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Highlights

• Amide-group-coordinated cobalt–terephthalonitrile (Co-BDCN) coordination polymers, with a diameter distribution of

45–55 nm, were synthesized by a one-pot solvothermal method.

• Reversible capacity of 1132 mAh g-1 was achieved at a current density of 100 mA g-1.

Abstract Nanowire coordination polymer cobalt–tereph-

thalonitrile (Co-BDCN) was successfully synthesized using

a simple solvothermal method and applied as anode

material for lithium-ion batteries (LIBs). A reversible

capacity of 1132 mAh g-1 was retained after 100 cycles at

a rate of 100 mA g-1, which should be one of the best

LIBs performances among metal organic frameworks and

coordination polymers-based anode materials at such a

rate. On the basis of the comprehensive structural and

morphology characterizations including fourier transform

infrared spectroscopy, 1H NMR, 13C NMR, and scanning

electron microscopy, we demonstrated that the great elec-

trochemical performance of the as-synthesized Co-BDCN

coordination polymer can be attributed to the synergistic

effect of metal centers and organic ligands, as well as the

stability of the nanowire morphology during cycling.
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1 Introduction

Rechargeable lithium-ion batteries (LIBs) have been find-

ing increasing number of applications in a variety of fields,

including portable electronic devices, electrical energy

storage (EES), electric vehicles (EVs), and hybrid electric
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vehicles (HEVs) [1]. Given the commercial anode graphite

possesses a low theoretical capacity of 372 mAh g-1,

developing high-capacity anode materials is vital for

aforementioned applications, particularly in areas where

application of miniaturization is increasing. To develop

futuristic high-performance anode materials, stable struc-

ture with abundant lithiation sites is necessary. To this end,

metallic oxide-based [2–10], Sn-based [11, 12], Si-based

[13, 14], and P-based [15–18] anode materials have been

widely studied. Although their theoretical capacity is high,

their cycling stability is poor due to large volume changes

during the charge–discharge process [19–22].

Metal organic frameworks (MOFs) or coordination

polymers (CPs), which are assembled by inorganic metal

ions as vertices and organic ligands as linkers, have

attracted tremendous attention in recent years [23–25]. By

varying the metal centers and functional linkers, MOFs

with various pore sizes and structures can be designed to

cater for the increasing demands in the fields of catalysis,

sensing, gas storage, drug delivery, and proton conductivity

[26, 27]. Recently, the electrochemical applications, espe-

cially for LIBs, have attracted significant attention due to

their tremendous potential as both cathode [28–30] and

anode materials [31–35]. MOF-177 [36], Zn3(HCOO)6

[37], Mn-LCP [38], Mn-BTC [39], Co2(OH)2BDC [40],

BiCPs [41], and CoBTC [42] have been applied as anode

(Table S1). For example, Co2(OH)2BDC exhibited rever-

sible capacity of 650 mAh g-1 after 100 cycles at current

density of 50 mA g-1 [40]. In these CPs or MOFs, car-

boxylate groups (e.g., 1,3,5-benzenetricarboxylate and 1,4-

benzenedicarboxylate) are usually used to coordinate with

different metal centers (e.g., Mn, Co, and Zn). During the

charging process, Li? ions are inserted mainly to the

organic moiety (including the carboxylate group and the

benzene ring) in these MOFs [39, 42]. The electron-do-

nating effect of the carboxylate group and the benzene ring

is considered the main impetus in storing lithium ions.

Conjugated dicarboxylates can eventually serve as anode

materials without any metal center [43]. However, CP- or

MOF-based electrodes with other kinds of organic linkers

are seldom used.

Herein, we selected terephthalonitrile as the organic

linker and Co(NO3)2�6H2O as the metal source, and syn-

thesized an amide-group-coordinated CP with nanowire-

like structure using a simple solvothermal method. The

coordination participation of the amide group showed a

higher Li? storage performance as compared to Co2(-

OH)2BDC, which uses the carboxylate group as a linker. A

reversible capacity of 1132 mA g-1 was retained after 100

cycles at a rate of 100 mA g-1. The synergistic effect

between the organic linker and the Co2? center, as well as

the excellent stability of the nanowire-like structure, may

account for the superior electrochemical performance.

2 Experimental

2.1 Materials Synthesis

Co-BDCN was solvothermally synthesized with

Co(NO3)2�6H2O (5 mmol, Aladdin, 99.99%) and tereph-

thalonitrile (5 mmol, Aladdin, 99%) in N,N-dimethylfor-

mamide (DMF, 50 mL, Sinopharm, AR) solution. The

reactants were stirred for 10 min at room temperature to

achieve complete dissolution and then transferred to a

100 mL Teflon-lined stainless steel autoclave before heat-

ing at 150 �C for 3 or 24 h. The samples obtained after 3

and 24 h will be referred to as Co-BDCN-3h and Co-

BDCN-24h, respectively. After cooling to room tempera-

ture, the product was filtered and successively washed by

DMF and ethanol for three times to remove surplus reac-

tants. The product was finally obtained by drying at 70 �C
for 12 h. It is noteworthy that the direct synthesis of Co-

BDCN-24h from terephthalamide and Co(NO3)2�6H2O

failed due to the very low solubility of terephthalamide in

the available solvents (DMF, methanol, alcohol, and

water).

2.2 Materials Characterizations

A Rigaku Ultima IV X-ray diffractometer (XRD) with Cu-

Ka radiation (V = 35 kV, I = 25 mA, k = 1.5418 Å) was

used to analyze the crystal phase of the as-prepared

materials. N2-sorption isotherms and BET surface area

were measured at 77 K with a 02108-KR-1 system

(Quantachrome). The morphologies of the samples were

characterized by scanning electron microscopy (SEM,

Hitachi S-2400, Japan). Before initiating the test, the

samples were mounted on aluminum stubs and sputtered

with gold. Thermogravimetric analysis (TGA) was per-

formed using a STA 449 F3 Jupiter�, which simultane-

ously acted as a thermo-analyzer. Temperature was varied

from room temperature to 800 �C at a heating rate of

10 �C min-1. A Nicolet-Nexus 670 infrared spectrometer

was used to perform Fourier transform infrared spec-

troscopy (FTIR) analysis. The cells for ex situ SEM test

were cycled 50 times and discharged to 0.01 V to reduce

the reactivity of the electrode. After that, we disassembled

the battery in a glove box filled of pure argon and washed

the electrode several times with DMC to remove the

residual electrolyte. The electrode was tailored and pasted

in conductive carbon adhesive tape directly before the test.

The inductively coupled plasma (ICP) test was performed

on Thermo IRIS Intrepid II XSP spectrometer. Varian

700 M was used to collect 1H nuclear magnetic resonance

(1H-NMR) spectra in liquid state. About 1-mg samples

were dispersed in 0.5 mL DMSO-6d. Then the liquids were
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heated at 80 �C for 5 min and ultrasonically vibrated for 5

more minutes before the 1H-NMR test. Bruker 600 M was

used to collect 1H-NMR spectra in the solid state.

2.3 Battery Performance Measurements

All electrochemical measurements were taken at room

temperature. The active material (weight ratio: 80%),

conducting additive (Super-P carbon black, weight ratio:

10%), and the binder (carboxymethyl cellulose sodium or

CMC, weight ratio: 10%) were homogenously mixed in

deionized water (solvent) for at least 3 h to produce a

slurry. The thus-obtained slurry was coated onto Cu foil

and dried at 70 �C in vacuum oven for 12 h. The electrodes

were punched into round plates (diameter of 14.0 mm).

The loading of the as-prepared electrodes is about

1.0 mg cm-2. 1 M LiPF6 in EC–DMC–EMC (1:1:1 in

volume) was used as the electrolyte. Finally, a coin cell

(CR2032) was assembled by the as-prepared anode, a

Celgard 2325 separator (diameter of 19.0 mm), a pure

lithium wafer (counter electrode), and electrolyte in an

argon-filled glove box, with oxygen and water contents less

than 0.1 ppm. The galvanostatic charge and discharge and

rate tests were performed on a LAND 2001A battery test

system in the voltage range of 0.01–3.0 V. Cyclic

voltammetry (CV) and electrochemical impedance spec-

troscopy (EIS) were performed on an electrochemical

workstation (CHI660e) at a scan rate of 0.2 mV s-1 in the

voltage range of 0.01–3.0 V.

3 Results and Discussion

FTIR is a convenient tool to study the binding patterns of

organic linkers and Co2?. As shown in Fig. 1a, the sharp

absorption band at 2233 cm-1 of terephthalonitrile corre-

sponds to m(C:N); however, no absorption of C:N can

be observed in Co-BDCN-3h and Co-BDCN-24h, indicat-

ing the disappearance of C:N after reaction. For Co-

BDCN-3h, the new peaks at 1661, 1619, 1410, and

1386 cm-1 can be assigned to the m(C=O) stretching mode

(or amide I), amide II, m(C–N), and amide III, respectively,
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Fig. 1 a FTIR spectra of Co-BDCN-24h, Co-BDCN-3h, terephthalamide, and terephthalonitrile. b 1H NMR spectra of Co-BDCN-24h, Co-

BDCN-3h, terephthalamide, and terephthalonitrile (dissolved in DMSO-d6 liquids) and DMSO-d6 in liquid state. c Solid-state 13C NMR spectra

of Co-BDCN-24h. d TG curves of Co-BDCN-24h
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while the absorption band at 865 cm-1 can be ascribed to

the m(C–C) stretching vibration of Ar–C=O. Besides, two

characteristic bands of m(NH2) stretching vibration are

observed at 3366 and 3169 cm-1, whereas the weak

absorptions at 1130 and 735–660 cm-1 correspond to the

m(NH2) rocking vibration. The aforementioned absorption

bands can be found in pure terephthalamide. However, for

Co-BDCN-24h, new peaks appeared at 1582 cm-1 and can

be assigned to the asymmetric stretching vibration of C=O.

The peaks at 3298–3216, 1397, 1378, and 1356 cm-1 can

be assigned to m(NH2) stretching vibration, m(C–N), amide

III and symmetric stretching vibration of C=O, respec-

tively. The redshift of m(C=O) and the variations of m(NH2)

are due to the participation of amide group in coordination.

These facts corroborate the hydrolysis of cyano group to

amide group in a mass hydrothermal process [44] and

subsequent coordination of Co2? with amide in Co-BDCN-

24h, as depicted in Scheme 1.

The 1H NMR spectra in liquid state are shown in

Fig. 1b. The chemical shift of H in -D2H of DMSO-d6 was

set at 2.5 ppm (Fig. S1). A well-defined peak is detected at

8.10 ppm for the H (–Ar) of terephthalonitrile, while three

resonances of intensity ratio of 1:2:1 at 7.52 ppm (Ha, –

NH2), 7.92 ppm (H, –Ar), and 8.09 ppm (Hb, –NH2) are

observed in the terephthalamide (the two protons in –NH2

of the amide group show different chemical shifts due to

magnetic anisotropy, electric field, and steric effects) [45].

For the formation of amide groups in Co-BDCN-3h, these

three broad peaks appear at the same positions. Due to the

successful coordination of Co2? and terephthalamide, Co-

BDCN-24h could not dissolve in DMSO-d6. As a result, no

resonance could be detected in the positions. Solid-state
13C NMR spectra of terephthalonitrile, terephthalamide,

and Co-BDCN-24h are plotted. In contrast with the well-

defined peaks of terephthalonitrile and terephthalamide

(Fig. S2), the peaks of Co-BDCN-24h (Fig. 1c) are very

broad (FWHM & 200 ppm) due to the effect of param-

agnetic Co2? center.

TGA was used to investigate the thermal response of

Co-BDCN-24h. As shown in Fig. 1d, before the
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Scheme 1 The forming process of Co-BDCN-24h
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decomposition, continuous weight loss corresponds to the

loss of coordinated solvent or the free H2O molecules.

Subsequently, rapid weight loss in TG curves demonstrates

decomposition of the Co-BDCN-24h skeleton above

257 �C. After the decomposition of organic linkers is

complete, at * 314 �C, the residual material is converted

to Co3O4. Finally, 46.5% of Co-BDCN-24h was retained,

corresponding to 34.2% Co species. Furthermore, the form

of Co2? was also determined by XPS in Fig. 2.

Nitrogen adsorption–desorption isotherms were mea-

sured at 77 K to determine the mean pore diameters and

surface areas (Fig. 3). A mixed H3- and H1-type hysteresis

loop of III isotherm reveals a combination of inter-particle

and structural pores. Besides, a wide distribution of pore

sizes (\ 4–120 nm) is observed for Co-BDCN-24h,
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demonstrating the coexistence of mesopores and macrop-

ores. A surface area of 24.5 m2 g-1, a total pore volume of

0.35 cm3 g-1, and a mean pore diameter of 28.7 nm were

determined by the Brunauer–Emmett–Teller (BET)

method. Unlike traditional MOFs with ultra-high surface

area, the moderate specific area of Co-BDCN-24h may

weaken accessorial secondary reactions with the electrolyte

[32, 42, 46].

Only three well-defined diffraction peaks of Co-BDCN-

24, at 2h = 10.1�, 11.2�, and 20.0�, were observed in

PXRD patterns (Fig. S3), which indicates that most sam-

ples are present in the amorphous form. Figure 4a shows a

full view of Co-BDCN-24h with uniform morphology,

indicating a unified structure even in an amorphous state.

Higher-magnification SEM images (Fig. 4b) reveal that

Co-BDCN-24h is composed of nanowires with a diameter

distribution of 45–55 nm. Elemental analysis using energy-

dispersive X-ray spectroscopy (EDS) shows the
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homogeneous distribution of Co, O, C, and N in Co-

BDCN-24h. On the basis of above-mentioned analysis, Co-

BDCN-24h can be defined as an amorphous coordination

polymer with nanowire morphology.

The cycling performance and coulombic efficiency of

Co-BDCN-24h were tested at 100 mA g-1 in a voltage

range of 0.01–3.0 V versus Li/Li?. As shown in Fig. 5a,

the initial cycle coulombic efficiency (CE) was calculated

to be 70.54% by the discharge and charge capacities of

1439 and 1015 mAh g-1, respectively. As the side reac-

tions of the electrode disappeared after several cycles, the

subsequent charge/discharge curves are analogous (10th,

20th, and 50th, as shown in Fig. 6), indicating a reversible

insertion/extraction of Li?. After 100 galvanostatic charge/

discharge cycles, a reversible capacity of 1132 mAh g-1

was obtained. To the best of our knowledge, this should be

one of the best LIB performances among MOF- and CP-

based anode materials that operate at a rate of 100 mA g-1

(Table S1). Moreover, almost 100% of the coulombic

efficiencies are retained in the subsequent cycles,

indicating a facile intercalation/extraction of Li? and an

efficient transport of ions and electrons in Co-BDCN-24h.

In contrast, when operated under the same test conditions,

the reversible capacities of terephthalamide and tereph-

thalonitrile are only 18 and 85 mAh g-1, respectively

(Fig. 5b). Therefore, we suppose that the ultra-high sta-

bility of Co-BDCN-24h should be attributed to synergistic

effects of organic linkers and metal centers.

The electrochemical behavior and the reaction mecha-

nism of as-prepared Co-BDCN-24h were also studied by

cyclic voltammetry (CV) measurements on 2032 cells in

the voltage range of 0.01–3.0 V. Figure 5c presents the

first two consecutive segments in the CV curves. A sharp

cathodic peak is observed at * 0.71 V, which can be

attributed to the associated electrolyte decomposition and

the formation of SEI film on the surface of electrode. Two

cathodic peaks at 0.73 and 1.46 V are observed in the

subsequent sweep. The peaks were centered at 1.41–1.37

and 2.19 V during the anodic scans. The two reduction

peaks in CV curves could be mainly attributed to insertion

of Li? to different organic moieties (benzene ring and

amide group) [39, 42]. The electron-donating effect of the

oxygen and nitrogen atoms in the amide groups, and that of

the benzene ring, should be the main impetus in storing

lithium ion (Scheme 2).

Rate performance was also studied to further explore the

electrochemical capability of Co-BDCN-24h. Figure 5d

shows the change of cycling performance with increasing

rates: 100, 200, 500, 1000, and 2000 mA g-1. The charge

capacities corresponding to these rates are 1000 ± 35,

1020 ± 30, 866 ± 13, 713 ± 7, and 538 ± 10 mAh g-1,

respectively. After repeating the rate test at 100 mA g-1

for 50 cycles, the capacity is recovered with a value of

about 1100 mA g-1 and is sustained at a steady value in the

subsequent cycles, which indicates that the Co-BDCN-24h

anode remains stable during the rate cycling process.

The Nyquist plots for a fresh sample of Co-BDCN-24h,

measured after 1 and 50 cycles, are shown in Fig. 7. The

frequency range was set between 0.01 Hz and 1 MHz with

an AC amplitude of 10 mV. The solution resistances (Rs)

are 6.7, 4.6, and 5.9 X, respectively, while the charge

transfer resistances (Rct) are 147.1, 57.0, and 50.4 X,

respectively. The decrease in Rct after the first cycle indi-

cates an improved conductivity due to the activation and a

better wetting of the electrodes. The small value of Rct

indicates good Li? diffusion into the Co-BDCN-24h elec-

trode. An ex situ SEM image of Co-BDCN-24h electrode

at 0.01 V, which was taken after 50 cycles, is displayed in

Fig. 8. Nanowire-like structures with a diameter of over

100 nm are observed, indicating that the initial morphology

is preserved. The increase in diameter might be attributed

to the Li? intercalation into the Co-BDCN nanowire and

the formation of SEI films (over 25 nm).

Fig. 8 SEM micrograph of Co-BDCN electrode after 50 cycles
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4 Conclusion

In the past, CPs or MOFs based on carboxylate ligands,

such as 1,3,5-benzenetricarboxylate and 1,4-benzenedi-

carboxylate, have shown potential for Li? storage. In this

work, an amide-group-based CP, Co-BDCN-24h, was

synthesized and characterized for the first time. The Co-

BDCN-24h electrode, with uniform nanowire morphology,

demonstrated ultra-high capacity for Li? storage, i.e., 1132

mAh g-1 at 100 mA g-1 (after 100 cycles). The great

reversible capacity and superior cycling stability were

attributed to the synergistic effect between metal centers

and organic ligands, as well as the preservation of the

nanowire morphology during cycling. This work provided

an alternative to conjugated dicarboxylate-based MOF

anode materials.
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phene-encapsulated oxide nanoparticles: towards high-perfor-

mance anode materials for lithium storage. Angew. Chem. Int.

Ed. 49(45), 8408–8411 (2010). https://doi.org/10.1002/anie.

201003485

23. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and

synthesis of an exceptionally stable and highly porous metal-

organic framework. Nature 402(6759), 276–279 (1999). https://

doi.org/10.1038/46248

24. M. Zhao, K. Yuan, Y. Wang, G. Li, J. Guo, L. Gu, W. Hu, H.

Zhao, Z. Tang, Metal-organic frameworks as selectivity regula-

tors for hydrogenation reactions. Nature 539(7627), 76–80

(2016). https://doi.org/10.1038/nature19763

25. H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF

nanoflake-assembled spherical microstructures for enhanced

supercapacitor and electrocatalysis performances. Nano Micro

Lett. 9(4), 43 (2017). https://doi.org/10.1007/s40820-017-0144-6

26. P. Falcaro, R. Ricco, C.M. Doherty, K. Liang, A.J. Hill, M.J.

Styles, MOF positioning technology and device fabrication.

Chem. Soc. Rev. 43(16), 5513–5560 (2014). https://doi.org/10.

1039/C4CS00089G

27. Q. Zhu, X. Qiang, Metal-organic framework composites. Chem.

Soc. Rev. 43(16), 5468–5512 (2014). https://doi.org/10.1039/

C3CS60472A

28. A. Fateeva, P. Horcajada, T. Devic, C. Serre, J. Marrot et al.,

Synthesis, structure, characterization, and redox properties of the

porous MIL-68(Fe) solid. Eur. J. Inorg. Chem. 24, 3789–3794

(2010). https://doi.org/10.1002/ejic.201000486

29. J. Shin, M. Kim, J. Cirera, S. Chen, G.J. Halder, T.A. Yersak, F.

Paesani, S.M. Cohen, Y.S. Meng, MIL-101(Fe) as a lithium-ion

battery electrode material: a relaxation and intercalation mecha-

nism during lithium insertion. J. Mater. Chem. A 3(8), 4738–4744

(2015). https://doi.org/10.1039/C4TA06694D

30. Z. Zhang, H. Yoshikawa, K. Awaga, Monitoring the solid-state

electrochemistry of Cu(2,7-AQDC) (AQDC = Anthraquinone

Dicarboxylate) in a lithium battery: coexistence of metal and

ligand redox activities in a metal-organic framework. J. Am.

Chem. Soc. 136(46), 16112–16115 (2014). https://doi.org/10.

1021/ja508197w

31. L. Hu, X. Lin, J. Mo, J. Lin, H. Gan, X. Yang, Y. Cai, Lead-based

metal-organic framework with stable lithium anodic perfor-

mance. Inorg. Chem. 56(8), 4289–4295 (2017). https://doi.org/10.

1021/acs.inorgchem.6b02663

32. S. Li, Q. Xu, Metal-organic frameworks as platforms for clean

energy. Energy Environ. Sci. 6(6), 1656–1683 (2013). https://doi.

org/10.1039/c3ee40507a

33. T. Gong, X. Lou, E. Gao, B. Hu, Pillared-layer metal-organic

frameworks for improved lithium-ion storage performance. ACS

Appl. Mater. Interfaces 9(26), 21839–21847 (2017). https://doi.

org/10.1021/acsami.7b05889

34. D. Ji, H. Zhou, Y. Tong, J. Wang, M. Zhu, T. Chen, A. Yuan,

Facile fabrication of MOF-derived octahedral CuO wrapped 3D

graphene network as binder-free anode for high performance

lithium-ion batteries. Chem. Eng. J. 313, 1623–1632 (2017).

https://doi.org/10.1016/j.cej.2016.11.063

35. D. Ji, H. Zhou, J. Zhang, Y. Dan, H. Yang, A. Yuan, Facile

synthesis of a metal-organic framework-derived Mn2O3 nanowire

coated three-dimensional graphene network for high-performance

free-standing supercapacitor electrodes. J. Mater. Chem. A 4(21),

8283–8290 (2016). https://doi.org/10.1039/C6TA01377E

36. X. Li, F. Cheng, S. Zhang, J. Chen, Shape-controlled synthesis

and lithium-storage study of metal-organic frameworks

Zn4O(1,3,5-benzenetribenzoate)2. J. Power Sources 160(1),

542–547 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.015

37. K. Saravanan, M. Nagarathinam, P. Balaya, J.J. Vittal, Lithium

storage in a metal organic framework with diamondoid topol-

ogy—a case study on metal formats. J. Mater. Chem. 20(38),

8329–8335 (2010). https://doi.org/10.1039/c0jm01671c

38. Q. Liu, L. Yu, Y. Wang, Y. Ji, J. Horvat, M. Cheng, X. Jia, G.

Wang, Manganese-based layered coordination polymer: synthe-

sis, structural characterization, magnetic property, and electro-

chemical performance in lithium-ion batteries. Inorg. Chem.

52(6), 2817–2822 (2013). https://doi.org/10.1021/ic301579g

39. S. Maiti, A. Pramanik, U. Manju, S. Mahanty, Reversible lithium

storage in manganese 1,3,5-benzenetricarboxylate metal-organic

framework with high capacity and rate performance. ACS Appl.

Mater. Interfaces 7(30), 16357–16363 (2015). https://doi.org/10.

1021/acsami.5b03414

40. L. Gou, L. Hao, Y.X. Shi, S. Ma, X. Fan, L. Xu, D. Li, K. Wang,

One-pot synthesis of a metal-organic framework as an anode for

Li-ion batteries with improved capacity and cycling stability.

J. Solid State Chem. 210(1), 121–124 (2014). https://doi.org/10.

1016/j.jssc.2013.11.014

41. C. Li, X. Hu, X. Lou, Q. Chen, B. Hu, Bimetallic coordination

polymer as a promising anode material for lithium-ion batteries.

Chem. Commun. 52(10), 2035–2038 (2016). https://doi.org/10.

1039/C5CC07151H

42. C. Li, X. Lou, M. Shen, X. Hu, Z. Guo, Y. Wang, B. Hu, Q. Chen,

High anodic performance of Co 1,3,5-benzenetricarboxylate

coordination polymers for Li-ion battery. ACS Appl. Mater.

Interfaces 8(24), 15352–15360 (2016). https://doi.org/10.1021/

acsami.6b03648

43. M. Armand, S. Grugeon, H. Vezin, S. Laruelle, P. Ribière, P.

Poizot, J.M. Tarascon, Conjugated dicarboxylate anodes for Li-

ion batteries. Nat. Mater. 8(2), 120–125 (2009). https://doi.org/

10.1038/nmat2372

44. X. Ma, Y. He, Y. Hu, M. Lu, Copper(II)-catalyzed hydration of

nitriles with the aid of acetaldoxime. Tetrahedron Lett. 53(4),

449–452 (2012). https://doi.org/10.1016/j.tetlet.2011.11.075

45. R.J. Abraham, L. Griffiths, M. Perez, 1H NMR spectra. Part

30:1H chemical shifts in amides and the magnetic anisotropy,

electric field and steric effects of the amide group. Magn. Reson.

Chem. 51(3), 143–155 (2013). https://doi.org/10.1002/mrc.3920

46. W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal-organic frameworks

and their derived nanostructures for electrochemical energy

storage and conversion. Energy Environ. Sci. 8(7), 1837–1866

(2015). https://doi.org/10.1039/C5EE00762C

Nano-Micro Lett. (2018) 10:19 Page 9 of 9 19

123

https://doi.org/10.1002/adma.200701364
https://doi.org/10.1002/adma.200701364
https://doi.org/10.1002/anie.201003485
https://doi.org/10.1002/anie.201003485
https://doi.org/10.1038/46248
https://doi.org/10.1038/46248
https://doi.org/10.1038/nature19763
https://doi.org/10.1007/s40820-017-0144-6
https://doi.org/10.1039/C4CS00089G
https://doi.org/10.1039/C4CS00089G
https://doi.org/10.1039/C3CS60472A
https://doi.org/10.1039/C3CS60472A
https://doi.org/10.1002/ejic.201000486
https://doi.org/10.1039/C4TA06694D
https://doi.org/10.1021/ja508197w
https://doi.org/10.1021/ja508197w
https://doi.org/10.1021/acs.inorgchem.6b02663
https://doi.org/10.1021/acs.inorgchem.6b02663
https://doi.org/10.1039/c3ee40507a
https://doi.org/10.1039/c3ee40507a
https://doi.org/10.1021/acsami.7b05889
https://doi.org/10.1021/acsami.7b05889
https://doi.org/10.1016/j.cej.2016.11.063
https://doi.org/10.1039/C6TA01377E
https://doi.org/10.1016/j.jpowsour.2006.01.015
https://doi.org/10.1039/c0jm01671c
https://doi.org/10.1021/ic301579g
https://doi.org/10.1021/acsami.5b03414
https://doi.org/10.1021/acsami.5b03414
https://doi.org/10.1016/j.jssc.2013.11.014
https://doi.org/10.1016/j.jssc.2013.11.014
https://doi.org/10.1039/C5CC07151H
https://doi.org/10.1039/C5CC07151H
https://doi.org/10.1021/acsami.6b03648
https://doi.org/10.1021/acsami.6b03648
https://doi.org/10.1038/nmat2372
https://doi.org/10.1038/nmat2372
https://doi.org/10.1016/j.tetlet.2011.11.075
https://doi.org/10.1002/mrc.3920
https://doi.org/10.1039/C5EE00762C

	One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability
	Highlights
	Abstract
	Introduction
	Experimental
	Materials Synthesis
	Materials Characterizations
	Battery Performance Measurements

	Results and Discussion
	Conclusion
	Acknowledgements
	References




