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Highlights

• This paper reviews the water-assisted crystallization for TiO2 nanotubes (TNTs) for the first time.

• The review summarizes various aspects of TNTs prepared by water-assisted crystallization method.

Abstract TiO2 nanotubes (TNTs) have drawn tremendous

attention owing to their unique architectural and physical

properties. Anodizing of titanium foil has proven to be the

most efficient method to fabricate well-aligned TNTs,

which, however, usually produces amorphous TNTs and

needs further thermal annealing. Recently, a water-assisted

crystallization strategy has been proposed and investigated

by both science and engineering communities. This method

is very efficient and energy saving, and it circumvents the

drawbacks of thermal sintering approach. In this paper, we

review the recent research progress in this kind of low-

temperature crystallization approach. Here, various syn-

thetic methods are summarized, and the mechanisms of the

amorphous–crystalline transformation are analyzed. The

fundamental properties and applications of the low-tem-

perature products are also discussed. Furthermore, it is

proved that the water-assisted crystallization approach is

not only applicable to TNTs but also to crystallizing other

metal oxides.
Keywords TiO2 nanotube � Crystallization � Water-

assisted � Low-temperature

1 Introduction

Over the past few decades, titanium dioxide (TiO2) has

drawn ever-increasing interest for its application to energy

and environmental areas, such as photocatalysis [1, 2], dye-

sensitized solar cells (DSSCs) [3, 4], Li-ion batteries [5, 6],
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supercapacitors [7, 8], gas sensors, and water splitting,

because of its low cost, high abundance, high chemical

stability, and lack of toxicity [9–14]. In particular, one-

dimensional (1-D) TiO2 nanotubes (TNTs) are widely

investigated because they possess the advantages of both

high surface area and direct carrier transport pathways,

which make them a promising candidate for various fields

[15–17]. Four main routes have been proposed to synthe-

size TNTs, including sol–gel, hydrothermal, templating,

and anodic oxidation methods [18–21]. The TNTs prepared

through sol–gel or hydrothermal methods are generally

randomly oriented, and the templating method is limited

because of its complicated fabrication process and high

cost [22]. Anodic oxidation not only offers the advantages

of being facile and easily scaled up but also can yield

highly ordered oriented nanotube (NT) arrays, resulting in

markedly enhanced performance [23–25]. In addition, such

NT characteristics as the tube diameter and thickness of the

tube wall can be readily manipulated by changing the

experimental parameters of the anodization process

[26, 27]. Therefore, anodic oxidation is expected to be a

superior method for fabricating oriented TNTs.

However, the as-anodized TNTs are generally amor-

phous after anodization, which is not useful for many

applications such as DSSCs, where the anatase phase and

higher crystallinity have been proved to be essential for

enhanced performance [28]. To address this issue, thermal

annealing is always carried out to obtain the desired crys-

talline TNTs. Specifically, the conversion of amorphous

TiO2 NTs to the anatase phase occurs at above 300 �C, and
mixture of anatase and rutile appears when the annealing

temperature is above 550 �C [29–31]. Although thermal

annealing is an effective method to crystallize amorphous

TNTs, there are some drawbacks: (1) the annealing method

requires additional energy consumption and is costly; (2)

this process may facilitate the formation of a thick barrier

layer that separates the NT arrays from the substrate,

resulting in deterioration of electron transport; (3) the high-

temperature annealing process impedes the integration of

NT arrays on temperature-sensitive polymeric substrates,

hindering the development of lightweight TNTs-based

devices [32–34]. Consequently, exploring a low-tempera-

ture method for the crystallization of TNTs is significant in

broadening their applications.

In fact, there are some reports concerning the fabrication

of crystallized TNTs at low temperatures without annealing

[35, 36]. Su et al. found that a crystalline structure formed

when the anodization was carried out at a high voltage

(120 V) [37]. However, the crystallinity was so low that

only a weak and broad (101) peak of anatase appeared. Ali

et al. fabricated crystalline TNTs with the assistance of

perchloric acid electrolytes, but the TNTs fell into the

electrolyte, leading to an extra centrifugation procedure

[38]. Therefore, it is urgent to find a facile strategy to

crystallize the as-anodized TNTs with considerable crys-

tallinity without involvement of any hazardous substances.

In 2011, Liao et al. and Wang et al. proposed a novel

water-assisted crystallization (WAC) approach to crystal-

lize the amorphous as-anodized TNTs [39, 40]. In short,

after the conventional anodization (electrolyte: ethylene

glycol solution containing H2O and NH4F), the as-anodized

foils were simply soaked in water for a certain time, and

the amorphous TNTs arrays transformed into the anatase

phase. It is truly amazing that this transformation occurred

with the help of only water and without any annealing

treatment or additives. Because of its facile and green

chemistry features, the WAC strategy arouses people’s

interest, and much effort has been devoted to it [41].

Although many papers based on the WAC route have

been published since 2011, no review of this field is

available. Therefore, a comprehensive review could not

only provide timely information for researchers but also

motivate the development of TNTs. As shown in Fig. 1,

this review mainly summarizes aspects of WAC for TNTs,

including methods and mechanisms, fundamental proper-

ties, applications, and other materials. First, various WAC

methods and the corresponding mechanisms are intro-

duced. Second, we investigate the fundamental properties

of the products after WAC treatment. Third, we introduce

the main applications, including photocatalysis, DSSCs,

and supercapacitors. The fourth section is mainly about

other materials generated employing the WAC strategy,

namely TiO2-based nanostructured materials and other

metal oxides.

Fig. 1 Brief description of the overall contents
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2 Methods and Mechanisms

It is well known that crystallization strategy plays a key

role in fabricating nanomaterials significantly influencing

the structure and morphology of the products. In this sec-

tion, we cover the various WAC-based crystallization

methods used for synthesizing TNTs. We first introduce the

water-only WAC method, in which water is the only sub-

stance employed in the crystallization process. Then, some

modifications are presented, such as doping with metal

ions. Finally, some ingenious methods inspired by the

WAC mechanism are proposed for the preparation of

TNTs. The mechanisms of the abovementioned methods

are also discussed.

2.1 Water-Only WAC Method

With respect to the water-only WAC method, the amor-

phous as-anodized TNTs are treated only with water

without any other additives for crystallization. According

to the different forms of water, it can be classified as a

solid–liquid method or a solid–gas method. As the crys-

tallization process involves only water, it is considered a

green and cost-effective approach.

2.1.1 Solid–Liquid Method

As for the solid–liquid method, the as-anodized TNTs are

simply immersed in water at different temperatures. The

amorphous TNTs transform into crystalline anatase TNTs

after a certain immersion time; it is schematically shown in

Fig. 2. In the following sections, we mainly introduce

solid–liquid methods, including room temperature (RT)

water crystallization and hot water crystallization [41–49].

In 2011, Wang et al. prepared amorphous TNTs by

anodization (electrolyte: ethylene glycol solution contain-

ing NH4F and H2O) and then immersed them in water at

RT (* 25 �C) [40]. As a result, the amorphous TNTs

transformed into pure anatase phase after 3 days without

occurrence of rutile or brookite phases (Fig. 3a, b). In

addition, the obtained anatase TNTs were stable, and no

discernible changes were observed when the immersion

time was prolonged to 30 days. The amorphous TNTs

transformed into the anatase phase not only by annealing

but also through the water-assisted strategy at RT. Based

on systematic studies, a dissolution–precipitation mecha-

nism was proposed to explain this type of WAC phe-

nomenon. The building blocks of the amorphous materials

are randomly distributed, while the crystallized materials

are long-range ordered [50]. As TiO6 octahedra are the

building blocks for both amorphous TNTs and anatase

TNTs, it is assumed that the amorphous–anatase transfor-

mation is a process that rearranges the TiO6 octahedra with

the assistance of water. As schematically shown in Fig. 3c,

two different TiO6 octahedra, which share one common

vertex, first absorb a water molecule forming a bridge

between the surface hydroxyl groups through the lone

electrons on the oxygen (step 1). In step 2, dehydration of

the abovementioned complex occurs. Two water molecules

are ejected and one oxygen atom is taken away by forming

a new water molecule, resulting in the linkage of octahedra

by sharing one common edge. Subsequently, third octa-

hedra proceeds in a similar hydration-dehydration process

and the three octahedra become linked together by sharing

their edges at a right angle (step 3). Finally, the right-angle

assembly connects with another identical assembly, leading

to the basic unit cell of anatase TiO2 (step 4). The reason

why the rearrangement of TiO6 octahedra leads to the

formation of the anatase phase and not the rutile phase can

be explained as follows. It is believed that the Gibbs free

energy of anatase clusters is lower than that of rutile

clusters; therefore, the anatase phase is more thermody-

namically stable [51]. It is concluded that the amorphous–

anatase transformation is achieved through a dissolution–

precipitation process, in which randomly distributed TiO6

octahedra are rearranged with the assistance of water.

Owing to the dissolution and reprecipitation processes, the

morphology of TNTs cannot stay the same as before, and

numerous pores are formed, which will be discussed in the

next chapter.

Although the dissolution–precipitation process has been

developed, there are still many scientific issues to be

explored. In 2016, we further investigated the amorphous–

anatase transformation and supplemented the dissolution–

precipitation mechanism by immersing the as-anodized

TNTs in hot water (90 �C) for a certain time [52]. We

named it the WAC strategy because water is the onlyFig. 2 Schematic illustration of the crystallization process in water
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substance involved in this crystallization process. Could

any other substance also lead to this amazing amorphous–

anatase transformation under the same conditions? In

addition to immersing the amorphous TNTs in hot water,

we also immersed them in ethanol and ethylene glycol

solutions. However, no distinct anatase peaks were detec-

ted except for the Ti substrate peaks, as shown in Fig. 4b,

c. We inferred that water is an essential factor in the

crystallization process, confirming the water-assisted

mechanism. In addition, we not only focused on the TNTs

but also paid attention to the byproducts leading to deeper

insight into the WAC mechanism. Specifically, after the

samples were immersed for 2 h at 90 �C, the water became

turbid owing to the existence of white precipitate byprod-

ucts. When the immersion time was prolonged to 20 h,

white products settled to the bottom, and the water became

transparent again, as shown in Fig. 4d, e. The selected area

electron diffraction (SAED) results in Fig. 4f reveal that

the white byproducts are composed of nanoparticles (NPs)

possessing an anatase crystalline structure in line with that

of the TNTs on Ti substrate. Based on this result, a sup-

plementary dissolution–recrystallization-precipitation

mechanism was proposed; its schematic diagram is pre-

sented in Fig. 4g. First, TiO6 octahedra dissolve in water

forming Ti(OH)6
2- species. Then, the Ti(OH)6

2- species

spontaneously recrystallize and precipitate in situ into

TNTs, maintaining the mechanical nanotubular structure.

However, a fraction of Ti(OH)6
2- species recrystallize and

precipitate into anatase TiO2 NPs, which are apart from the

TNTs and suspended in water. In other words, the overall

reactions of the amorphous–anatase transformation can be

described as follows:

TiO2ðamÞ þ 4H2O ! Ti OHð Þ2�6 þ2Hþ ð1Þ

Ti OHð Þ2�6 þ2Hþ ! TiO2ðanÞ þ 4H2O ð2Þ

Here, TiO2(am) represents the amorphous TNTs, and

TiO2(an) represents the anatase TNTs. These findings cor-

roborate and enrich the water-assisted dissolution–precip-

itation mechanism and provide deeper insight into the

WAC strategy.

It is worth noting that experimental parameters, such as

water temperature and immersion time, have a significant

influence on the properties of the obtained anatase TNTs.

For example, Karine et al. employed the solid–liquid

method to crystallize amorphous TNTs for various time

periods at different temperatures (RT, 80, 100, and

120 �C). They found that the crystallographic properties

and morphological features are distinctive under different

experimental conditions [46]. Actually, the solid–liquid
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method to crystallize amorphous TNTs is widely recog-

nized as a fundamental and convenient strategy. The dis-

solution–precipitation mechanism is not only applicable to

the solid–liquid method but also serves as the theoretical

basis of other derived synthetic strategies.

2.1.2 Solid–Gas Method

Although the solid–liquid WAC method is cost-effective

and convenient, the full-of-water condition results in a

disadvantage: TNT films may detach because of the dis-

solution of the bottom layer under the NTs. To circumvent

this problem, a solid–gas method, in which water is gas-

eous, is proposed [44, 53, 54].

As schematically shown in Fig. 5a, the amorphous

TNTs are put into a Teflon-lined stainless autoclave con-

taining a small amount of water. With increasing temper-

ature, the liquid water turns into water vapor surrounding

the TNTs and crystallizes them. Liu et al. employed the

solid–gas method to crystallize the amorphous TNTs at

temperatures of 130–180 �C, and only 0.3 mL water was

added to the autoclave [54]. The dissolution–precipitation

process proceeded at the TNT/vapor interfaces leading to

the crystallization of amorphous TNTs. X-ray diffraction

(XRD) results showed this amorphous-anatase transfor-

mation, and the effects of vapor temperature and crystal-

lization duration were also investigated. For comparison,

they also used the solid–liquid method to crystallize

amorphous TNTs by immersing them in water (maintain-

ing other conditions the same). At temperatures of 130 or

160 �C, the nanotubular structure of the solid–gas samples

was preserved, and only some NPs appeared on tube walls

(Fig. 5b), which is a common morphology feature resulting

from the WAC method. In contrast, the solid–liquid sam-

ples exhibited a serious collapse of TNTs, and the nan-

otubular architecture was destroyed (Fig. 5c), which is

consistent with previous reports. These results indicate that

the solid–gas method can alleviate the collapse of NTs,
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Fig. 5 a Flowchart for the low-temperature crystallization of amor-

phous TiO2 nanotubular arrays by solid–gas reaction. In a Teflon-

lined stainless autoclave, the as-anodized amorphous TiO2 nanotubes
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followed by b hydrothermal solid–gas crystallization and c hydrother-
mal solid–liquid crystallization at 160 �C for 4 h [54]. Copyright �
2013 The Royal Society of Chemistry
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possibly because of relatively slow TNT/vapor interface

reactions.

To compare with the abovementioned example, a facile

solid–gas method at a low temperature of 50 �C was pro-

posed by Andrea et al. [55]. In this case, the temperature of

the TNT arrays was not the same as that of the water vapor

because they were not sealed in an enclosed space.

Specifically, the as-anodized samples were fixed into a

clamping system and exposed to water vapor that had been

previously heated to 90 �C. No intentional heating was

provided to the TNTs, and their temperature reached 50 �C
(measured by a Pt100 temperature detector) resulting from

contact with the heated vapor. The researchers demon-

strated that a thin water layer emerges in this situation and

subsequently forms part of a solid/liquid/vapor interface

system where the water-assisted dissolution–precipitation

occurred. After exposure for only 20 min, (101) peaks

belonging to the TiO2 anatase phase were detected in the

XRD results, in contrast with the prior amorphous nature.

This result shows that amorphous TiO2 can transform into

the anatase phase even at a low temperature of 50 �C.
Considering the presence of water vapor in air at RT, we

may wonder if the amorphous–anatase transformation

would occur when the amorphous TiO2 is exposed to air.

Su et al. prepared amorphous TiO2 and placed it in air to

observe the changes [56]. As a result, the amorphous TiO2

transformed into the anatase phase within 90 days. They

attributed this phenomenon to the rearrangement of TiO6

octahedra with assistance from the water from moisture.

Although the crystallization period was extremely long,

this result still indicates that the amorphous–anatase

transformation occurs in air at RT and normal atmosphere

pressure without any solvent or additive.

The water-only WAC method can effectively crystallize

amorphous TNTs. The dissolution–precipitation process

plays an important role in this amorphous–anatase trans-

formation in which TiO6 octahedra are rearranged with the

assistance of water.

2.2 Modified WAC Method

In addition to the water-only WAC method, much effort

has been devoted to investigating other modified methods

that employ aqueous solutions containing various ions. In

this section, we introduce the modified WAC methods

involving aqueous solutions containing metal ions and

nonmetal ions [57–60].

2.2.1 Aqueous Solution Containing Metal Ions

Since the first report of TNTs, many efforts have been

devoted to doping TNTs with metal ions [61–66]. Although

the doped TNTs exhibit satisfying performances, the

complicated procedures of generating them limit their

development. Inspired by the WAC strategy, researchers

used aqueous solutions containing metal ions to crystallize

the amorphous TNTs and dope the metal elements into

TiO2 at the same time. For example, Zhang et al. fabricated

MTiO3 (M = Zn, Co, Ni) NTs by a hydrothermal treatment

that immersed the amorphous TNTs into aqueous solutions

containing different metal acetates [67]. Considering the

participation of metal acetates, the reactions in the auto-

clave can be described as follows:

M Acð Þ2! M2þ þ 2Ac� ð3Þ

Ac� þ Hþ ! HAc ð4Þ

Ti OHð Þ2�6 þM2þ ! MTiO3 þ 3H2O ð5Þ

Here, M represents the metal ions, and Ac represents

acetate (CH3COO
-). As mentioned above, the amorphous–

anatase transformation is highly dependent on the reaction

between Ti(OH)6
2- and H? (Eq. 2). From Eqs. 3 and 4,

however, we can see that H? is consumed because of the

presence of Ac-. Consequently, the reaction in Eq. 2 is

hindered, and the combining of Ti(OH)6
2- and M2? occurs

and is promoted. As shown in Fig. 6a, the XRD results

confirm the existence of ZnTiO3 when the metal acetate is

Zn(Ac)2. Actually, the employment of an aqueous solution

of Zn(Ac)2 not only causes the formation of ZnTiO3 but

also influences the morphology of NTs. Some NPs emerge

during the dissolution–precipitation process when the

water-only WAC method is used because of the reaction in

Eq. 2. These NPs are usually adhered on tube walls and

form a NP/TNT morphological feature. In Zhang’s work,

the NP/TNT structure appeared when the concentration of

Zn(Ac)2 was low (0.05 M), as shown in Fig. 6b. In con-

trast, the nanotubular architecture remained intact, and few

NPs were observed when the concentration was increased

to 0.5 M (Fig. 6c). These results confirm that the addition

of M(Ac)2 hinders the combining of Ti(OH)6
2- and H? and,

subsequently, alleviates the collapse of NTs. To further

investigate the reactions and obtain deep insights, addi-

tional experiments were carried out. On the one hand,

crystalline anatase TNTs, instead of the amorphous TNTs,

were hydrothermally treated with 0.2 M Zn(Ac)2. As

expected, ZnTiO3 was not detected in this case. Because

the stability of anatase TiO2 is relatively high, the TiO6

octahedra do not absorb water molecules and form

Ti(OH)6
2- groups [68–70]. Therefore, the reactions in Eq. 5

are restricted, and ZnTiO3 is not obtained. On the other

hand, ZnTiO3 was also not obtained when Zn(Ac)2 was

replaced by ZnCl2 and the other conditions were main-

tained, which could be attributed to the fact that strong acid

radicals would not proceed the reactions, as in Eq. 4. This

result demonstrates that both the amorphous nature and
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weak acid radicals are essential in the preparation of

MTiO3. In addition, the morphology of the anatase TNTs

was nearly unchanged after hydrothermal treatment in

0.2 M Zn(Ac)2 solution (Fig. 6d). Based on the above

results, a schematic illustration of the reactions in the

presence of anatase or amorphous TNTs is displayed in

Fig. 6e.

In contrast to the metal elements used for doping, some

metal ions in the solution nucleate and crystallize simul-

taneously with the recrystallization of amorphous TNTs.

For instance, Zhao et al. fabricated Ag-TiO2 nanocom-

posites by immersing amorphous TNTs in an aqueous

solution containing AgNO3, glucose, and ethanol at 180 �C
[71]. After 2 h, the sample contained three phases,

including silver, anatase TiO2, and titanium (substrate). In

this reaction, Ag? ions diffused into the amorphous TNTs

and transformed into Ag NPs. The WAC of amorphous

TNTs proceeded at the same time, eventually resulting in

Ag-TNT nanocomposites.

2.2.2 Aqueous Solutions Containing Nonmetal Ions

As for TNTs with nonmetal ions, we mainly discuss

nitrogen-doped TNTs (N-TNTs), which have many

advantages in various fields [72–75]. A variety of strate-

gies, such as ammonolysis and ion implantation methods,

have been developed to implant nitrogen into TNTs

[76, 77]. Unfortunately, high temperature is usually an

inevitable experimental condition for obtaining N-TNTs

limiting their development for many applications. Conse-

quently, it is important to develop a convenient low-tem-

perature method to prepare N-TNTs. Wang et al. fabricated

N-TNTs by immersing the as-anodized amorphous TNTs

into an aqueous solution of ammonia at 90 �C, as shown in

Fig. 7a [78]. Because of the weak alkaline environment of

the solution, the reactions in Eqs. 1 and 2 were accelerated.

As expected, the amorphous TNTs transformed into the

anatase phase after immersion, and the crystallinity

increased with increasing immersion time. As shown in

Fig. 7b, X-ray photoelectron spectroscopy (XPS) was

ZnTiO3
TiO2
Ti

(e)

(a)

In
te

ns
ity

 (a
.u

.)

20 30 40 50 60 70 80

(3)

(2)

(1)

2θ (degree)

100 nm

(d)(b)

(c)

100 nm 200 nm

Thermal

Treatment

Ti Substrate
Amorphous TiO2 NT
Anatase TiO2
MTiO3 (M=Ba, Sr, Ca)
MTiO3 (M=Co, Zn, Ni)

Ti(OH)6

H2O

H2O H2O

M2+

2−
Ti(OH)6

OH−

H+
H+

M2+
HAc

2−

Ti(OH)6

M(Ac)2

2−Ti(OH)6
2−

Fig. 6 a XRD patterns of the as-hydrothermal samples after annealing at 450 �C for 3 h in air (lines 1, 2, 3 represent the 0.05 M, 0.2 M, and

0.5 M Zn (Ac)2 solutions). SEM images of the samples hydrothermally treated with Zn(Ac)2 solutions with different concentrations at 200 �C for

6 h: b 0.05 M and c 0.5 M. d SEM image of anatase TNTs after hydrothermal treatment in 0.2 M Zn (Ac)2 at 200 �C for 6 h [67]. e Schematic

illustration of the reaction processes in the presence of anatase or amorphous TNTs. Copyright � 2014 The Royal Society of Chemistry

123

Nano-Micro Lett. (2018) 10:77 Page 7 of 28 77



carried out to investigate the influence of ammonia. Sharp

peaks for Ti, O, and C were detected in both the as-an-

odized and ammonia-treated samples, while the N 1s peak

was also observed in the latter. The N 1s peak located at

approximately 399.8 eV was assigned to interstitial nitro-

gen with a Ti–O–N structure, which is consistent with other

studies [79, 80]. The normalized Ti 2p core-level XPS

spectra of the as-anodized and ammonia-treated samples

are presented in Fig. 7c. The peak of the ammonia-treated

sample is clearly shifted compared with that of the as-

anodized sample, indicating that their Ti ions have differ-

ent bonding environments. The researchers demonstrated

that this redshift could be attributed to an increase in

electron cloud density on Ti owing to the presence of

nitrogen. The XPS results also confirm that there were

more Ti3? ions in the ammonia-treated sample, and we can

conclude that oxygen vacancies (Ti3?) emerge during the

ammonia solution immersion. Moreover, the N-TNTs

exhibit an elevated conductivity, as shown in Fig. 7d. The

conductivity of the as-anodized TNTs was only
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8.96 9 10-9 S m-1, while this value of the ammonia-

treated sample reached as high as 7.42 9 10-6 S m-1. The

researchers demonstrated that the variation in conductivity

could be attributed to the enhanced crystallinity and oxy-

gen vacancies introduced in the ammonia-treated products.

In addition, Cui et al. immersed the as-anodized TNTs

into an aqueous solution of various concentrations of

(NH4)2TiF6 (0.005, 0.01 and 0.02 M) [81]. Although water

molecules were considered to be the main agents in the

crystallization of TNTs because of the very low concen-

trations of (NH4)2TiF6, the presence of [NH4]
? and

[TiF6]
2- markedly influenced the products, especially their

morphology. When these materials were employed in

supercapacitors, the specific capacitance of the (NH4)2-
TiF6-treated sample was three times that of the sample

without (NH4)2TiF6 treatment.

2.3 Other Methods

We have introduced the main WAC methods, and a dis-

solution–precipitation mechanism has been adopted to

explain the amorphous-anatase transformation. However,

this transformation process usually requires a relatively

long crystallization time, especially for the solid–liquid

method. At RT, days are needed to achieve the transfor-

mation because of the low dissolution–precipitation rate.

Therefore, accelerating the WAC process becomes a

challenging issue. In 2017, Aijo et al. reported a very

efficient technique for RT crystallization of as-anodized

TNTs, which is quite different from the methods above

[82]. The most attractive feature of this method is the very

fast amorphous-anatase transformation, which only

requires 5 min. As shown in Fig. 8a, the preparation pro-

cess comprises the following steps: (1) titanium foil is

anodized in an ethylene glycol solution containing

ammonium fluoride and water; (2) the sample is crystal-

lized using a two-electrode system, where the as-anodized

sample is used as the working electrode and platinum acts

as the counter electrode. An alternating square voltage

pulse with a pulse width of 100 ms is employed, and the

electrolyte used in this step is a 1 M KCl aqueous solution.

The addition of KCl improves the conductivity, and this

species does not participate in the reactions on either the

anode or the cathode. After a pulse treatment of only

5 min, a sharp (101) XRD peak of the anatase phase was

observed, suggesting successful amorphous–anatase trans-

formation in a short time. In addition, the nanotubular

structure was well maintained after pulse treatment, and

few NPs were detected, in contrast with the water

immersion samples, in which many NPs adhered to tube

walls. As shown in Fig. 8b, an electrophilic-nucleophilic

mechanism is proposed to explain the crystallization pro-

cess. In the first stage, a positive pulse (? 5 V) is applied

to the amorphous TNT electrode, making it electrophilic

and leading to the accumulation of OH- ions on the sur-

face. These OH- ions act as ‘bridges’ bonding the two

adjacent Ti(OH)6
2- octahedra together. In the second stage,

a negative pulse (- 5 V) is applied to the amorphous TNT

electrode, making it nucleophilic and causing the attraction

of H? ions. These H? ions ‘attack’ the ‘bridges,’ resulting

in the formation of edge-shared octahedra. With the

increase in pulse treatment time, this process continues

until a basic unit of anatase TiO2 is formed.

In summary, there are many ways to accomplish the

WAC of amorphous TNTs. The dissolution–precipitation

mechanism is appropriate for most of the methods; some

other mechanisms were also proposed. Finding a green,

efficient, and low-cost method for crystallizing amorphous

TNTs not only promote the further investigation of TiO2

but also have great significance for the exploration of

crystallography.

3 Fundamental Properties

After the WAC process, some properties of the products

are quite different from those of the as-anodized and high-

temperature-annealed samples. In this section, we mainly

introduce fundamental properties, including the morphol-

ogy, surface area, crystallinity, and bandgap, of the prod-

ucts prepared by WAC methods.

3.1 Morphology Evolution

It is well known that the morphology of nanomaterials is

the most important factor affecting their properties.

Although the 1-D structure usually does not collapse

completely during the WAC, there are still many changes

that cannot be ignored. In the following, these new mor-

phological features and the corresponding influence factors

are summarized.

3.1.1 NT-NP/NT-NR Evolution

Treatment time Figure 9a–d shows the scanning electron

microscopy (SEM) images of the morphological evolution

of a sample as a function of water immersion time. From

Fig. 9a, it can be seen that the as-anodized TNTs have

smooth tube walls. However, when the sample is immersed

in water at RT for 30 h, some NPs with a mean diameter of

approximately 10 nm appear on the tube walls forming an

NP/NT structure. With increasing immersion time, more

NPs emerge on both the inner side and outer side of the

tube walls. It should be noted that the NP/NT structure is

still maintained, because the inside of the tube is not

completely filled with NPs. If we further prolong the
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immersion time to over 72 h, the original tubular structure

is no longer visible, and only the solid nanorods (NRs) are

detected (Fig. 9d). The NT-NP/NT-NR evolution can be

attributed to the dissolution–precipitation, in which TiO6

octahedra from the original NTs dissolve, rearrange, and

precipitate as anatase TiO2 NPs on tube walls. In Fig. 9e, a

scheme illustrating the transformation from amorphous

NTs to anatase NRs is presented. In addition, Wang et al.

found that a double-walled NT structure forms before the

formation of NPs/NTs (Fig. 9b) [40]. It is believed that the

large space inside the NTs facilitates water molecules to

access the inner surfaces of the tubes, while the narrow

space between the adjacent NTs limits the transport of

water molecules. Therefore, the dissolution–precipitation

process occurring on the outer surfaces of the NTs is dra-

matically slow compared with that on the inner side, finally

forming the double-walled structure.

This type of NT-NP/NT-NR evolution has also been

discovered in most experiments using WAC methods. For

example, Cao et al. immersed the as-anodized TNTs into

water for different duration times (up to 7 days) and

investigated the morphology transformation [83]. Fig-

ure 10 shows SEM and transmission electron microscopy

(TEM) images of the samples with different immersion

times. For the as-anodized TNTs (Fig. 10a), the tube wall

is smooth, and no lattice fringes or diffraction rings can be

detected from the high-resolution TEM and SAED images,

confirming the amorphous nature. After immersion for

24 h (Fig. 10b), an NP/NT architecture appears, and the

diffraction rings assigned to anatase TiO2 are observed.

Within 3 days (Fig. 10c), the NPs/NTs transforms into

NRs composed of NPs. Both the lattice fringes and

diffraction rings are clearly observed, indicating the good

crystallinity of the prepared anatase TNTs. It can be noted

that a higher surface area can always be obtained after

WAC treatment, resulting from the formation of pores and

nanoparticles during the morphology evolution process. On

the other hand, losing the tubular structure also causes

some drawbacks listed as follows: (1) numerous boundaries

between nanoparticles lead to a slow diffusion of electrons;

(2) the structure may be not as robust as before. In short,

there are advantages and disadvantages of the morphology

evolution, and it can be controlled to meet different

requirements.

Treatment temperature Regarding the solid–liquid

method, its high temperature ([ 100 �C) can easily lead to

the collapse of TNT films [53]. In contrast, the TNT films

are relatively robust under solid–gas treatment. Addition-

ally, the treatment time plays a key role in the NT-NP/NT-

NR transformation. Liu et al. demonstrated that high tem-

perature accelerates the dissolution–precipitation rate and,

subsequently, facilitates the formation of NP/NT structures

[54]. After exposure of the sample to water vapor for 4 h at

130 �C, only a small number of NPs appeared, and the
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Fig. 10 SEM, HRTEM and SAED images of the a as-anodized TNTs, b after water soaking for 1 day, and c after water soaking for 3 days [83]
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nanotubular structure was well preserved. Nevertheless, the

nanotubular structure of the 180 �C sample started col-

lapsing, and the NR structure was about to form.

NT lengths Although many researchers have studied the

influences of treatment time and temperature, little atten-

tion has been paid to the effect of NT length. In 2013,

Wang et al. used the solid–liquid WAC method to crys-

tallize the amorphous TNTs and investigated the influence

of NT lengths on the morphology [84]. When as-anodized

TNTs with lengths of 3.5 lm were immersed in water for

45 min, only a few NPs were observed on surfaces, and the

tube walls were still smooth. For the 6.5 lm samples, many

more NPs were generated, and the tube walls became

extremely rough forming a typical NP/NT structure. For

the longest tubes (16.5 lm), solid NRs composed of NPs

appeared. This result shows that the long NTs are more

prone to NT-NP/NT-NR evolution than the short NTs,

which may be attributed to the abundant titania source

allowing the dissolution–precipitation process to occur.

Furthermore, it was also found that the morphology near

the tube bottom was different from that of the tube top.

Specifically, the bottom NTs were filled with NPs and

became NRs, while the top NTs still exhibited an NP/NT

structure. The solid NR structure of the bottom part of NTs

limits the attachment and transportation of dye molecules,

which is the reason why the amount of dye loading does

not increase dramatically with longer NTs.

pH effect From Eq. 2, we can see that the concentration

of H? ions plays a key role in the dissolution–precipitation

and, subsequently, affects the formation of TiO2 NPs.

Zhang et al. investigated the influence of pH on morphol-

ogy transformation and found that the NP size is strongly

related to the pH value [67]. In HCl solution (pH = 3), the

NTs transformed into NRs composed of compact NPs with

a diameter of approximately 80 nm. In contrast, the NRs

formed in deionized water (pH = 6.5) were composed of

NPs with a diameter of approximately 40 nm. When the pH

was 11 (NaOH solution), smaller NPs of 20–30 nm in

diameter were observed on both the top surface and tube

walls. It can be concluded that the NP size decreases with

increasing pH value; in other words, the NPs grow larger

with a higher concentration of H?. This phenomenon can

be explained by the fact that the presence of more H? ions

at low pH accelerates the reaction in Eq. 2, thus, forming

larger anatase TiO2 NPs. This theory also applies to the

condition when the amorphous TNTs are immersed in a

solution containing weak acid radicals such as acetate

(CH3COO
-). CH3COO

- can combine with H? to restrict

the reaction in Eq. 2; therefore, the formation of NPs is

hindered, and the nanotubular structure is usually

maintained.

Besides, there are many other factors influencing the

NT-NP/NT-NR morphology evolution. For example, Huo

et al. reported that the dissolved oxygen in water remark-

ably affects the tubular structure of TNTs. When the dis-

solved oxygen was eliminated by purging with N2, and

then the WAC procedure was conducted while maintaining

other conditions the same, the nanotubular architecture was

well kept and the NT-NP/NT-NR evolution did not occur

[43]. In addition, the residual fluorine on TNTs after

anodization also affects the morphology transformation.

The existence of fluorine accelerates the NT-NP/NT-NR

evolution because the titanium fluoride compounds can

create anatase TiO2 by hydrolysis [83, 85, 86] In summary,

NP/NT and NR structures are commonly observed because

of the dissolution–precipitation process during crystalliza-

tion. There is no doubt that the participation of NPs would

greatly increase the surface areas of products, which is

beneficial for many applications.

3.1.2 Other Morphologies

Advanced NPs/NTs As the crystallization using the WAC

method is always accompanied with the formation of par-

ticles, it is considered as a convenient way to decorate NPs

on NTs, in contrast with the presynthesized NP method

[87–90]. However, the generation of NPs is due to the

sacrifice of NTs, which makes the tube walls become

gradually thinner during the treatment. With this sacrifice,

the nanotubular structure may completely collapse and

transform into NRs. Therefore, it is a challenge to decorate

NPs on tube walls without the destruction of NTs. Kurian

et al. proposed a strategy of coating a secondary thin

amorphous TiO2 layer on previously crystallized TNTs and

then immersing them in water [45]. As illustrated in

Fig. 11a, crystallized TNTs were first obtained by

anodization and annealing and then transferred onto the

fluorine-doped tin oxide (FTO) substrate. Second, a thin

amorphous TiO2 layer (approximately 15 nm in thickness)

was deposited on the TNT film by the atomic layer depo-

sition (ALD) technique. Finally, the resultant sample was

immersed in water for different durations. The primary

crystallized anatase TNTs are quite stable when immersed

in water [91]. Therefore, when the ALD-treated sample

was immersed in water, the outer amorphous layer trans-

formed into anatase TiO2 NPs through the dissolution–

precipitation process, while the inner crystallized NTs

remained unchanged. As shown in Fig. 11b, c, some

crystalline NPs are decorated on the tube walls. Because

the NTs are not destroyed at all, we define this type of NP-

decorated structure as advanced NPs/NTs. The prepared

products were employed in DSSCs, and they showed a

better performance than the sample without water treat-

ment (Fig. 11d). There are two reasons that explain this

promotion: (1) the participation of NPs dramatically

increases the surface area and is beneficial for higher dye
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loading; and (2) the primary crystallized NTs serve as

backbones for electron transport. It is believed that this

strategy can be applied to various 3-D structures to both

increase the surface area and promote the dye loading

amount without destroying the geometric architecture.

Nanoworms/NTs The water-only method usually causes

NP/NT and NR structures to form, as mentioned above.

Some novel morphological features appear when other ions

are involved in the solution. For example, a nanoworm/NT

structure was obtained when the as-anodized TNTs were

immersed in the aqueous solution of ammonia at 90 �C
[75]. Compared with the normal nanotubular structure of

the as-anodized sample (Fig. 11e), many NPs appear on the

top surface of the sample immersed in hot water (Fig. 11f),

in line with previous reports. However, when the as-an-

odized TNTs were immersed in an aqueous solution of

ammonia, many worm-like titania structures with a length

of approximately 100 nm form on both the top surfaces and

tube walls of TNTs, as shown in Fig. 11g. From the cross-

sectional SEM image, it is clear that the diameter of the

NTs decreases substantially after immersion. When the

concentration of ammonia increased, the worm-like mor-

phological feature was maintained and became denser.

Researchers found that this type of nanoworm/NT structure

exhibits a better performance for degrading methyl orange

(MO) than the high-temperature-annealed sample.

3.2 Surface Area

One of the reasons why TiO2 NTs have been widely

studied is their relatively high surface area [92]. For

example, high surface area is beneficial for absorbing more

dye molecules in DSSCs and, subsequently, it promotes

efficiency [93]. Although the nanotubular structure con-

tributes to a surface area that is considerably larger than

that of bulk TiO2, there is still much room for improve-

ment. On the one hand, much effort has been dedicated to

increasing the surface area of TNTs by adjusting the NT

length, diameter, and tube wall thickness. However, the

average surface area of TNTs prepared by anodization and

annealing processes is only approximately 30–40 m2 g-1

according to a Brunauer–Emmett–Teller (BET) analysis

using N2 adsorption/desorption [25, 94, 95]. On the other

hand, some modifications of the NT geometry, such as the

fabrication of bamboo-type architecture and decoration of

NTs with NPs, have been performed to improve the surface

area [96–98]. Using the WAC method to decorate TiO2

NPs on TNTs is clearly more convenient and
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environmentally friendly than these methods. As shown in

Table 1, some experimental parameters and their influ-

ences on TNTs properties, such as morphology and specific

surface areas, are listed. As the morphology of the as-an-

odized NTs barely changes after annealing, the specific

surface area of the annealed products is close to that of the

as-anodized ones (approximately 30 m2 g-1). When the

solid–liquid method is employed for crystallization, the

specific surface area of the sample after water immersion

remarkably increases to 104.76 m2 g-1, which is nearly

four times that of the as-anodized sample. The emergence

of TiO2 NPs makes a major contribution to the high

specific surface area. Moreover, the specific surface area of

a sample possessing a NR morphology (Ref. [40]) reaches

as high as 203.3 m2 g-1. Although the long treatment time

(72 h) plays a key role in forming a large specific surface

area, the length and diameter of the original NTs are also

important factors. In addition, the products prepared by the

solid–gas method also exhibit a relatively high specific

surface area.

3.3 Crystallinity

The amorphous TNTs can transform into the anatase phase

through the dissolution–precipitation process with the

assistance of water. There are two main factors influencing

the crystallinity of the products: treatment duration and

treatment temperature. Generally, the crystallinity is

enhanced with increasing treatment time or treatment

temperature; however, it should be noted that this upward

trend is not unlimited. For example, a distinct (101) peak

assigned to anatase TiO2 appeared after the sample was

immersed in water for 2 days at RT. When the immersion

time was prolonged to 4 days, the intensity of the (101)

peak had almost no enhancement compared with that of the

2-day sample [47]. At the same time, the average

crystalline size indeed decreased with the longer water

treatment. Although the anatase phase can be obtained

using the WAC method, the crystallinity is not as high as

that of the annealed products. Fan et al. first crystallized

amorphous TNTs by the solid–gas method, and then the

prepared products were further annealed at 450 �C [53].

The intensity of the dominant (101) peak was significantly

larger after annealing, indicating that the previously

obtained TNTs were partially crystallized. As we expected,

the structure and morphology were not clearly different

after annealing. Therefore, some researchers first prepare

rough NPs/NTs using the WAC method and then anneal

them at high temperature; thus, the final products possess

both high surface area and good crystallinity.

3.4 Bandgap

As TNTs are semiconductors, their bandgap is an important

characteristic that can highly influence their properties and

applications. Among the normal crystalline phases of TiO2

(anatase, rutile, brookite), anatase TiO2 is widely investi-

gated because it has a better photocatalytic activity due to

its relatively low charge carrier recombination rate [99]. In

a conventional manner, the amorphous as-anodized NTs

are annealed to obtain anatase TiO2 NTs, which usually

possess a bandgap of approximately 3.2 eV [100–102].

Therefore, we wonder if the bandgap differs when the

anatase TiO2 products are fabricated by the WAC method

at low temperatures.

To assess the bandgap of the WAC-treated products,

ultraviolet–visible (UV–Vis) absorption spectra of the

samples were measured. Liao used a solid–liquid method to

crystallize the amorphous TNTs, and Andrea used a solid–

gas method. They found that the bandgap of the anatase

TiO2 products was close to 3.2 eV (Fig. 12a) [39, 55].

Similar bandgap values indicate that the WAC-treated

Table 1 Experimental parameters and their influence on TNTs properties of WAC methods

Method Temperature (�C) Treatment time (h) Morphology Tube diameter (nm) Specific surface area (m2 g-1) References

As-anodized 25 0 NTs 80 26.67 [48]

Annealing 450 4 NTs – 31.45 [48]

Solid–liquid 90 1 NPs/NTs 40 68.82 [48]

Solid–liquid 90 6 NPs/NTs 10 104.76 [48]

Solid–liquid 25 72 NRs 0 203.3 [40]

Solid–liquid 20 48 NPs/NTs 48 – [47]

Solid–liquid 20 72 NRs 0 – [47]

Solid–gas 50 2 NPs/NTs 35 – [55]

Solid–gas 50 2 NRs 0 106 [55]

Solid–gas 180 1 NPs/NTs 20 70.8 [53]

Solid–gas 200 6 NRs 0 52.4 [43]
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samples absorb similar numbers of photons as the annealed

samples. However, in Andrea’s work, the TNTs prepared

by the solid–gas method exhibited higher efficiency in

degrading methylene blue than the annealed TNTs. As the

abilities of these materials to absorb photons were very

similar, this improvement could be attributed to a high

surface area, as discussed above.

In addition, the bandgap changed remarkably and was

no longer 3.2 eV when the amorphous TNTs were

immersed in a solution containing specific ions. For

example, the as-anodized TNTs were immersed in DI water

and an aqueous solution of ammonia for crystallization

[75]. The absorption spectra of the water-treated and the

ammonia-treated samples are shown in Fig. 12b. The

estimated bandgap of the water-treated sample is approxi-

mately 3.2 eV, which is in agreement with previous

reports. However, all samples immersed in ammonia

solution have higher absorption intensity than the water-

treated samples. The bandgap decreased gradually with

increasing ammonia concentration, indicating that more

light was absorbed. When the ammonia: water concentra-

tion ratio was 1:1, the bandgap decreased to 2.84 eV,

which could be attributed to an isolated localized state of N

2p (Fig. 12c). It is well known that the annealed anatase

TNTs are only activated under UV light (wave-

length\ 387 nm), which is only a small fraction (4%) of

the solar spectrum. Hence, the narrower bandgap (2.84 eV)

leads to a broader absorption spectrum that includes visible

light and, subsequently, enhances the material’s photocat-

alytic properties.

4 Applications

4.1 Degradation of Pollutants

Recently, various photocatalytic semiconductor materials

have been widely investigated [103–105]. Among them,

TiO2 has received increasing attention because of its

excellent photocatalytic performance in degrading organic
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pollutants [106–108]. A schematic illustration of the

degradation process of TiO2 is shown in Fig. 13a. First, UV

irradiation promotes electrons from the valence band (VB)

to the conduction band (CB), and the corresponding elec-

trons (e-) and holes (h?) reach the TiO2-environment

interfaces. In the CB, the electrons on the surface of TiO2

are easily captured by oxygen dissolved in the solution,

forming O2�- species. O2�- has a high oxidizing power

and, thus, plays a vital oxidative role in the degradation

process [109, 110]. At the VB, a fraction of photogenerated

holes can directly oxidize the pollutants adsorbed on the

surface of TiO2, and the other holes can react with water

molecules to form the hydroxyl radical (OH�). Because O2
�-

and OH� possess high oxidative activities, the pollutants are

effectively degraded to harmless substances. The related

reactions are shown as follows:

TiO2 þ hv ! TiO2 e� þ hþð Þ ð6Þ

TiO2 e�ð Þ þ O2 ! TiO2 O��
2

� �
ð7Þ

TiO2 hþð Þ þ H2O ! TiO2 OH�ð Þ ð8Þ
Pollutantsþ O��

2 =OH� ! H2Oþ CO2 þ others ð9Þ

Liao et al. crystallized amorphous TNTs by immersing

them in hot water, and their photocatalytic properties were

investigated through the degradation of MO aqueous

solution, as shown in Fig. 13b, c [39]. The results showed

that the TNTs that received hot water treatment for 6 h

exhibited a slightly higher performance than the annealed

(450 �C) products. Because the crystallinity of the hot

water-treated TNTs was not as high as that of the annealed

samples, the approximately equal degradation efficiency

was attributed to their elevated surface area. With

increasing immersion time, the degradation efficiency

remarkably increased. The efficiency of a 35-h-immersed

sample was nearly four times that of an annealed sample.

Hou et al. fabricated anatase TiO2 by immersing amor-

phous TNTs in an aqueous solution of ammonia [75]. As

expected, the ammonia-treated products also presented a

significant improvement over the annealed sample.

Although a high surface area is an important factor that

notably promotes the contact of TiO2 and MO aqueous

solution, the narrower bandgap of the ammonia-treated

products also plays a key role. Such bandgap allows the

ammonia-treated products to absorb visible light more

efficiently than the annealed sample and, consequently,

contributes to their excellent degradation performance.
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4.2 DSSCs

In recent years, DSSCs have attracted worldwide attention

as promising candidates for next-generation photovoltaics

[111–113]. For conventional DSSCs, the photoanode is

usually a mesoporous thin film composed of randomly

distributed TiO2 NPs [114]. Unfortunately, the numerous

boundaries between NPs cause a slow diffusion of photo-

generated electrons in this system. To circumvent this

issue, a variety of 1-D structures, including NTs, nano-

wires, and nanofibers, have been investigated to optimize

the electron transport [115–117]. In particular, vertically

oriented TNTs have been widely studied as an alternative

because of the fast transport of electrons and ions through

their TiO2 layers [118–120]. However, the smooth tube

walls often have insufficient surface area for dye adsorp-

tion and, hence, a relatively poor light harvesting ability,

which limits the improvement of conversion efficiency

[121, 122]. Therefore, it is important to increase the surface

area of TNTs and maintain the nanotubular structure at the

same time [123, 124]. Clearly, the WAC method intro-

duced in this review is more convenient and efficient than

other methods for obtaining NPs/NTs that both possess

high surface area and exhibit rapid transport. In the fol-

lowing section, we will introduce the basic principles of

DSSCs and discuss related studies employing WAC-treated

products.

A schematic illustration of the configuration of DSSCs

is presented in Fig. 14 [125]. Incident photons are absorbed

by dye molecules adsorbed on the TiO2 NT walls, and

electrons are excited from the highest occupied molecular

orbital (HOMO) to the lowest unoccupied molecular

orbital (LUMO). The excited electrons are injected into the

CB of TiO2 and then travel through the NTs via diffusion

toward the back contact, finally reaching the counter

electrode through the circuit. Meanwhile, the oxidized dye

on the surface accepts electrons from I- in the electrolyte,

leading to the regeneration of the ground state of the dye

and generation of I3
-. Then, I3

- diffuses toward the

counter electrode and reduces back to I-, completing the

cycle [126, 127].

A high surface area and nanotubular structure are

important factors that ensure that more dye molecules can

be absorbed and the recombination rate is restricted.

Therefore, the products synthesized by WAC are consid-

ered suitable for DSSCs. For example, as-anodized TNTs

were immersed in water for several days at RT, transferred,

and then applied in DSSCs [47]. After 2 days of immer-

sion, the amount of absorbed dye increased remarkably (by

38.9%) compared with that adsorbed by the as-anodized

TNTs. Correspondingly, the DSSCs based on TNTs

immersed in water for 2 days exhibited the excellent solar

energy conversion efficiency (g) of 6.06%, which is a 33%

improvement compared with that of a sample employing

untreated TNTs. When the immersion time was prolonged

to 3 days, the dye-adsorption ability of the products

increased. However, the conversion efficiency of the 3-day

sample decreased to 83.3% of the 2-day sample value.

Similarly, Zeng et al. fabricated NP/NT products by the

solid–gas method and employed them in DSSCs [44]. The

samples synthesized at 180 �C showed the highest con-

version efficiency (up to 8.11%), while the efficiency of the

200 �C sample was only 6.4%. This decline was attributed

to the elevated recombination rate due to the relatively

collapsed nanotubular architecture, which was generated

using either a long immersion time or a high temperature.

We can conclude that not only a high surface area but also

a good architecture is beneficial for efficiency. In Table 2,

some photovoltaic parameters of DSSCs based on various

photoanodes are listed. Specifically, Jsc, Voc, FF, and g
represent the short-circuit current density, open-circuit

voltage, fill factor, and solar energy conversion efficiency,

respectively. SL, SG, and MW represent the solid–liquid,

solid–gas, and modified WAC methods, respectively.

4.3 Supercapacitors

It is well known that TNT supercapacitors are a type of

double-layer capacitors, where a large surface area corre-

sponds to an excellent areal specific capacitance

[128–131]. Therefore, enhancing the NT surface area is

considered to be an effective approach to improve the

capacitance, and numerous research efforts have been

dedicated to it. Hybrid NPs/NTs possessing high surface

areas prepared by the WAC method are clearly promising

candidates for high-performance capacitors.

Fan et al. first used the hydrothermal solid–gas (HSG)

method to crystallize the as-anodized TNTs and adjust their

morphology; the HSG-treated sample was then annealed to

yield fully crystallized products [53]. As shown in

Fig. 15a, b, the as-anodized products had smooth tube

walls, while the final HSG-treated products possessed a

NP/NT structure, leading to a high surface area. For the

supercapacitor performance, all the HSG-treated samples

TiO2 Nanotubes

TiO2 Barrier

N-719 dye

Ti Foil

Pt-Coated ITO Glass
Ionic Liquid Electrolyte

Photons Photons

Fig. 14 Schematic illustration of the configuration of DSSCs based

on TNTs [125]. Copyright � 2012 American Chemical Society
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exhibit larger integrated areas and higher current responses

than the direct-annealed TNTs without HSG treatment,

indicating a significant enhancement of capacitance by

HSG treatment (Fig. 15c). From Fig. 15d, the calculated

areal capacitance of the HSG-180 sample (180 lL water in

a 50 mL Teflon liner) was highest, up to 41.04 mF cm-2,

which is 2.96 times that of the direct-annealed TNTs

without HSG treatment. The surface area of the HSG-180

sample is 3.16 times that of the direct-annealed TNTs

without HSG treatment. The high similarity of these values

suggests that the improvement in capacitance could be

fully attributed to the enlarged surface area. Furthermore,

when the HSG-treated sample was annealed in argon

atmosphere rather than air, the areal capacitance of the

HSG-180 sample further increased to 50.39 mF cm-2. It is

believed that the oxygen vacancies (Ti3?) formed in argon

atmosphere lead to superior electrical conductivity and

thereby promote areal capacitance. In addition to using

deionized water, immersing the as-anodized TNTs in the

aqueous solution containing some ions is also an appealing

approach. In Cui’s work, the specific capacitance of the

products prepared through immersion in (NH4)2TiF6 solu-

tion was 2 times higher than that of a sample treated in

deionized water under the same conditions [81].

Table 2 Photovoltaic

parameters of DSSCs based on

various photoanodes

Samples Jsc (mA cm-2) Voc (V) FF (%) g (%) References

SL (0 day) 9.96 0.73 63 4.57 [47]

SL (2 day) 12.67 0.73 65 6.06 [47]

SL (3 day) 10.84 0.72 65 5.07 [47]

SL (15 min) 8.82 0.70 57 3.54 [84]

SG (160 �C) 15.39 0.74 65 7.40 [44]

SG (180 �C) 16.46 0.72 68 8.11 [44]

SG (200 �C) 12.28 0.72 67 6.40 [44]

MW (24 h) 11.7 0.72 57.2 4.9 [45]

MW (48 h) 11.9 0.68 56.7 4.6 [45]

Annealed 12.04 0.71 66 5.67 [44]
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In summary, WAC-treated TNTs are suitable for many

applications owing to their advantages of high surface area

and structures that can be easily controlled by adjusting

experimental parameters, such as immersion time and

treatment temperature. In addition to the applications

mentioned above, TNTs are also widely used in water

splitting cells, gas sensors, biomedical coatings, drug

delivery, etc. [132–137]. Thus, we foresee the WAC

strategy to be employed in these fields in the future.

5 Other Materials

In the above sections, we have detailed the WAC strategy

mainly as it regards TiO2 NTs. The WAC method can be

used for many other materials that can be classified as

TiO2-based materials and other metal oxides.

5.1 TiO2-Based Materials

In addition to TiO2 NTs, there are a variety of nanostruc-

tured TiO2 materials, such as TiO2 nanospheres (TNSs) and

nanofibers (TNFs). Different from the TNTs usually pre-

pared from Ti substrate by anodization, TNSs and TNFs

can be synthesized by various methods, including sol–gel,

solvothermal, hydrothermal, and electrospinning methods

[138–142]. Despite the large differences in synthetic

methods and morphologies, the WAC method is also

considered suitable for crystallization and controlling the

morphology of TNSs and TNFs.

TNSs As shown in Fig. 16a, Li et al. used the WAC

method to fabricate porous anatase TNSs based on amor-

phous nanospheres prepared by the sol–gel technique

[143]. Figure 16b shows a TEM image of pristine nano-

spheres just after the sol–gel process. The as-prepared

nanospheres were sticky and tended to aggregate because

of the presence of oligomers formed during hydrolysis.

After the WAC, the original nanospheres became quite

porous with the emergence of numerous NPs (Fig. 16c).

When the water treatment time was prolonged, the nano-

spheres became more porous, and the aggregation tendency

was notably relieved. In this transformation process, water

mainly plays the following roles: (1) water dissolves the

oligomers on the surface of as-prepared nanospheres

restricting aggregation, and (2) water assists dissolution–

precipitation, which eventually causes the formation of

anatase grains, which are responsible for the pores of the

finally obtained TNSs. The crystallinity and surface area of

the TNSs were controlled by adjusting either the water

treatment time or temperature. With increasing water

treatment time, the crystallinity enhanced (Fig. 16d). In

particular, crystalline TNSs were highly porous, reaching a

surface area of as high as 647 m2 g-1 under appropriate

conditions (treatment temperature: 75 �C), which is

remarkably higher than the values reported in previous

reports (Fig. 16e). Because of their high surface area and

good crystallinity, the porous TNSs show better perfor-

mance in phosphoprotein enrichment than commercial

anatase products.

Joo et al. reported that porous, hollow TNSs can also be

synthesized employing the WAC strategy [144]. As shown

in Fig. 16f, the synthetic procedure was as follows: (1) a

SiO2@TiO2 core–shell structure was first prepared by a

sol–gel technique; (2) the as-prepared SiO2@TiO2 nano-

spheres were crystallized in water, resulting in a porous and

crystalline TiO2 shell; and (3) the SiO2 core was removed,

resulting in the successful fabrication of porous hollow

TNSs. The corresponding morphology transformation is

presented in Fig. 16g, h; it shows that porous hollow

nanospheres were successfully prepared. Moreover, XRD

results confirmed the transition from an amorphous form to

the anatase phase after water reflux treatment. In addition,

many other relevant studies have also been reported, and

the WAC method is considered to be cost-effective and

convenient in preparing porous TiO2 nanospheres

[145–148].

TNFs TNFs, as one of the most important 1-D nano-

materials, have received extensive attention, and various

methods have been developed for synthesizing them

[149, 150]. Among the methods, the electrospinning tech-

nique is considered to be very promising owing to its

versatility and flexibility [151–153]. Although TNFs have

been investigated systematically in many ways, there are

few reports about the effects of water on electrospinning

TNFs. As water plays an important role in adjusting the

properties of TNTs and TNSs, it can be speculated that

electrospinning TNFs would also be affected by the pres-

ence of water.

In 2017, Jin et al. fabricated porous and crystalline TNFs

by a simple water steam treatment without any template

agents [154]. Similar to the previous WAC results, the

morphology of the nanofibers greatly changed after water

steam treatment and was highly dependent on treatment

temperature. SEM images of the TNFs under water steam

treatment at various temperatures are presented in Fig. 17.

When the precursor nanofibers were treated at 150 �C for

2 h, the surface of the nanofibers became rough, and some

pores emerged (Fig. 17a, b). With increasing temperature,

the surface became rougher, and the diameter of the pores

increased (Fig. 17c–f). Specifically, the average pore sizes

of the 150, 350, and 550 �C samples were 3.63, 8.84, and

13.95 nm, respectively. After steam treatment, the original

nanofibers became crystalline, and the crystallinity of the

obtained TNFs increased with the temperature elevation

(Fig. 17g), similar to the behavior of the TNTs mentioned

above. Figure 17h, i presents TEM results of a sample
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prepared at 550 �C; they show that the rough nanofibers

were composed of anatase NPs with a diameter of 30 nm.

Because the vapor-treated nanofibers were composed of

NPs, the porous TNFs exhibited higher surface areas than

the annealing sample (Fig. 17j). The highest surface area of

the water steam-treated TNFs was 128.07 m2 g-1, while

that of the TNFs that were annealed in air was only

9.85 m2 g-1. This large difference can be attributed to the

dissolution–precipitation process under water steam. Sun

et al. also prepared TiO2 nanoflowers through the disso-

lution–precipitation mechanism [155]. It can be concluded

that the WAC strategy is applicable to TiO2-based

materials.

5.2 Other Metal Oxides

The as-anodized amorphous TNTs can be transformed into

the anatase phase with water treatment through the disso-

lution–precipitation process, in which the TiO6 octahedra

rearrange and form the unit cell of anatase TiO2. Although

this type of WAC mechanism can be extended to other

TiO2 nanomaterials, their basic building blocks are still

TiO6 octahedra. Therefore, we wondered whether the

WAC mechanism is applicable to metal oxides that contain

no TiO6 octahedra.

Nanostructured tin oxides (SnO2) synthesized by

anodizing tin foils have been widely investigated in various

areas [156–158]. Similar to TiO2, the as-anodized SnO2
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nanomaterials are amorphous and not suitable for many

applications, such as gas sensing and energy storage

[159, 160]. Because the melting point of the Sn substrate is

approximately 230 �C, using the conventional annealing

method (500 �C) to crystallize the as-anodized SnO2 is

impracticable. Some researchers focused on the interesting

amorphous–anatase transformation of the as-anodized TiO2

NTs and developed a convenient way to obtain crystalline

SnO2 at low temperatures. In 2017, Bian et al. used the

WAC method to crystallize as-anodized SnO2 for the first

time [161]. To be specific, the anodization of tin was first

carried out with tin foil as the anode in an oxalic acid

aqueous solution. Then, the amorphous as-anodized SnO2

was immersed in deionized water at various temperatures

(25, 40, 80, or 100 �C) for different durations. Although no

clear change was observed when the as-anodized sample

was immersed at 25 �C for the short time of 2 h (Fig. 18a,

b), prolonging the immersion time to 168 h effectively

crystallized the amorphous sample. In addition, the higher

treatment temperature accelerated the crystallization. Both

digital photographs and SEM images of the products pre-

pared at 60 �C are quite different from those of the as-

anodized and RT-treated samples. As the building blocks

of SnO2 (amorphous and rutile) are SnO6 octahedra, similar

to TiO6 octahedra in TiO2, the Bian group proposed a

mechanism explaining that the transformation from amor-

phous to rutile SnO2 was assisted by water soaking

(Fig. 18c). This mechanism also includes a hydration-de-

hydration process similar to that of TiO2, as discussed in

Fig. 3c. As shown in Fig. 18e, TEM and SAED images

reveal the porous structure and amorphous nature of the as-

anodized SnO2. After the samples were soaked in water at

60 �C for 2 h, clear and strong diffraction rings assigned to

rutile SnO2 appear (Fig. 18f), indicating successful amor-

phous–crystalline transformation with the assistance of

water. The WAC-treated SnO2 products were applied in

sodium-ion storage and delivered excellent performance, as

shown in Fig. 18g.

In addition, the WAC method was also proven to be

applicable to the as-anodized iron oxides in our previous

work [162]. The facile WAC method is appropriate for the

crystallization of not only TiO2 NTs but also many other

metal oxides at low temperatures.
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6 Conclusion and Outlook

The WAC strategy has been extensively studied and it is

considered to be an efficient and convenient approach to

crystallizing amorphous TiO2 NTs at low temperatures. In

this review, we have summarized various aspects of the

recent progress in using this strategy. The basic WAC

method is simply immersing as-anodized TNTs in water,

during which the disordered TiO6 octahedra are rearranged

with the assistance of water. Although many modified

methods have been developed, water molecules still play

the most important role in causing the amorphous-anatase

transformation. In addition, the WAC strategy can also be

employed for doping metal or nonmetal elements into

TNTs by using solutions containing different ions. Because

of the dissolution–precipitation process, some crystalline

TiO2 NPs emerge on the tube walls, leaving a rough sur-

face feature, which is quite different from the tube walls of

the annealed products. Because of the numerous NPs, the

WAC-treated products usually possess a high surface area.
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Furthermore, we can control the morphology of the sam-

ples by adjusting experimental parameters, such as the

immersion time and treatment temperature. Combining the

merits of 1-D architecture and high surface area, the WAC-

treated products show excellent performance in many

applications, including photocatalysis, DSSCs, and super-

capacitors. It should be noted that the WAC mechanism is

not only applicable to amorphous as-anodized TNTs; it was

proven that many other TiO2 nanomaterials prepared by

various techniques can also be crystallized through this

type of WAC method.

Despite many clear advantages of the WAC strategy for

crystallization, there are still some drawbacks, such as the

relatively long crystallization time and low degree of

crystallinity. Therefore, optimizing the WAC method to

overcome these challenges requires further study. Although

we have shown that the WAC strategy is also applicable to

as-anodized tin or iron oxides, there are still many metal

oxides that have not been investigated in this sense. Hence,

another topic that must be further studied is the expansion

of the WAC method to other metal oxides. We hope that

this review will motivate the development of WAC

strategies in more fields and inspire researchers in low-

temperature crystallization.
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