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Highlights

• Discovering not only the existence of specific EGFR multi-mutations occurred in minority of EGFR-mutated cells

which may be covered by the noises from majority of un-mutated cells, but also other valuable single-cell-level

information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells.

• Trapping and identifying EGFR-expressed single cells to exclude interferences from EGFR-unexpressed cells.

Abstract EGFR mutations companion diagnostics have

been proved to be crucial for the efficacy of tyrosine kinase

inhibitor targeted cancer therapies. To uncover multiple

mutations occurred in minority of EGFR-mutated cells,

which may be covered by the noises from majority of un-

mutated cells, is currently becoming an urgent clinical

requirement. Here we present the validation of a

microfluidic-chip-based method for detecting EGFR multi-

mutations at single-cell level. By trapping and

immunofluorescently imaging single cells in specifically

designed silicon microwells, the EGFR-expressed cells

were easily identified. By in situ lysing single cells, the cell

lysates of EGFR-expressed cells were retrieved without

cross-contamination. Benefited from excluding the noise

from cells without EGFR expression, the simple and cost-
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effective Sanger’s sequencing, but not the expensive deep

sequencing of the whole cell population, was used to dis-

cover multi-mutations. We verified the new method with

precisely discovering three most important EGFR drug-

related mutations from a sample in which EGFR-mutated

cells only account for a small percentage of whole cell

population. The microfluidic chip is capable of discovering

not only the existence of specific EGFR multi-mutations,

but also other valuable single-cell-level information: on

which specific cells the mutations occurred, or whether

different mutations coexist on the same cells. This

microfluidic chip constitutes a promising method to pro-

mote simple and cost-effective Sanger’s sequencing to be a

routine test before performing targeted cancer therapy.

Keywords EGFR mutation � Single-cell analysis �
Microfluidic chip � Tyrosine kinase inhibitor

1 Introduction

Epidermal growth factor receptor (EGFR) has been proved

to be related with the pathogenesis and progression of

multiple carcinoma types, including lung cancer [1], breast

cancer [2], prostatic cancer [3] and pancreatic cancer [4].

Previous clinical trials demonstrated that inhibitors of

EGFR tyrosine kinase (TK) effectively retarded disease

progression of non-small cell lung cancer (NSCLC)

patients [5, 6]. Evidences suggest that mutated EGFR

proteins are inhibited by small-molecule tyrosine kinase

inhibitors (TKIs) which compete with ATP binding to the

TK domain of the receptor and block signal transduction

[6]. Mutations mediate oncogenic effects by altering

downstream signaling and anti-apoptotic mechanisms

[1, 7]. For instance, L858R in exon 21 and Del E749-A750

in exon 19 mutations increase the TKIs sensitivity [8],

while T790M in exon 20 is a drug-resistant mutation,

abrogating inhibitors binding with EGFR [9, 10]. Since

these mutations significantly affect the effectiveness of

targeted medicine, EGFR analysis is becoming more and

more a routine test before selecting targeted therapy for

related cancers, such as NSCLC [11–13].

Immunohistochemistry of tumor tissue is the most

clinically used method to detect EGFR at protein level

[14, 15]. Also, directly sequencing cells extracted from

tumor tissue has also been clinically accepted to detect

EGFR mutation sequences [16, 17]. However, either the

protein analysis or the gene sequencing of tumor tissue

provides only averaged information of the whole cell

population. Since the tumor cells are heterogeneous

[18, 19], the mutations occurred on a small amount of cells

could be covered by the other normal cells [20].

To reveal EGFR mutation on individual cells, fluores-

cence-activated cell sorting (FACS) was previously intro-

duced [21] to sort single cells from a large cell amount,

usually larger than 105 cells [22]. For cell samples fewer

than 105 cells, the emerging microfabrication technologies

have advanced the examinations of protein expression or

gene mutation at single-cell level by preciously controlling

single cells and their surrounding environments. At protein

level, by employing immunofluorescence identification,

microfluidic chips are capable of identifying [23, 24] or

enumerating [25] EGFR-expressed cells. However, the

application of protein level analyses is limited by the

diverse specificity of different antibodies and the lack of

detailed mutation information. At gene level, on-chip sin-

gle-cell isolation, lysis and gene amplification have been

realized using microchambers [26] or droplets [27],

enabling the sequencing of the disease-related gene frag-

ments [28, 29] or even the whole genome [30]. However,

the lack of on-chip identification of EGFR expression and

corresponding sorting of EGFR-expressed cells compro-

mises the feasibility of selectively sequencing EGFR-ex-

pressed cells which possibly make up a small portion of all

cells extracted from tumor tissue.

Clinically, before performing targeted therapy, it is

crucial to understand not only if EGFR expression happens

but also how many types of disease-related mutation exist

and what the mutated sequences exactly are [31]. This

urgent demand is yet to be fulfilled with an accurate,

simple and cost-effective method, despite the advances

which have already been achieved on EGFR mutation

determination, with or without the assistance of microflu-

idic chips. To address this requirement, we developed a

simple microfluidic chip to simultaneously finish on-chip

cell identification and in situ cell lysis for detecting EGFR

multi-mutations at single-cell level. The on-chip cell

identification distinguished EGFR-expressed cells from

EGFR-unexpressed cells, providing direct and accurate

information about the portion of EGFR-expressed cells.

Also, by sequencing only EGFR-expressed cells, the

interference from EGFR-unexpressed cells was excluded.

The in situ cell lysis ensured the accuracy of DNA

sequence by avoiding cross-contamination between dif-

ferent cells and possible cell loss while transferring cells

between on-chip and off-chip. After optimizing the oper-

ation of the microfluidic chip, we evaluated its perfor-

mance with NSCLC cells. The results demonstrated that

the microchip accurately distinguished NSCLC cells from

normal cells and determined three important drug-related

EGFR mutations that the NSCLC cells possessed.
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2 Experimental Section

2.1 Materials and Cells

Dulbecco’s modified eagle’s medium (DMEM), fetal bovine

serum (FBS), penicillin–streptomycin and trypsin were pur-

chased from Life Technologies, USA. Phosphate-buffered

saline (PBS, pH 7.4) was purchased from Sigma-Aldrich,

USA. EGFR monoclonal antibodies conjugated with fluo-

rescein isothiocyanate (anti-EGFR-FITC) and epithelial cell

adhesion molecule monoclonal antibodies conjugated with

fluorescein isothiocyanate (anti-EpCAM-FITC) were both

purchased from Abcam, USA. The nuclear dye, 40,6-di-
amidino-2-phenylindole (DAPI),was purchased fromSigma-

Aldrich, USA. Silicon wafers were purchased from Xilika,

China. Polydimethylsiloxane (PDMS) was obtained from

Dow Corning, USA. Multiple displacement amplification

(MDA) REPLI-g single-cell kits were purchased from Qia-

gen, Germany. Cell lysis buffer and polymerase chain reac-

tion (PCR) kits were purchased from Tiangen, China.

The non-small cell lung cancer cell line NCI-H1975 and

NCI-H1650 were cultured in 1640 medium with 1%

penicillin–streptomycin and 10% fetal bovine serum

(FBS). Non-small cell lung cancer cell line A549, breast

cancer cell line MCF-7 and human embryonic kidney cell

line HEK-293T were cultured in DMEM medium with 1%

penicillin–streptomycin and 10% FBS. All cells were

incubated at 37 �C under 5% CO2 atmosphere. Before

experiments, cells were fixed using a 4% paraformaldehyde

solution and then labeled by immunofluorescence. All cell

lines were stained by DAPI to indicate cell nuclei. MCF-7

and HEK-293T were mixed and stained by Anti-EpCAM-

FITC. A549, NCI-H1975, NCI-H1650, and HEK-293T

were mixed and stained by anti-EGFR-FITC. Then cells

were rinsed three times to exclude excessive fluorescently

labeled antibodies.

2.2 Fluorescently Identifying, In Situ Lysing,

Amplifying and Directly Sequencing MCF-7

Cells

MCF-7 andHEK-293 cells weremixed at a cell number ratio

of 1:10 in a tube. All cells were treated with DAPI and anti-

EpCAM-FITC staining. Then the cell concentration was

regulated to 3.2 9 105 Cells mL-1. The cell mixture was

pumped in the chip at a flow rate of 3 lL min-1 for 1 min

from the inlet by a syringe pump, followed by pausing the

flow for 3 min till cells were trapped in microwells. The

pumping–pausing procedure was repeated for three times.

After rinsing the chip by PBS with a flow rate of 30 lL
min-1, all cells on chip were fluorescently imaged by a

confocal microscope (Zeiss 710, Zeiss, Germany) with an

automatic stepper stage. All images were manually checked

to select chambers which contained only EGFR-expressed

cells. The imaging and cell selecting costed 30 min. After

that, lysis buffer was pumped into the chip from the inlet by a

syringe pump. Then the chipwas placed at 4 �C for 30 min to

lyse all cells. The cell lysates from selected chambers were

retrieved into PCR tubes and amplified, respectively. Fol-

lowing the instruction of REPLI-g single-cell MDA kits, the

cell lysate was amplified at 30 �C for 3 h by MDA reaction.

The amplification product was diluted by double distilled

water (100 times dilution) and transferred to another tube (2

lL per tube). Then 15 lL PCR mixture, 12 lL double dis-

tilled water, 0.5 lL forward prime and 0.5 lL reverse prime

were added in the tube for a standard PCR to amplify STR

(short tandem repeat) domain sequence. PCR cycling con-

ditions were as follows: 94 �C for 5 min, 35 cycles (30 s per

cycle) of 94 �C, 60 �C for 30 s, 72 �C for 45 s, 1 cycle of

72 �C for 10 min and maintain at 4 �C. The primers are:

Forward primer: 50-TCTAGCAGCAGCTCATGGTG-30;
Reverse primer: 50-GGAGCCCAAGGTTCTGAGT-30.

The PCR was finished in 1.5 h. 5 lL amplification products

were verified by fluorescently imaging of agarose gel. Then

the rest of 25 lL amplification products were sent for

sequencing (Ruibo, Beijing), which was finished in 24 h.

2.3 Detecting EGFR Multi-Mutations

Processing EGFR-mutated cells shares most the protocols

of processing MCF-7 cells. The differences are the fol-

lowing: (1) staining all cells with anti-EGFR-FITC and

DAPI; (2) the A549, NCI-H1975, NCI-H1650, and HEK-

293T cells were mixed at a ratio of 1:1:1:15; (3) using

different PCR primers to amplify different domains,

Exon 19 forward: 50-AACGTCTTCCTTCTCTCTCTGT
CAT-30

Exon 19 reverse: 50-CACACAGCAAAGCAGAAACTC
AC-30

Exon 20 forward: 50-ACCATGCGAAGCCACACTG
ACGTGCCTCTCCCTCCCTCCAG-30

Exon 20 reverse: 50-GTAATCAGGGAAGGGAGAT
ACGGGGAGGGGAGATAAGGAGCCA-30

Exon 21 forward: 50-CCCTCACAGCAGGGTCTT-30

Exon 21 reverse: 50-GTCTGACCTAAAGCCACCTC-30

3 Results and Discussion

From the clinical point of view, an ideal technology for

detecting EGFR multi-mutations should achieve the fol-

lowing: (1) accurate enough to precisely provide sequence

information about specific kinds of mutations; (2) simple
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and cost-effective to be accepted as a routine test before

cancer targeted therapy. To fulfill these requirements, we

developed a microwells array-based microfluidic chip to

firstly identify EGFR-expressed cells from EGFR-unex-

pressed cells, then in situ lysis all EGFR-expressed cells for

the following gene sequencing.

3.1 The Microfluidic Chip

As shown in Fig. 1a, from the functional point of view, the

microfluidic chip consisted of three layers: the microfluidic

channel, the cell trapping array and the cell lysate col-

lecting chambers. To perform EGFR multi-mutations

analysis, the cell mixture, which may contain a small

portion of EGFR-expressed cells and many other EGFR-

unexpressed cells, was firstly incubated with DAPI and

anti-EGFR-FITC, then pumped into the microfluidic

channel (40 mm in length, 8 mm in width and 30 lm in

height). The bottom outlets were closed while pumping cell

mixture. When the channel was fully filled by cell mixture,

the flow was paused till the majority of cells were captured

by the cell trapping array (schemed in Fig. 1b). There were

30,000 square microwells in the cell trapping array. All

wells were 25 lm in side length and 30 lm in depth. The

whole cell trapping array was fluorescently imaged

(schemed in Fig. 1c). The EGFR-expressed cells would be

recognized by anti-EGFR-FITC and exhibit green fluores-

cence. Meanwhile, all cells would exhibit blue fluorescence

of DAPI staining (schemed in Fig. 1d).

By analyzing fluorescent images, all EGFR-expressed

cells were identified from EGFR-unexpressed and their

positions were marked. To lyse all trapped cells, after

opening all bottom outlets and closing top outlet, cell lysis

solution was pumped into the channel to fill cell trapping

array and all cell lysate collecting chambers (schemed in

Fig. 1e). Then the bottom outlets were switched off for

30 min until all cells were fully lysed. The cell lysates were

maintained in cell lysate collecting chambers through the

through-hole at the bottom of each microwell. All through-

holes were 8 lm in side length and 170 lm in depth. The

through-hole design ensured (as simulated in Fig. S1) all

cell lysates were transferred to collecting chamber, without

any cross-contamination among different trapping wells.

Finally, the top outlet and all bottom outlets were

opened, and cell lysates were retrieved through the bottom

outlets, with the assistance of negative pressure, which was

generated by an external syringe pump. The square cell

lysate collecting chamber (1.5 mm in side length, 1 mm in

depth and 2.25 lL in volume) was specially designed to be

much larger than the cell trapping chamber. Each lysate

collecting chamber covered 100 cell trapping chambers. By

controlling the initial cell density, we realized that each

lysate collecting chamber contains cell lysates from a few

cells (\ 4). As long as the ratio between EGFR-mutated

and normal cells was more than 1:3, the mutated sequence

could be detected by the Sanger’s sequencing method [32].

It meant that we could sequence all cells (\ 4) from a

chamber, which contained at least 1 EGFR-expressed cell,

to detect if any specific mutation exists in EGFR-expressed

cells.

In addition, it was easier to retrieve cell lysate from a

larger chamber, avoiding the loss of cell lysate and corre-

sponding inaccurate sequencing results. Multiple dis-

placement amplification (MDA) was introduced for

unbiased amplification of the whole genome of cell lysates.

Depending on how many mutation types needed to be

determined, the amplification product was divided into

several parts which were, respectively, amplified again by

polymerase chain reaction (PCR) with different primers for

specific domains. The final amplification products were

directly sequenced to reveal specific gene mutations

(schemed in Fig. 1f). Compared with previous one-time

PCR amplification [33] in which only one domain could be

examined from lysates retrieved from one cell, the com-

bination of MDA and PCR provided the capability of

accurately sequencing different domains from the same cell

lysate. On the other hand, for the aim of finding out if

specific gene mutations exist in EGFR-expressed cells, not

accurately sequencing the whole genome of every cell, our

design is a practical alternative to expensive deep

sequencing of single cells.

Figure 2a shows the fabrication of the microfluidic chip.

Both the microfluidic channel and cell lysate collecting

chamber were fabricated by PDMS. By utilizing dry-etched

4-inch silicon wafer as the mold, the PDMS was molded to

required structures. For cell lysate collecting chambers,

through-holes were fabricated by piercing the PDMS layer

(with needles) to form the lysate outlets. Silicon was used

as the material for the cell trapping array, because the

microwell and through-hole required precise dimensions

and high width/depth ratio (1:17) which could only be

fulfilled by silicon-based dry-etching. By etching a

200-lm-thick 4 inch silicon wafer from both sides with

alignment, the 30-lm-deep microwells and the 170-lm-

deep through-wholes were formed. Finally, after being

treated with oxygen plasma for 60 s, two PDMS layers

were bonded on both sides of the silicon wafer with

alignment. Figure 2b shows the SEM images of microwells

and through-holes. The cells captured in microwells are

also imaged in Fig. 2b.

An efficient single-cell capture in microwells is crucial

for fluorescent identification. Therefore, we evaluated the

relationship between cell capture efficiency, the microwell

size, the cell trapping time and the initial cell density. For

all assays, the cell capture efficiency was defined as the

ratio between captured cells and all cells pumped into the
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microfluidic chip. For all microwells-based cell trapping,

the dimension of microwells was the key factor for single-

cell trapping. We tested four different side lengths of

square microwells, 15, 20, 25, and 30 lm. We used A549

cells for the evaluation. The cell density and trapping time

were fixed at 3.2 9 105 Cells mL-1 and 3 min, respec-

tively. As shown in Fig. 3a, larger well dimension brought

better capture efficiency. However, while utilizing 30 lm

as well size, about 10% wells were occupied by two or

more cells (Fig. S2). The cell overlapping would compro-

mise the accuracy of fluorescent identification. Therefore,

we selected 25 lm as the well side length to maximize the

capture efficiency and avoid cell overlapping. We then

evaluated the influence of different cell trapping times

which were defined as the flow pausing time for settling

single cells into microwells. The capture efficiencies were
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Fig. 1 The schematic view of microfluidic chip and its operation. a The cell mixture is pumped into a microfluidic chip which consists of three

layers: the microfluidic channel, the cell trapping array and the cell lysate collecting chamber. The flow velocity was 3 lL min-1. b Cells are

trapped in microwells. The square microwell is designed to fit only one cell. c The chip was fluorescently examined to identify cells with specific

protein expression. d Blue balls represent negative cells which exhibit only blue color of DAPI, while green balls represent positive cells which

exhibit both green color of FITC and blue color of DAPI. e The cells in microwells are lysed by inputting cell lysis solution through the

microfluidic channel. The cell lysate is directed to cell lysate collecting chambers. f The cell lysates are separately collected from cell lysate

collecting chambers for the following DNA amplification and sequencing. To clearly demonstrate the chip structure, the schematic figures do not

follow the exact well number and dimension
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Fig. 2 The fabrication of microfluidic chip. a The fabrication process of the microfluidic chip which consists of three layers. They are indicated

by a number 1, 2, and 3, respectively. b SEM images of empty silicon microwells (left column) and microwells occupied by single cells (right

column). Scale bar: 20 lm
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remarkably enhanced from 10% to about 80%, while the

cell trapping times were increased from 0.5 to 3 min. Since

further increasing cell trapping time did not improve cap-

ture efficiency as well, we used 3 min as the cell trapping

time. We finally evaluated the influences of cell density.

Four cell densities (1.1 9 105, 3.2 9 105, 6.0 9 105 and

1.1 9 106 Cells mL-1) were tested. As expected, the

optimum capture efficiency (about 85%) occurred when we

used a low cell density (3.2 9 105 Cells mL-1). Overall,

we used 25 lm for side length of all microwells, 3.2 9 105

Cells mL-1 for cell density and 3 min for cell trapping

time per cycle to realize 85% capture efficiency, which is

enough for EGFR mutation analysis.

3.2 Single-Cell Identification and DNA Sequencing

for Detecting EGFR Multi-Mutation

To evaluate the performance of the microfluidic chip on

identifying and lysing targeted cells without cross-contam-

ination,wemixedMCF-7 cells andHEK-293T cells at a ratio

of 1:10. Detailed protocols are described in experimental

section. Figure 4a shows the fluorescent images of captured

cells inmicrowells. The blue spots indicate theDAPI-stained

cell nuclei, while the green spots indicate MCF-7 cells

expressing epithelial cell adhesion molecule (EpCAM)

which is recognized by anti-EpCAM-FITC. The upper and

middle rows show areas contain onlyMCF-7 andHEK-293T

cells, respectively. While the lower row shows the area

contains both MCF-7 and HEK-293T cells. After fluores-

cently identifying MCF-7 and HEK-293T cells, we

sequenced their short tandem repeat (STR) domain to further

confirm the identification results and to tell if cross-con-

taminations happened in cell lysing and gene amplification

procedures. STR is a 2-6 bases short tandem repeat structure

in gene sequence. Every cell line has its unique STR

sequence. Therefore, sequencing STR gene fragment was

wildly employed to identify specific cell types [34]. All cells

in microwells were lysed in situ, and the cell lysates were,

respectively, collected from related lysate collecting cham-

bers. UsingMDA, we amplified two kinds of cell lysates: (1)

the lysate retrieved from areas which contain only MCF-7

cells; (2) the lysate retrieved from areas which contain only
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pumped into the microfluidic chip. a The relationship between cell capture efficiency and side length of square microwells. Other operation

parameters are: 3.2 9 105 Cells mL-1 and 3 min trapping time. b The relationship between cell capture efficiency and cell trapping time. Other
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HEK-293T cells. The contents from those chambers which

contain no cells were also treated by the same MDA proce-

dure for experimental control. We then secondarily ampli-

fied all samples using PCR with primer designed for STR

domains. Figure 4b shows correct PCR products from both

MCF-7 and HEK-293T cell lysates. Meanwhile, no PCR

product was detected in liquids collected from chambers

which contained no cells, which indicated that no cross-

contamination occurred between chambers occupied and

unoccupied by cells. The sequencing results (Fig. 4c) further

reveals that the quality of PCR products satisfies the

requirement of Sanger’s sequencing, in addition, no cross-

contamination occurred between chambers, respectively,

occupied by MCF-7 and HEK-293T cells.

After verifying the feasibility of in situ identifying and

lysing few cells on microfluidic chip for sequencing, we

tested detecting EGFR multi-mutations on microfluidic

chip. To mimic the real clinical samples in which EGFR-

expressed cells account for a small portion and different

types of mutations coexist in the same sample [35, 36], we

mixed A549 cells (EGFR-expressed, wild type), NCI-

H1975 cells (EGFR-expressed, point mutation L858R in

exon 21 and T790M in exon 20), NCI-H1650 cells (EGFR-

expressed, deletion mutation E746-A750 in exon 19) and

HEK-293T cells (EGFR-unexpressed) at a ratio of

1:1:1:15. This ratio reflects a typical situation for tumor

tissue in which EGFR-expressed cell account for about

10%–20% [35, 36]. A549, NCI-H1975 and NCI-H1650

cells are all NSCLC cells. L858R, T790M and E746-A750

are known as the most important mutations which are

directly related to drug responses [1].

As shown in Fig. 5a, by utilizing anti-EGFR-FITC, the

EGFR-expressed cells, including A549, NCI-H1975 and

NCI-H1650 cells, were fluorescently identified and lysed.

The cell lysates were collected for MDA amplification. To

ensure precise sequencing results, we carefully determined

the product quality of the first MDA amplification (as shown

in Fig. S3). The DNA concentration, DNA mass and DNA

fragment length all fully fulfilled the demands of sequencing

multiple domains. The MDA amplification products were

then divided into 3 parts and, respectively, amplified by PCR

with 3 different primers for 3 domains of the EGFR gene

(exon 19, 20 and 21). Figure 5b shows the results of direct

sequencing (Sanger’s sequence results were shown in

Fig. S4). It demonstrated that all mutated sequences were

precisely detected, as long as one lysate collecting chamber

contained lysate from\ 4 cells. For comparison, directly

sequencing the same mixture of A549, NCI-H1975, NCI-

H1650, and HEK-293T cells (1:1:1:15) could not identify

any EGFR mutations (Fig. S5). Figure 5c shows the statistic

results of mutation analysis. It demonstrated that all muta-

tions on both NCI-H1650 (Del E746-A750) and NCI-H1975

(T790M and L858R) cells were precisely detected, even

under the circumstance that NCI-H1650 and NCI-H1975

cells account for a small portion of thewhole cell population.

Meanwhile, no false-positive result was found on either

HEK-293T cells (EGFR-unexpressed) or A549 cells (no

EGFR mutation), excluding potential misleading while

performing targeted therapy. More importantly, in addition

to detecting if specific mutations occurred, which could also

be finished by expensive tissue-based NGS or ARMS (am-

plification refractory mutation system), our method also

provided more single-cell-level information, on which

specific cells the mutations occurred, or in another word, if

any different mutations co-occurred on the same cells, or

respectively occurred on different cells.
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Fig. 4 Fluorescently identifying, amplifying and sequencing MCF-7

cells. a The fluorescent images of cells in microwells. Upper row is an

area contains only MCF-7 cells which exhibit both DAPI (blue) and

FITC (green) staining; Middle row contains only HEK-293T cells

which exhibit only DAPI (blue) staining; Lower row contains both

HEK-293T cells and MCF-7 cells. Scale bar: 50 lm. b DNA

amplification products of STR domain were verified by fluorescence

image of agarose gel. Left two columns are the empty run and PBS

reaction, both as negative control; The third and fourth left columns

are the products from pure HEK-293T and MCF-7 cells, without the

chip processing, both as positive control. Three right columns are

products from chip areas contain no cells, only HEK-293T cells and

only MCF-7 cells, sequentially. c The sequencing results for STR

domain from the cells lysates from areas, respectively, contain only

HEK-293T and MCF-7 cells. (Color figure online)

Nano-Micro Lett. (2018) 10:16 Page 7 of 10 16

123



4 Conclusion

Accurately discovering specific EGFR mutations, espe-

cially uncovering the mutation information from a small

amount of mutated cells, which could be covered by the

noises from other un-mutated cells, is currently becoming

an urgent clinical requirement, since several key mutations

have proven playing critical roles influencing drug

responses of targeted cancer therapies. This requirement is

yet to be satisfied with a simple, accurate and cost-effective

method. This study provides a microfluidic-chip-based

strategy in which the fluorescent identification of EGFR-

expressed cells, in situ cell lysis, MDA and PCR gene

amplification are integrated to provide high-quality gene

amplification products from which the EGFR multi-muta-

tions information could be acquired using simple and low-

cost Sanger’s sequencing. This new strategy has the fol-

lowing prominent features: (1) by excluding cells without

EGFR expression and limiting the cell numbers of each

sequencing to\ 4, or even only one cells, the majority of

noises which interfere gene sequencing are excluded;

therefore, the multi-mutations of a small portion of cells

can be detected by simple and cheap Sanger’s sequencing,

not expensive deep sequencing; (2) differs from expensive

tissue-level NGS or ARMS method which are capable of

detecting only the existence of specific mutations, our

method provides other valuable single-cell-level informa-

tion: on which specific cells the mutations occurred, or

whether different mutations coexist on the same cells; (3)

trapping and lysing single cells in microwells which are

isolated from each other eliminate the cross-contamination

and cell loss. Also, the combination of MDA and PCR

amplification ensures the high quality of gene amplification

products for acquiring accurate sequencing results. After

optimizing the operation parameters, we verified the new

strategy with cell mimics, which contain three most

important EGFR mutations. The results reveal that the new

strategy is capable of provide the answers of not only if the

EGFR expression exists (by fluorescent identification), but

also what the mutated sequences exactly are and on which

cells these mutations occur.

Overall, for many clinical practices in which EGFR-

expressed cells account for a small portion of the whole

cell population, this study provides a new method for

accurately detecting disease-related EGFR multi-mutations

by employing a simple microfluidic chip and the cost-ef-

fective Sanger’s sequencing, as an economically affordable

alternative to the expensive NGS or ARMS analysis of the

whole cell population.
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Fig. 5 Detecting EGFR multi-mutations. a The fluorescent images of

cells in microwells. Upper row is an area contains only EGFR-

expressed cells which exhibit both DAPI (blue) and FITC (green)

staining; middle row contains only HEK-293T cells which exhibit

only DAPI (blue) staining; lower row contains both HEK-293T cells

and EGFR-expressed cells. Scale bar: 100 lm. b The Sanger’s

sequencing provides accurate mutation information: In exon 19, NCI-

H1650 cells show a deletion mutation (Del E746-A750); in exon 20,

NCI-H1975 cells show a point mutation (T790M); in exon 21, NCI-

H1975 cells show a point mutation (L858R). c For NCI-H1975 cells,

mutations in both exon 20 and 21 are detected; for NCI-H1650 cells,

mutation in exon 19 is also detected. In addition, no false-positive

result on either HEK-293T or A549 cells is detected. (Color

figure online)
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