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Highlights

• A metal–organic framework (MOF)-assisted approach is developed for the synthesis of hierarchical composite particles

composed of Fe2O3 nanotubes encapsulated in a Co3O4 host matrix.

• The hierarchical Fe2O3 nanotubes@Co3O4 composite particles exhibit excellent electrochemical performance when

evaluated as an anode material for lithium-ion batteries (LIBs).

Abstract Transition metal oxides are promising candidates

for the high-capacity anode material in lithium-ion batteries.

The electrochemical performance of transition metal oxides

can be improved by constructing suitable composite archi-

tectures. Herein, we demonstrate a metal–organic frame-

work (MOF)-assisted strategy for the synthesis of a

hierarchical hybrid nanostructure composed of Fe2O3 nan-

otubes assembled in Co3O4 host. Starting from MOF com-

posite precursors (Fe-based MOF encapsulated in a Co-

based host matrix), a complex structure of Co3O4 host and

engulfed Fe2O3 nanotubes was prepared by a simple

annealing treatment in air. By virtue of their structural and

compositional features, these hierarchical composite parti-

cles reveal enhanced lithium storage properties when

employed as anodes for lithium-ion batteries.
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1 Introduction

Lithium-ion batteries (LIBs) have drawn considerable

research attention as a rechargeable power source for

portable electronic devices and electric vehicles [1, 2].

Until now, graphite has been the most commonly used

anode material in commercial LIBs [3]. However, the rel-

atively low theoretical capacity (372 mAh g-1) of graphite

is inadequate to meet the growing demands of energy

density and life span in next-generation batteries [4–7].
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Transition metal oxides (TMOs) have been considered as

promising electrode materials for LIBs owing to their high

specific capacity, low cost, and synthetic versatility to

diverse nanostructures [8–11]. As two representative

TMOs, iron oxide and cobalt oxide have been actively

investigated [12–18]. However, the practical application of

these anode materials still faces serious challenges, such as

fast capacity fading, poor rate performance caused by large

volume changes occurring during the lithiation/delithiation

processes, and low intrinsic electric conductivity.

To overcome these drawbacks, diverse approaches have

been proposed to improve the lithium storage properties.

One effective way is to integrate two or more TMO

materials into hybrid nanostructures [3, 19, 20]. The hybrid

configuration is expected to retain the advantages of each

component and, at the same time, provide synergetic

effects that enhance the physicochemical properties such as

electrochemical reactivity and mechanical stability [21].

Recently, several iron oxide@cobalt oxide hybrid materials

have been reported with enhanced lithium storage capa-

bility, such as Fe2O3@Co3O4@C composite nanoparticles

[22], Fe2O3@Co3O4 nanowire arrays [23], and Co3O4

@Fe2O3 core–shell nanoneedle arrays [24]. In addition, the

construction of hierarchical hollow nanostructures was

found to be an effective way to accommodate the large

volume changes associated with electrochemical reactions

[25, 26]. The permeable shells can reduce Li? ion diffusion

length and guarantee sufficient electrode–electrolyte con-

tact area. Therefore, a rational design and synthesis

approach for iron oxide@cobalt oxide hybrid electrodes

with hierarchical hollow nanostructures is expected to yield

enhanced lithium storage properties.

In recent years, there have been growing research

interest for designing advanced electrode materials with

controlled architectures and chemical compositions using

metal–organic framework (MOF)-based precursors

[27–35]. Most MOF-derived blends are based on simple

MOF crystals, and the resulting nanomaterials exhibit rel-

atively simple porous or hollow structures. A rational

design of MOF hybrid precursors with novel structures and

tailored compositions is highly desirable for the synthesis

of high-performance electrode materials [36, 37].

In this work, we adopted a MOF-assisted approach for

the synthesis of hierarchical composite particles of Fe2O3

nanotubes encapsulated in Co3O4 hosts for potential use as

an anode material in LIBs. The strategy involves incor-

poration of MIL-88B (a Fe-based MOF) nanorods in a

zeolitic imidazolate framework-67 (ZIF-67, a Co-based

MOF) crystal. By a pyrolysis process, the hybrid precursor

is transformed into compact Fe2O3 nanotubes engulfed

within the Co3O4 host matrix (denoted as the Fe2O3 nan-

otubesCo3O4 composites) (Fig. 1). Benefiting from the

unique structure and robust matrix, the as-prepared hier-

archical Fe2O3 nanotubes@Co3O4 composite particles

exhibit remarkable electrochemical performance when

evaluated as an anode material for LIBs.

2 Experimental

2.1 Synthesis of MIL-88B@ZIF-67 Composites

The MIL-88B nanorods were synthesized by following a

hydrothermal method reported earlier [38]. In this method,

0.16 g of F127 was first dissolved in 15 mL of deionized

water to which 0.179 g of FeCl3�6H2O was added. The

solution mixture was stirred for 1 h, and 0.6 mL of acetic

acid was added to it. After stirring for 1 h, 0.06 g of

2-aminoterephthalic acid was injected. It was stirred for

another 2 h, after which the reaction mixture was transferred

into an autoclave and crystallized for 24 h at 110 �C. The

resulting product was washed with ethanol several times. It

was then dispersed with 10 mL of methanol solution con-

taining 0.5 g of polyvinylpyrrolidone (PVP, Mw = 40,000),

and the mixture was stirred at room temperature for 12 h.

The PVP-functionalized MIL-88B nanorods were collected

by centrifugation, washed several times with methanol, and

dispersed in 15 mL of methanol for further use. To

MIL-88B nanorod

Self-assembly

I II

Thermal
treatment in air

Mixture of MIL-88B nanorods,
Co2+ ions, and 2-MIM

MIL-88B@ZIF-67
composite

Fe2O3 nanotubes@
Co3O4 composite

Co2+ ion2-MIM

Fig. 1 Schematic illustration of the formation process of the Fe2O3 nanotubes@Co3O4 composite. (I) Self-assembly of MIL-88B nanorods,

Co2? ions, and 2-methylimidazole (2-MIM) to a MIL-88B@ZIF-67 composite. (II) Transformation to Fe2O3 nanotubes@Co3O4 composite

through thermal treatment in air
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synthesize the MIL-88B@ZIF-67 composite, 0.8 mL of the

MIL-88B nanorod suspension, 5 mL of 80 mM

2-methylimidazole (2-MIM) solution, and 3 mL of 20 mM

Co(NO3)2�6H2O solution were mixed and allowed to react at

room temperature for 4 h without stirring. The reaction

product was extracted by centrifugation, washed with

methanol several times, and vacuum-dried overnight.

2.2 Thermal Synthesis of Fe2O3 Nanotubes@Co3O4

Composites

The as-formed MIL-88B@ZIF-67 composite was placed in

a ceramic boat and heated to 500 �C at a ramp rate of

5 �C min-1 in a tube furnace under ambient atmosphere.

The temperature was maintained for 2 h after which the

furnace was naturally cooled to room temperature.

2.3 Materials Characterization

Field-emission scanning electron microscope (FESEM; JEOL-

6700F) and transmission electron microscope (TEM; JEOL-

2010) were used to examine the morphology and structure of

the prepared samples. The composition was analyzed by an

energy-dispersive X-ray analysis (EDX) equipmentattached to

the FESEM instrument. The crystal phase was examined using

a Bruker D2 Phaser X-ray diffractometer. Elemental mapping

and high-angle annular dark-field scanning transmission

electron microscopy (HAADF-STEM) were performed in a

JEOL-2100F electron microscope. Nitrogen sorption iso-

therms were measured using Autosorb 6B.

2.4 Electrochemical Measurements

Electrochemical measurements were carried out using

CR2032 coin-type half cells. The working electrode con-

sists of an active material (here, Fe2O3 nanotubes@Co3O4

composite particles), carbon black (Super-P–Li), and a

polymer binder (polyvinylidene fluoride) in the weight

ratio of 70:20:10. The loading mass of the active material is

approximately 0.5–0.8 mg cm-2 for each electrode.

Lithium foil was used for both the counter and reference

electrodes. LiPF6 (1.0 M) in a 50:50 (w/w) mixture of

ethylene carbonate and diethyl carbonate was used as the

electrolyte. The cell assembly was placed in an Ar-filled

glove box with moisture and oxygen concentrations below

1.0 ppm. The galvanostatic charge–discharge tests were

performed with a Neware battery test system.

3 Results and Discussion

MOF-based precursors have been widely used to fabricate

inorganic functional materials with various micro-/nanos-

tructures. To enable the synthesis of complex

1 μm

(a) (b) (c)

(d) (e) (f)

1 μm200 nm

500 nm 500 nm1 μm

Fig. 2 FESEM images of a PVP-functionalized MIL-88B nanorods and c, d MIL-88B@ZIF-67 composites. TEM images of b PVP-

functionalized MIL-88B nanorods and e, f MIL-88B@ZIF-67 composites
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micro-/nanostructured materials, composite MOF precur-

sors with multiple components are highly desirable, even

though the synthesis is quite challenging [39, 40]. A facile

solution-based method developed here easily facilitates the

assembly of pre-synthesized MIL-88B nanorods within

each ZIF-67 crystal. The MIL-88B nanorods synthesized

through a modified hydrothermal method [38] are firstly

functionalized with PVP on their surface (Fig. 2a, b). The

incorporation of MIL-88B nanorods in the ZIF-67 crystal

host was carried out by mixing MIL-88B nanorods with the

metal ions and organic ligands of ZIF-67 in methanol, and

maintaining at room temperature for 4 h [41]. FESEM

images show the morphology of the resulting composite

particles (Fig. 2c, d). The uniform particles with a size of

2–3 lm exhibit a very rough surface composed of ran-

domly oriented MIL-88B nanorods. TEM images further

reveal the solid feature of each ZIF-67 crystal, with

numerous MIL-88B nanorods uniformly distributed within

each particle (Fig. 2e, f).

As seen in the XRD patterns (Fig. 3), the MIL-

88B@ZIF-67 composites exhibit the diffraction peaks of

both MIL-88B and ZIF-67 with high crystallinity. In

addition, the successful incorporation of MIL-88B nanor-

ods in ZIF-67 crystals can be visualized by the dark red

color of the resultant product, which is quite different from

the purple color of pristine ZIF-67 (insets of Fig. 3).

The Fe2O3 nanotubes@Co3O4 composites were synthe-

sized by thermal treatment of MIL-88B@ZIF-67 precur-

sors at 500 �C in air. Figure 4a shows a low-magnification

FESEM image of the as-derived Fe2O3 nanotubes@Co3O4

composite particles. The composite sample preserves the

morphology of its MOF precursor even after annealing

treatment. A shrinkage of both rhombic dodecahedral hosts

and rod-shaped guests is observed after the pyrolysis pro-

cess, while the surface roughness of the annealed particles

increased (Fig. 4b, c). The structure of the as-derived

Fe2O3 nanotubes@Co3O4 composite was further examined
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Fig. 3 XRD patterns of MIL-88B@ZIF-67 composites, MIL-88B

and ZIF-67. Insets show the digital photographs of the MIL-

88B@ZIF-67 composites and ZIF-67
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Fig. 4 a–c FESEM images and d–f TEM images of the Fe2O3 nanotubes@Co3O4 composites
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by TEM. As shown in Fig. 4d, e, the Fe2O3 nanotubes

derived from MIL-88B nanorods are evenly distributed in

the Co3O4 host matrix. The length and diameter of the

Fe2O3 nanotubes are about 455 and 55 nm, respectively

(Fig. S1). A closer observation of the edge of a Fe2O3

nanotubes@Co3O4 composite particle reveals that each

Fe2O3 nanotube is composed of small nanocrystallites

(Fig. 4f). High-resolution TEM images (Fig. S2) confirm

this observation, in which the lattice fringes assigned to the

crystal planes of Fe2O3 and Co3O4 are clearly discernible.

The crystalline phases in the composite material were

confirmed by powder XRD analysis (Fig. 5a). The XRD

patterns were indexed to a mixture of d-Fe2O3 phase

(JCPDS card No. 2-1165) and cubic Co3O4 phase (JCPDS

card No. 73-1701). The nitrogen sorption measurement

indicates a moderate surface area of * 18 m2 g-1 for the

Fe2O3 nanotubes@Co3O4 composite (Fig. 5b). Such a

compact architecture may help to provide relatively good

structural robustness and suppress parasitic side reactions

between electrode and electrolyte [42, 43]. For comparison,

Fe2O3 and Co3O4 nanostructures (derived from MIL-88B

and ZIF-67) reveal Brunauer–Emmett–Teller (BET) sur-

face areas of 7 and 45 m2 g-1, respectively (Fig. S3). From

an analysis of the chemical composition (by EDX), the Fe

to Co molar ratio was obtained as 0.58:1 (Fig. S4). This

value is very close to the experimental molar ratio (0.59:1)

of Fe to Co that was used for synthesis. The spatial dis-

tribution of iron and cobalt oxides is shown in Fig. 6, as

obtained from HAADF-STEM images and elemental

mapping. The Fe2O3 nanotubes are seen to be evenly dis-

persed in the Co3O4 host matrix. X-ray photoelectron

spectroscopy (XPS) measurements helped to identify the

various valence states of Fe, Co, and O in the Fe2O3 nan-

otubes@Co3O4 composites (Fig. S5a). The binding ener-

gies of Fe 2p3/2 and 2p1/2 peaks are located at 707.8 and

721.3 eV, respectively, confirming the presence of Fe3?

state in Fe2O3 (Fig. S5b). The binding energies at 776.7

and 792.1 eV in the Co 2p spectrum are attributed to the

Co2? and Co3? states in Co3O4 (Fig. S5c). The O 1 s

spectrum can be deconvoluted into two bands at 284.4 and

285.1 eV, which are assigned to the O2- state in Fe2O3 and

Co3O4, respectively (Fig. S5d).

Subsequently, we evaluated the electrochemical lithium

storage properties of Fe2O3 nanotubes@Co3O4 composite

particles for use as an anode material in LIBs. Figure 7a

shows the representative discharge–charge voltage profiles

of Fe2O3 nanotubes@Co3O4 composite particles at a cur-

rent density of 0.5 A g-1 within a cutoff voltage window

of 0.01–3.0 V. The initial discharge and charge capacities

are 921.9 and 709.8 mAh g-1, respectively, with a high

initial coulombic efficiency of 77.0%. The long discharge

plateau at 0.84 V during the first cycle corresponds to the

insertion of Li? ions into Fe2O3/Co3O4, complete reduction

of Fe2O3/Co3O4 to metallic Fe/Co, and solid electrolyte

interphase (SEI) film formation [22–24]. After the first

cycle, the capacity becomes stable. Figure 7b shows the

cycling performance of the Fe2O3 nanotubes@Co3O4

composite particles at a current density of 0.5 A g-1. The

capacity decays from the initial value of 922 to

710 mAh g-1 in the second cycle. Afterward, the capacity

gradually increases to 951 mAh g-1 at the end of 80

cycles. The increase in capacity during cycling is com-

monly observed in many metal oxide-based anode mate-

rials [44, 45]. This phenomenon might be associated with

the gradual activation of the Fe2O3@Co3O4 composite

during cycling, which enhances the accessibility of lithium

ions in the electrode material [46, 47]. The FESEM and

TEM images of the Fe2O3 nanotubes@Co3O4 electrode

after cycling are shown in Fig. S6. It is seen that the Fe2O3

nanotubes@Co3O4 composites retain their hierarchical

structure even after 80 cycles. Few tubular subunits can

still be observed on the edge of the hybrid particle. The

cycling performance at a higher current density of

1.0 A g-1 is further testimony to the electrochemical sta-

bility of the hierarchical structure during the lithiation/

delithiation processes (Fig. S7). For comparison, MIL-
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88B- and ZIF-67-derived Fe2O3 and Co3O4 nanostructures

were also prepared by pyrolysis of the corresponding MOF

precursors and studied. These exhibited inferior electro-

chemical stability (Fig. S8). Further, as shown in Fig. 7c,

the Fe2O3 nanotubes@Co3O4 composite particles display

good rate capability at discharge–charge current rates

ranging from 0.1 to 2 A g-1. The average specific capac-

ities observed are 731, 717, 699, 628, and 554 mAh g-1 at

current densities of 0.1, 0.2, 0.5, 1, and 2 A g-1, respec-

tively. After the high-rate discharge/charge cycling, a high

specific capacity of 791 mAh g-1 was seen to be retained

even when the current density returned to a low value of

0.1 A g-1. To further investigate the mechanism of lithium

storage in Fe2O3 nanotubes@Co3O4 composites, the cyclic

voltammetry (CV) behavior of various cycles was inves-

tigated (Fig. S9). In the first cycle, cathodic peaks were

observed at 1.72 and 0.40 V that correspond to the inser-

tion of Li? into Fe2O3/Co3O4 and complete reduction of

Fe2O3/Co3O4 to metallic Fe/Co, respectively [23]. The

peaks at 1.70 and 2.13 V are ascribed to the delithiation

processes and restoration of Fe2O3/Co3O4 [22, 24]. The

subsequent curves show good reproducibility, with two

cathodic peaks at 0.69 and 1.30 V and two anodic peaks at

1.70 and 2.13 V. The conversion reaction of Fe2O3/Co3O4

with Li? is schematically illustrated (Fig. S10) to show the

formation of metallic Fe/Co nanoparticles embedded in a

matrix of Li2O. These results demonstrate that the Fe2O3

nanotubes@Co3O4 composite particles possess excellent

electrochemical kinetics and lithium storage characteristics

comparable to many other Fe2O3, Co3O4, and their com-

posites, which are useful for electrode materials, as

reported previously (Table S1).

Overall, we regard that the outstanding lithium storage

properties are attributable to a combination of the follow-

ing factors. First, the assembly of compact Fe2O3 nan-

otubes in each Co3O4 host provides synergistic effects

between two metal oxides with slightly different redox

potentials [22–24]. This facilitates the electrochemical

reactions and guarantees high energy density. Second, the

hierarchical multilevel cavities and robust architecture lead

to an increase in the electrode/electrolyte contact area and

help to accommodate the strain of Li? insertion/extraction,

hence contributing to good cycling stability. Finally, the

nanosized subunits facilitate electronic/Li? transport in the

(a) (b)

(c)

500 nm

(d)

Co O

Fe

Fig. 6 a HAADF-STEM image of Fe2O3 nanotubes@Co3O4 composite particles. Elemental mapping images of b Fe, c Co, and d O
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electrode material, ensuring enhanced electrochemical

activity. All of the above make the Fe2O3 nan-

otubes@Co3O4 composite particles a highly promising

anode material for LIBs.

4 Conclusion

A novel MOF-assisted strategy has been developed to

construct a complex hierarchical nanostructure consisting

of compact Fe2O3 nanotubes encapsulated in Co3O4 host.

The synthesis involves incorporation of MIL-88B nanorods

in the ZIF-67 polyhedron host followed by a thermal

treatment process in air to convert the MIL-88B nanorods

and ZIF-67 polyhedron to Fe2O3 nanotubes and Co3O4

host, respectively. Benefiting from the unique struc-

tural and compositional advantages, the as-prepared hier-

archical Fe2O3 nanotubes@Co3O4 composite exhibits

outstanding electrochemical properties with good rate

capability and excellent cycling stability as an anode

material for LIBs. Our study sheds new light on the con-

trolled synthesis of complex hollow structures for various

energy-related applications.
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