subpeaks (Fig. 7d). Peaks cen-

tered at 530.0 and 531.6 eV were assigned to the lattice

oxygen (denoted as OL) in the Co3O4 phase and the O2-

ions in oxygen-deficient regions within the matrix of

Co3O4 (denoted as OD), respectively. The peak at 533.0 eV

was attributed to the absorbed oxygen species (OA). The

percentage of OD in the total oxygen content related to the

defect sites was calculated from the spectrum as 41.5%.

Such a high percentage of defect sites-related oxygen

supported the high electrocatalytic performance of the
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M-Co3O4/NPC composite. The C 1s spectrum was decon-

voluted into four subpeaks. The peak at 284.62 eV was

attributed to the sp2-hybridized graphite-like carbon (C–C

sp2), and the peak at 285.11 eV was correlated to both the

sp3-hybridized diamond-like carbon (C–C sp3) and the sp2-

hybridized nitrogen-bonded carbon (C–N sp2). The other

two peaks centered at 286.19 and 288.70 eV were assigned

to the carbon bonded with surface oxygen and nitrogen

groups (C=O/C=N, O=C–O, and C–O/C–N), respectively

[22, 39].

To determine the optimum pyrolysis temperature for

OER, the flower-like ZIF-67 was pyrolyzed at different

temperatures (350, 450, 550, and 650 �C). The electro-

chemical activities of M-350, M-450, M-550, and M-650

for OER were tested in O2-saturated 1.0 M KOH solution.

The over-potential at a current density of 10 mA cm-2 is

an important metric related to solar fuel synthesis. As

shown in the LSV curves (Fig. 8a), M-350, M-450, and

M-550 showed comparative catalytic activity, and the over-

potentials at a current density of 10 mA cm-2 were 290,

310, and 302 mV, respectively. M-650 displayed a rela-

tively poor catalytic activity with a high over-potential

(*370 mV). However, the Tafel slopes revealed the

opposite tendency. Tafel plots were established based on

the LSV curves (Fig. 8b). The Tafel slope b is a parameter

that describes the kinetics of the electrocatalyst for OER,

which is determined by the Tafel equation:

g ¼ aþ b log Jj j; ð1Þ
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where g refers to the over-potential, b represents the Tafel

slope, and the current density is indicated by J. A smaller

value of b implies a faster increase in the rate of the OER

as applied to an increase in the potential. The Tafel slope

values for M-550 and M-650 were 83 and 79 mA dec-1,

much smaller than those of M-350 (*121 mA dec-1) and

M-450 (*105 mA dec-1). In order to explain these results,

the composition and structure analysis was performed by

powder XRD. As shown in Fig. S4, the intensity of the

diffraction peaks of Co3O4 increased with the pyrolysis

temperature, indicating a highly disordered structure of

M-350. As the TGA results (Fig. 6) revealed that there was

no obvious weight loss from the M-ZIF-67 sample at

350 �C, it was reasonable to conclude that M-350 con-

tained a high percentage of carbon. While a highly disor-

dered structure efficiently improved the catalytic activity,

the kinetics were compromised by the high carbon content.

Remarkably, M-550 performed well in both metrics.

Therefore, the optimum pyrolysis temperature was chosen

as 550 �C.
Therefore, M-ZIF-67, H-ZIF-67, and T-ZIF-67 were

pyrolyzed at 550 �C under air. As shown in the LSV curves

(Fig. 9a), H-Co3O4/NPC and T-Co3O4/NPC exhibited rel-

atively poor catalytic activity with onset potentials of 1.48

and 1.55 V, respectively, while M-Co3O4/NPC displayed a

higher OER response with a low onset potential of 1.41 V.

Among the three samples, M-Co3O4/NPC afforded a cur-

rent density of 10 mA cm-2 at an over-potential of

302 mV, which was lower than those of H-Co3O4/NPC

(*317 mV) and T-Co3O4/NPC (*388 mV), indicating

that a flower-like morphology was more favorable for

OER. The Tafel slope value for M-Co3O4/NPC was 84 mA

dec-1, lower than those of H-Co3O4/NPC (94 mA dec-1)

and T-Co3O4/NPC (107 mA dec-1) as well. These results

suggested that the M-Co3O4/NPC composite derived from

the flower-like ZIF-67 exhibited superior catalytic activity

over T-Co3O4/NPC and H-Co3O4/NPC, which had been

derived from rhombic dodecahedron and hollow spherical

ZIF-67.

Strong durability toward OER is of great significance for

energy conversion and storage systems. The chronoam-

perometric responses of M-Co3O4/NPC, H-Co3O4/NPC,

and T-Co3O4/NPC were determined at constant potentials

of 1.53, 1.55, and 1.62 V, respectively. As shown in
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synthesized catalysts
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Fig. 10, M-Co3O4/NPC displayed superior stability in

comparison with H-Co3O4/NPC and T-Co3O4/NPC, with

only a slight anodic current attenuation of 5.3% within

10 h. This result was attributed to the excellent structural

stability of the flower-like carbon scaffold, which was also

evident by the TGA results. Notably, the M-Co3O4/NPC

composite showed a better OER activity compared to not

only most Co-based electrocatalysts, but also noble metal-

based catalysts. A comprehensive comparison with previ-

ously reported catalysts is given in Table 1.

The reason for better electrocatalytic performance of

M-Co3O4/NPC over the other two composites was attrib-

uted to its favorable structure (Fig. 11). Firstly, the

M-Co3O4/NPC composite derived from the flower-like

ZIF-67 was comprised of the nitrogen-doped carbon scaf-

fold with uniformly attached Co3O4 nanoparticles. The

unique carbon network provided channels for the elec-

trolyte, allowing intimate contact between the electrode

and the electrolyte, hence promoting interfacial charge

transfer. Besides, good electrical conductivity of the carbon

scaffold likely also facilitated the electron transport.

Thirdly, a highly disordered structure implied the presence

of more active sites, which were key to the improvement in

OER activity. Furthermore, the flower-like carbon matrix

showed high structural stability, which could firmly sup-

port the Co3O4 nanoparticles and thus improved the sta-

bility of the catalyst.

4 Conclusion

In summary, a facile method for the preparation of Co3O4/

NPC composites with different morphologies has been

proposed, in which Co3O4 nanoparticles were uniformly

embedded in a nitrogen-doped carbon scaffold. By slightly

modulating the synthetic route of the ZIF-67 precursors, it
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Fig. 10 Chronoamperometric responses of the M-Co3O4/NPC,

H-Co3O4/NPC, and T-Co3O4/NPC composites at constant potentials

of 1.53, 1.62, and 1.55 V, respectively

Table 1 Comparison of electrocatalytic activity with previous reported catalysts

Catalysts OPa (V) gb (V) (at 10 mA cm-2) TSc (mV dec-1) Electrolyte References

Porous Co3O4 nanoplates 1.514 0.523 71 0.1 M KOH [40]

Co3O4/mildly oxidized MCNT 1.51 0.39 65 0.1 M KOH [41]

CoO/N-doped crumpled graphene N. A. 0.34 71 0.1 M KOH [42]

Au-meso-Co3O4 1.53 0.44 46 0.1 M KOH [43]

Hollow Ni–Co oxide nanosponges 1.50 0.36 61 0.1 M KOH [44]

Rutile RuO2 [1.70 141 N. A. 0.1 M KOH [45]

IrO2/C N. A. 0.37 N. A. 0.1 M KOH [21]

This work 1.41 0.30 84 0.1 M KOH –

a OP = onset potential; b g = over-potential at current density of 10 mA cm-2; c TS = Tafel slope

OH−

O2

M-Co3O4/NPCM-ZIF-67

Co3O4

4OH−     O2 + 4e− + 2H2O

Fig. 11 Schematic diagram of the M-Co3O4/NPC structure
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was possible to achieve control of their morphology. This

facile method provided a new means to prepare MOF-

derived electrocatalysts for the OER. Among the three

Co3O4/NPC composites, the M-Co3O4/NPC derived from

the flower-like ZIF-67 displayed superior electrocatalytic

activity. The excellent performance of the M-Co3O4/NPC

composite was attributed to its favorable structure. Firstly,

the unique carbon network allowed an intimate contact area

between the electrode and the electrolyte, thus promoting

interfacial charge transfer. Secondly, the highly disordered

structure resulted in more active sites, which were deter-

minant to the electrocatalytic activity for OER. Lastly, the

flower-like carbon matrix assumed high structural stability,

which firmly supported the Co3O4 nanoparticles, thus

improving the stability of the catalyst.
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