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HIGHLIGHTS

• In this review, we survey the recent developments in the fabrication of metal–organic framework (MOF)-derived porous semiconductor 
photocatalysts toward four kinds of energy-/environment-related reactions.

• A comprehensive summary of highly efficient MOF-derived photocatalysts, particularly porous metal oxides and metal sulfides, and 
their heterostructures are provided.

• Enhanced photocatalytic performance achieved with MOF-derived porous heterostructures as the photocatalyst is discussed in detail.

ABSTRACT Porous structures offer highly accessible surfaces and rich pores, 
which facilitate the exposure of numerous active sites for photocatalytic reactions, 
leading to excellent performances. Recently, metal–organic frameworks (MOFs) 
have been considered ideal precursors for well-designed semiconductors with 
porous structures and/or heterostructures, which have shown enhanced photocata-
lytic activities. In this review, we summarize the recent development of porous 
structures, such as metal oxides and metal sulfides, and their heterostructures, 
derived from MOF-based materials as catalysts for various light-driven energy-/
environment-related reactions, including water splitting,  CO2 reduction, organic 
redox reaction, and pollution degradation. A summary and outlook section is also 
included.
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1 Introduction

Global energy and environment issues have attracted much 
attention. Photocatalytic chemical processes, including 
hydrogen  (H2) generation from water, carbon dioxide  (CO2) 
reduction, pollution degradation, and organic chemical reac-
tions, can convert solar energy to chemical energy, making 
them very promising in solving the energy and environ-
ment issues in a sustainable and environmentally friendly 
way [1–4]. Since the discovery of  TiO2 as a photocatalyst 
for  H2 production from water, a lot of efforts have been 
devoted to developing highly efficient semiconductor-based 
photocatalysts [5–13]. To date, metal oxides such as ZnO 
[14–16] and  TiO2 [17–21], metal sulfides like CdS [22–24], 
carbon materials, for example, g-C3N4 [25, 26], and their 
heterostructures have shown great performances in photoca-
talysis. However, defects in low light utilization efficiency, 
improper band position, fast recombination of charge car-
riers, and photocorrosion have accelerated the investigation 
on strategies to close the gaps and design more efficient 
photocatalysts.

Porous micro–nanostructures can offer highly acces-
sible surfaces and rich pores, which favor the exposure 
of numerous active sites in reactions, shorten the transfer 
distance to the pore surface for photoexcited carriers, and 
provide unrestricted diffusion of substrates and products, 
leading to their excellent performances in photocatalysis 
[27–33]. In addition, fabrication of semiconductor-based 
heterojunctions, including semiconductor–metal hetero-
junction and semiconductor–semiconductor heterojunction, 
is another useful strategy for enhancing the photocatalytic 
activity [10, 34–42]. Proper heterojunctions can tune the 
band gap, encourage the separation and migration of pho-
togenerated electron–hole pairs, and enhance the efficiency 
of light utilization. In the last few years, much progress 
has been made in the design of photocatalysts with porous 
structures and heterostructures; however, the rational 
design of photocatalysts is hard because of complicated 
processes in traditional synthesis. Therefore, efficient and 
easily preparable photocatalysts with beneficial structural 
features are desired.

Recently, MOFs, well known as porous coordination 
polymers consisting of metal nodes and organic ligands, 
have attracted much attention and shown great potential 
for various applications, including photocatalysis, due to 

their fine-tuned structures, high specific surface areas, con-
trolled pore structures, and various components [43–49]. 
Moreover, via the well-designed modification of MOF-
based materials, not only the reactant adsorption and light 
absorption but also the charge separation and reactant 
activation can be largely promoted, leading to enhanced 
photocatalytic performances [50–53]. However, the poor 
stability and poor electronic conductivity of MOFs hinder 
their usage in the photocatalytic field. As an alternative, 
recent studies have found that MOFs can serve as precur-
sors for porous semiconductor materials, including porous 
metal oxides, carbon materials, and metal sulfides, and their 
heterostructures, through the facile thermal treatment or 
sulfidation process [54–60]. Via the controlled derivation 
of MOFs in certain conditions, the as-synthesized products 
can maintain some of the initial structural features of parent 
MOFs or promote electrical conductivity, while maintain-
ing the open diffusion channels and ensuring the monodis-
persion of metal centers, making them very promising in 
photocatalysis. More interestingly, porous heterostructures 
or solid solutions can be rationally derived from MOF-
based hybrids or multimetallic MOFs, and the procedure 
has the following merits: (1) the versatility of MOFs in 
metal nodes and ligands endows enough choices for fabri-
cating heterostructures or solid solutions, and the band gap 
of the obtained derivatives can be easily tuned by alter-
ing the metal or component ratios; (2) the in situ synthesis 
with MOFs as the precursor prevents the poor structural 
stability and weak coupling between the individual com-
ponents of a heterostructure and solid solution; and (3) the 
in situ uniform distribution of metal nodes in multimetallic 
MOF precursors at the molecular level can contribute to an 
increase in the active sites, which can effectively partici-
pate in photocatalytic reactions. Therefore, MOFs can act 
as ideal precursors for rationally designed photocatalysts 
with enhanced performances.

In the past few years, a lot of progress has been made on 
porous photocatalysts, including porous metal oxides, porous 
metal sulfides, and porous carbon, and their heterostructures, 
derived from monometallic MOFs, multimetallic MOFs, or 
MOF-based hybrids for water-splitting reactions, pollutant 
degradation,  CO2 reduction, and organic synthesis. A time-
line showing the breakthrough in the fabrication of highly 
efficient MOF-derived photocatalysts is shown in Fig. 1. 
With features of a porous structure and/or heterostructure, 
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which are beneficial for increasing light utilization efficiency 
and promoting the separation and migration of photoinduced 
electron–hole pairs, these MOF-derived photocatalysts have 
acted well in enhancing photocatalytic performances. How-
ever, a specialized discussion on the progress achieved in the 
photocatalytic application of MOF-derived porous materials 
is very rare. Herein, we endeavor to give a comprehensive 
summary of the progress in four parts, i.e., (1) photocatalytic 
water splitting, including the photocatalytic hydrogen evolu-
tion reaction and oxygen evolution reaction; (2) photocata-
lytic degradation of pollutants, particularly dye pollutants; 
(3) photocatalytic  CO2 reduction to CO or hydrocarbons; and 

(4) photocatalytic organic reactions. A brief summary and 
outlook are included in the final section.

2  General Methods

Firstly, we give a brief summary of the synthetic strategies 
used to fabricate MOF-derived photocatalysts, including 
porous metal oxides, porous metal sulfides, and carbon 
materials. Depending on the different types of MOF-derived 
photocatalysts, the synthetic strategies can be summarized, 
as given in Table  1, which includes the corresponding 
examples.

Mixed-MOF-derived
GdCoO3 NP for
pollutant degradation
[126]

MOF-5-derived porous
ZnO and ZnO@C for
degradation of RhB
[139]

ZnO-coated 3DGN for
degradation of MB
[121]

MlL-101-derived Fe@C for surface-
plasmon-enhanced Photodriven
CO2 reduction [107]

NiS/ZnxCd1-xS for visible-light-
driven hydrogen production [72]

Anchoring of Cu2O NP on a N-doped
porous carbon yolk-shell cubo-
ctahedral framework for CDC reaction
[113]

POM@ZlF-67-derived POM-doped
porous Co3O4 for water oxidation
[93]

Fe2O3@TiO2
nanocomposites
for hydrogen
production [66]

MxCo3-xO4 porous nanocages
for water oxidation [95]

N-doped Graphitic carbon for
hydrogen production [58]

N-doped Cu2O@N-C cubes
for CDC reaction [63]

In2S3-CdIn2S4 heterostructured nanotubes
for visible light CO2 reduction [74]

Au/NH2-MlL-125-derived Au/TiO2
for CO2 reduction [109]

2007 2011 2012 2014 2015 2016 2017 2018

Fig. 1  Timeline of the important breakthroughs in the fabrication of MOF-derived photocatalysts for various reactions

Table 1  Brief summary of general methods for the fabrication of MOF-derived photocatalysts

MOFs-derived photocatalysts General methods Examples

Porous metal oxides; porous metal oxides 
doped with C or N

Direct calcination of the corresponding MOFs 
under different atmospheres

Porous ZnO [61], porous C-doped ZnO [62], and 
N-doped  Cu2O@N–C [63]

Porous metal oxide-based heterostructures Direct calcination of heterometallic MOFs 
under different atmospheres

ZnO/NiO porous hollow spheres [64] and ZnO/
Co3O4 [65]

Calcination of MOF-based heterostructure Fe2O3@TiO2 [66], ZnO/Au [67], and porous 
 Co3O4/CuO [68]

Porous metal sulfides Direct sulfidation of MOFs Yolk–shell CdS [69]
Sulfidation of MOFs’ derivative Co4S3 [70]

Porous metal sulfides-based heterostructure Sulfidation of heterometallic MOFs or their 
derivatives

Hollow Co-based bimetallic sulfide [71] and NiS/
ZnxCd1−xS [72]

Modification of MOFs’ derivatives CdS/ZCO [73], and  In2S3–CdIn2S4 nanotubes 
[74]

Porous carbon materials Direct calcination of MOFs N-doped graphitic carbon [58]
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3  Photocatalytic Water Splitting

Hydrogen, which can be renewably produced from a vari-
ety of (non-fossil) feedstocks, is a globally accepted clean 
energy carrier. Water splitting, which involves two half-reac-
tions, i.e., hydrogen evolution reaction (HER) and oxygen 
evolution reaction (OER), has been considered as an attrac-
tive route to sustainable  H2 generation [75]. Photocatalytic 
water splitting into  H2 and  O2 is a typical uphill reaction with 
a positive Gibbs energy change (ΔG = + 237.13 kJ mol−1), 
which requires a photocatalyst to trigger the reaction and 
convert solar energy to storable hydrogen energy [76]. Ther-
modynamically, the conduction band (CB) of the photocata-
lyst must be located more negative than the  H+/H2 energy 
level (− 0.41 eV vs NHE at pH 7) and the valence band 
(VB) of the photocatalyst must be located more positive than 
the  O2/H2O energy level (+ 0.82 eV vs NHE at pH 7) [77]. 
However, the overall water splitting requires higher photon 
energy than 1.23 eV due to the large overpotential caused by 
the charge transfer process and interaction between catalysts, 
reactants, and products. Therefore, the development of an 
overall water-splitting system remains a great challenge, and 
photocatalytic water splitting is generally studied separately. 
To date, many efficient porous photocatalysts derived from 
MOFs have been developed for HER; however, more pro-
gress needs to be made on OER (Table 2).

3.1  Photocatalytic HER

In the hydrogen evolution half-reaction system, the other 
half-reaction is replaced by the oxidation of an appropriate 
sacrificial reductant, such as methanol, ethanol, triethanola-
mine, triethylamine, ascorbic acid, lactic acid, and  Na2S/
Na2SO3 pairs [77]. Similar to that for other photocatalytic 
systems, the design principles for the HER photocatalysts 
involve a suitable band gap, enhanced charge transfer effi-
ciency, and numerous active sites. MOFs serve as ideal pre-
cursors for highly efficient HER photocatalysts because of 
their ability to provide various metal ions (as options), facili-
tate the doping of C or N to MOF-derived semiconductors, 
and give porous structures with high surface areas.

3.1.1  MOF‑Derived Porous Metal Oxides

Metal oxide nanostructures, one of the most important sem-
iconductor nanomaterials, have attracted much attention as 
photocatalysts for water splitting.  TiO2 has been consid-
ered the most interesting photocatalyst for water splitting, 
especially for HER, due to its suitable band positions, low 
cost, low toxicity, high stability, and n-type semiconduct-
ing nature [78, 79]. However, highly efficient  TiO2-based 
photocatalysts need to be developed because factors such 
as imperfect light absorption range and quick recombina-
tion of photoinduced carriers limit the use of pure  TiO2. 
Several studies indicated that fabricating  TiO2-based het-
erojunctions with metals or other semiconducting materials 
led to extended light absorption to the visible-light range, 
as well as suppression of the recombination of photoin-
duced carriers, leading to higher photocatalytic activity 
[80]. With MOFs as templates or precursors, facile design 
of  TiO2-based heterostructures can be achieved. For exam-
ple, Lin’s group developed a two-step approach to fabricate 
 Fe2O3@TiO2 nanostructures with MIL-101(Fe) as the pre-
cursor. First, the MIL-101(Fe)@amorphous  TiO2 precur-
sor was obtained by coating MIL-101 nanoparticles with 
 TiO2 (shell) via acid-catalyzed hydrolysis and condensa-
tion of titanium(IV) bis(ammonium lactato)dihydroxide 
(TALH) in water; then, the precursor was calcined in air 
to obtain  Fe2O3@TiO2 nanostructures (Fig. 2) [66]. This 
heterostructure photocatalyst exhibited interesting proper-
ties and enabled visible-light-driven hydrogen production 
from water, while neither of the individual components had 
such ability. Xiong’s group has also reported a series of 
hollow  TiO2-based photocatalyst derived from the MOF@
TiO2 core–shell precursor for  H2 evolution from water [81]. 
Compared with products obtained via other calcination 
approaches, Cu/TiO2–AA, the product obtained by simul-
taneous etching and reduction with ascorbic acid (AA), 
can better preserve the octahedral-shaped shells and crystal 
phase as well as prevent the formation of carbon residues 
and cocatalyst aggregation, leading to improved efficiency 
in photocatalysis. These reports indicate that mixing  TiO2 
with suitable nanomaterials can offer a solution to enhance 
its photocatalytic activity because of the synergistic effect.

Accordingly, other MOF-derived  TiO2-based hetero-
structures have been obtained. For instance, the hollow 
hybrid  Fe2O3–TiO2–PtOx photocatalyst was fabricated with 
nanosized MIL-88B(Fe)-based heterostructures as a hard 
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Table 2  Selected MOF derivatives that serve as photocatalysts for HER and OER

a Production rate unit of the listed photocatalytic HER
b Production rate unit of the listed photocatalytic OER

Photocatalyst MOF precursors Eg (eV) Target 
reaction

Illumination range Sacrificial reagent Production rate 
[µmol (g h)−1]a/
TOF  (s−1)b

Recy-
cled 
times

Refer-
ences

Co-Zn0.5Cd0.5S ZnCo–ZIF 2.45 HER Visible light 
(> 420 nm)

Na2S–Na2SO3 17,360 6 [90]

NiS/Zn0.5Cd0.5S Ni/ZnCd–MOF 2.32 HER Visible light 
(> 420 nm)

Na2S–Na2SO3 16,780 5 [72]

Zn0.5Cd0.5S ZIF-8 – HER Visible light 
(> 420 nm)

Na2S–Na2SO3 12,130 6 [90]

CdS/ZCO ZnCo–ZIF 2.1 HER Visible light 
(> 420 nm)

Lactic acid 3978.6 4 [73]

Yolk–shell CdS Cd–Fe–PBA 2.24 HER Visible light Na2S–Na2SO3 3051.4 4 [69]
Hollow  Fe2O3–

TiO2–PtOx

MIL-88B@TiO2 – HER Visible light 
(> 420 nm)

Lactic acid 1100 5 [82]

HP-CdS MIL-53(Al) ~ 2.4 HER Visible light 
(> 380 nm)

Na2S–Na2SO3 634 4 [88]

Fe2O3@TiO2 MIL-101@  TiO2 – HER Visible light 
(> 420 nm)

TEA ~ 625 3 [66]

FeOx–carbona-
ceous composites

MIL-88B/rGO – HER Visible light 
(> 420 nm)

TEA 264.1 4 [85]

ZnO/Au Au/ZIF-8 3.17 HER Visible light 
(> 400 nm)

Na2S–Na2SO3 29.8 4 [67]

PHIC In-MIL-68 – HER UV–Vis light TEOA 2,700,000 5 [86]
Hollow Cu-TiO2/C/

Pt
SiO2@MOF-199/Ti 2.89 HER UV–Vis light Ethanol 14,049 3 [91]

Co4S3/CdS Co–MOF 2.0 HER UV–Vis light Lactic acid 12,360 5 [70]
Pt–Zn3P2–CoP ZnCo–ZIF – HER UV–Vis light Methanol 9150 5 [65]
Pt–ZnS–CoS ZnCo–ZIF – HER UV–Vis light Methanol 8210 5 [84]
Pt–ZnO–Co3O4 ZnCo–ZIF – HER UV–Vis light Methanol 4450 5 [83]
Co3O4/TiO2 Ti/Co-PA – HER UV–Vis light Methanol ~ 7000 – [84]
Pd/TiO2 NH2-MIL-125 ~ 3.2 HER UV–Vis light Methanol 979.7 3 [83]
Cu/TiO2–AA MOF-199@  TiO2 – HER UV light Methanol 62.16 – [81]
N-doped graphitic 

carbon/Pt
ZIF-8 – HER UV–Vis light TEOA 18.5 – [58]

N-doped graphitic 
carbon

ZIF-8 – HER UV–Vis light TEOA 5 – [58]

700-CoOx–C ZIF-67 – OER Visible light 
(> 420 nm)

[Ru(bpy)3]2+–
Na2S2O8

0.039 3 [92]

Co3O4/CuO-3 
HPNCs

ZIF-67/Cu HD – OER Visible light 
(> 420 nm)

[Ru(bpy)3]2+–
Na2S2O8

4.9 × 10−3 5 [68]

POM-doped 
porous  Co3O4

PW12@ZIF-67 – OER Visible light 
(> 420 nm)

[Ru(bpy)3]2+–
Na2S2O8

1.11 × 10−3 3 [93]

CoxFe3−xO4 PBA – OER Visible light 
(> 420 nm)

[Ru(bpy)3]2+–
Na2S2O8

5.4 × 10−4 4 [94]

Co3O4 nanocages PBA – OER Visible light 
(> 420 nm)

[Ru(bpy)3]2+–
Na2S2O8

3.2 × 10−4 – [95]

C,N-doped ZnO ZIF-8 2.98 OER Solar-simulated 
light

AgNO3 – – [96]
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template [82]. Because of the presence of two cocatalysts 
on opposite sides, the  Fe2O3–TiO2–PtOx hollow photo-
catalyst showed high activity toward visible-light-induced 
 H2 generation with a high production rate of 1100 µmol 
(g h)−1, which might be attributed to Fe doping on  TiO2, 
separation of  PtOx and α-Fe2O3 nanoparticles as cocata-
lysts, as well as the short migration distance of electrons 
and holes to the surface. Besides, combining  TiO2 with 
noble metal materials, Pd as an example, could be easily 
prepared with MOF-derived hierarchical  TiO2 as support 
and photoreduction agent at the same time [83]. With a Pd 
loading amount of 1.5%, the Pd/TiO2 photocatalyst showed 
optimized rates of  H2 evolution of ~ 2449 and ~ 281.7 µmol 
(g h)−1 under UV–Vis light and simulated solar light, 
respectively.

As it is an n-type semiconductor,  TiO2 can be combined 
with p-type semiconductors to fabricate p–n heterojunc-
tions with enhanced photocatalytic performance due to more 
effective charge separation; rapid charge transfer to the sur-
face of catalyst; longer lifetime of the charge carriers; and 
separation of locally incompatible reduction and oxidation 
reactions in nanospace [40, 41]. The versatile metal nodes of 

MOFs facilitate the facile and rational design of  TiO2-based 
p–n heterojunctions. For example, Mondal et al. reported an 
improved  Co3O4/TiO2 photocatalytic system with p–n heter-
ojunction derived from several newly developed Co–MOFs 
[84]. As mentioned, the obtained p–n heterojunction con-
sisted of spinel  Co3O4 and anatase  TiO2. With an optimized 
Co loading of 2 wt%, the  Co3O4/TiO2 could deliver hydro-
gen at a high rate of 7000 µmol (g h)−1 under UV–Vis light 
due to the synergistic effect of the formed small heterojunc-
tion and cocatalytic role of  Co3O4, which facilitated interfa-
cial charge transfer and electron–hole separation.

Other metal oxide  (In2O3, ZnO,  Fe2O3, etc.)-based porous 
photocatalysts with high activities for hydrogen evolution 
have also been easily prepared with MOFs as templates 
and/or precursors [67, 85–87]. For instance, an  In2O3-based 
photocatalyst, namely PHIC, with highly improved activity 
for hydrogen evolution was fabricated via a facile thermal 
decomposition of In-MIL-68 template by our group (Fig. 3) 
[86]. This PHIC catalyst with a hollow hexagonal micro-rod 
shape was assembled using  In2O3@carbon core–shell nano-
particles. Due to the synergistic effect of efficient separation 
of photogenerated electron–hole pairs caused by the carbon 
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coating, enhanced optical absorption attributed to hollow 
characters, and improved accessibility rendered by the 
porous structure, PHIC could exhibit a photocatalytic activ-
ity comparable to that of the Pt/In2O3 photocatalyst toward 
hydrogen evolution with an extremely high production rate 
of 2,700,000 µmol (g h)−1 under solar-simulated light. In 
addition, ZnO, a typical semiconductor with absorption in 
the UV region, has been optimized as a better photocatalyst 
by compounding it with other materials, such as noble metal 
nanoparticles (NPs) and other metal oxides. With Zn–MOF/
metal NP hybrids as the precursor, ZnO/metal NP hetero-
materials with porous structures could be easily obtained 
[67]. Wang group fabricated the Au/ZnO NP photocata-
lyst with yellow fluorescent GSH-Au nanoclusters (NCs)/
ZIF-8 NPs as the precursor, and this photocatalyst could 
extend the absorption of ZnO to the visible-light region. The 
obtained An/ZnO NP photocatalyst could achieve a hydro-
gen generation rate of ~ 29 µmol (g h)−1 under visible-light 
illumination.

3.1.2  MOF‑Derived Porous Metal Sulfides

Cadmium sulfide (CdS) is another promising photocatalyst 
for solar-driven hydrogen evolution due to its visible-light 
response (Eg = 2.4 eV) and conduction band located at a 
suitable energy level. However, there are two drawbacks 
for the CdS photocatalyst, i.e., easy recombination of pho-
togenerated hole–electron pairs and high photocorrosion in 
aqueous media, which restrict its practical application. In 
order to enhance the photocatalytic activity of CdS, vari-
ous strategies have been introduced, including increasing 
specific surface area and modifying CdS with cocatalysts or 
incorporating other materials to form solid solutions, each of 
which could be handily achieved with the MOF-derivation 
strategy. Notably, CdS materials with high surface areas as 
photocatalysts may still suffer from poor stability, but they 
can demonstrate improved activities by promoting the sepa-
ration of photoinduced hole–electron pairs. For example, 
Xiao and Jiang synthesized a hierarchically porous CdS (HP-
CdS) utilizing thermally stable MOFs as hard templates to 
afford porous CdO, and subsequently, CdS by a nanocasting 
method (Fig. 4) [88]. The obtained HP-CdS showed a BET 
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surface area of 119 m2  g−1, which facilitated the effective 
inhibition of photogenerated electron–hole recombination, 
leading to a higher photocatalytic activity for HER than 
nano-CdS and bulk CdS under visible light (> 380 nm). In 
addition, CdS with complex hollow nanostructures, which 
provides multiple structural advantages for the photocata-
lytic reaction, such as enhanced light absorption, improved 
separation efficiency of the photoinduced charge carriers, 
and increased specific surface area, could be obtained with 
MOFs as templates or precursors. Wang and Liu et al. have 
reported the formation of a yolk–shell-structured CdS mate-
rial by a two-step MOF-based approach, involving facile 
synthesis of uniform Cd–Fe-PBA micro-cubes and subse-
quent chemical sulfidation [69]. Due to the structural mer-
its, including a 3D open structure, small size of primary 
nanoparticles, high specific surface area, and good structural 
robustness, the yolk–shell-structured CdS material could 
generate  H2 from water under visible-light illumination with 
an excellent rate of 3051.4 µmol (g h)−1.

MOF-based strategies for decorating CdS either with 
cocatalysts, or by incorporating other materials to form 
a solid solution, have attracted much attention due to the 
obvious merits of MOFs, such as variable composition 
and porosity. For example, CdS/ZnxCo3−xO4 (CdS/ZCO) 
hollow composites with high photocatalytic activity for 

visible-light-induced  H2 generation from water have been 
fabricated by decorating CdS nanoparticles on Zn/Co–ZIF 
derivatives  (ZnxCo3−xO4) [73]. With an optimized load-
ing content of CdS (30%) on the ZCO surface, CdS/ZCO 
achieved a high  H2 production rate of about 3978.6 μmol 
(g h)−1, which was attributed to the synergistic effect, i.e., 
the efficient charge separation and transfer between the phase 
boundary of CdS and ZCO. Similarly, Co–MOF-derived 
onion slice-type hollow-structured  Co4S3 was developed and 
decorated with CdS nanoparticles for photocatalytic hydro-
gen production by Kim’s group [70]. The optimized  Co4S3/
CdS material led to an enhanced rate of  H2 generation of 
12,360 μmol (g h)−1 under simulated solar light irradiation. 
The low density, hollow interior, and shell permeability of 
the onion-type composite helped in accelerating the charge 
separation and transfer in photocatalytic reactions. They also 
prepared MOF-derived  Ni2P nanoparticles as the cocatalyst 
of CdS, and the  Ni2P/CdS heterostructure exhibited great 
improvement in performance during photocatalytic HER due 
to the decreased rate of charge carrier recombination [89]. 
Moreover, a family of photocatalysts (NiS/ZnxCd1−xS) for 
HER has been developed by decorating CdS with NiS as a 
cocatalyst and simultaneously incorporating Zn to form solid 
solutions [72]. As shown in Fig. 5, Cheng’s group utilized 
Zn- and Ni-doped Cd–MOFs as the sacrificial templates to 
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form the NiS/ZnxCd1−xS series via solvothermal sulfidation 
and thermal annealing. By adjusting the doping metal con-
centration in the MOFs, the chemical compositions and band 
gaps of the heterojunctions were fine-tuned, leading to an 
optimized HER rate of up to 16,780 μmol (g h)−1 with NiS/
Zn0.5Cd0.5S as the photocatalyst under visible-light irradia-
tion. In-depth DFT calculations revealed the importance of 
NiS in accelerating the water dissociation kinetics, which 
was crucial for photocatalytic HER. Notably, a visible-light 
catalytic system with a HER rate of up to 17,360 μmol 
(g h)−1 over a Co-Zn0.5Cd0.5S solid solution catalyst was 
developed via a sulfidation process of Co/Zn–ZIF in the 
presence of  Cd2+ [90]. The doping of Co evenly around the 
skeleton of the porous  Zn0.5Cd0.5S solid solution played an 
important role in improving the photocatalytic activity, as 
compared to that of  Zn0.5Cd0.5S, which displayed a HER rate 
of 12,130 μmol (g h)−1 under the same reaction condition.

As per the reports mentioned above, utilizing MOFs as 
templates or precursors to construct heterojunctions between 
a semiconductor material and another semiconductor mate-
rial or a noble metal material is an effect way to improve the 
performance of semiconductors in photocatalytic HER by 

water splitting. Accordingly, Li et al. reported a series of Zn/
Co–ZIF derivative/Pt photocatalytic systems, which exhib-
ited high performance toward the photocatalytic HER under 
UV–Vis light (shown in Fig. 6) [65]. The synthesis processes 
involved the oxidation, sulfurization, or phosphorization of 
ZnCo–ZIF, and the subsequent photochemical doping of Pt 
nanoparticles, leading to Pt–ZnO–Co3O4, Pt–ZnS–CoS, and 
Pt–Zn3P2–CoP, respectively. The porous framework skeleton 
of the ZnCo–ZIF derivatives significantly enhanced the light 
utilization and simultaneously afforded abundant exposed 
catalytic active sites; the suitable band matching and strong 
electron coupling in the heterojunctions facilitated efficient 
electron–hole separation and transportation; the distribution 
of Pt nanoparticles on the porous structure offered enough 
redox active sites. These beneficial features were revealed 
to be responsible for the highly enhanced performances of 
the Zn/Co–ZIF derivative/Pt photocatalysts. This bimetal-
lic MOF-directed fabrication strategy reported in this paper 
provided a new perspective to construct synergetic photo-
catalysts with excellent photocatalytic performances for 
water-splitting applications.
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3.1.3  MOF‑Derived Porous Carbon Materials

In general, progress on the photocatalytic hydrogen evo-
lution from water over MOFs-derived photocatalysts have 
been made mainly around metal-involving materials, like 
metal oxides, metal sulfides, or their composites, which are 
commonly used in the photocatalytic field. As alternatives, 
metal-free photocatalysts, such as carbon-based materials, 
demonstrating great performance are highly desired, due 
to their tunable molecular structures, abundance, and high 
chemical stability. Meanwhile, facile synthesis of metal-free 
photocatalysts is still highly challenging. Cheng and cowork-
ers have developed a facile synthesis method for N-doped 
graphene carbon using a well-designed ZIF-8-template 
(Fig. 7) [58]. Under an Ar atmosphere at different tem-
peratures, ZIF-8 were calcined to derive N-doped graphene 
(ZNG) analogs, which retained the polyhedron structure 
of the parent ZIF-8 particles and had nitrogen contents of 
9–15 wt%; the contents of various N types in the materials 
were fine-tuned on the basis of the calcination temperatures. 
Among them, the product obtained at 1000 °C exhibited the 
best performance toward photocatalytic HER because of the 
highest content of graphitic nitrogen, which preserved the 
high mobility of the charge carriers and further affected the 
hydrogen evolution rate of the photocatalyst.

3.2  Photocatalytic Water Oxidation

Water oxidation to  O2 is regarded as the bottleneck of solar-
driven water splitting, ascribed to the intrinsic difficulty in 
multiple-electron transfer and sluggish kinetics of the subse-
quent oxygen evolution [97, 98]. Although some noble met-
als and their oxides, such as  IrO2 and  RuO2, have attracted 
much attention as efficient catalysts for water oxidation, their 
high cost and low abundance have impeded their commer-
cial utilization. Therefore, first-row transition metal oxides 
and their derivatives, including cobalt oxides, iron oxides, 
nickel oxides, and manganese oxides, have been explored as 
water oxidation catalysts due to advantages with regard to 
economy and stability [99–105]. In the water oxidation reac-
tion system (i.e., OER), the reduction of sacrificial oxidants, 
such as  AgNO3 and  Na2S2O8, is normally used to replace the 
half-reaction of HER [77].

According to investigations, MOF-derived water oxida-
tion photocatalysts, particularly cobalt oxide-based systems, 
are environmentally benign, thermally stable, inexpensive, 

and demonstrate high OER activity both in the electro-
chemical and in the photochemical fields. The Lu group 
developed a facile approach for the preparation of a porous 
cobalt oxide–carbon hybrid as a water oxidation catalyst 
by carbonizing nanocrystals of ZIF-67 in an inert atmos-
phere and subsequently air-calcining them [92]. Among 
the various  CoOx/C hybrids obtained at different calcina-
tion temperatures, 700-CoOx/C acted as the best catalyst. 
The photocatalytic activity of 700–CoOx/C was accessed 
in the [Ru(bpy)3]2+–S2O8

2− system under visible light in a 
sodium phosphate buffer (pH 8.5) and a maximum turnover 
frequency (TOF) of up to 0.039 ± 0.03 s−1 per cobalt atom 
was estimated, which was among the highest TOFs for water 
oxidation with cobalt oxide-based photocatalysts.

Furthermore, by combining ZIF-67 with suitable materi-
als as precursors, adjustable cobalt oxide-based composites 
as photocatalysts for water oxidation could be fabricated. 
For example, the derivatives obtained by loading a single 
Keggin-type polyoxometalate (POM) cluster into each con-
fined space of ZIF-67, i.e., POM@Co3O4 composites (CW-
n, n depended on the added amount of POM) doped with 
highly dispersive molecular metal-oxo clusters, exhibited 
significantly improved photocatalytic activity in water oxi-
dation compared to the pure MOF-derived nanostructure (as 
shown in Fig. 8) [93]. In the molecular cluster@oxide sys-
tem, POMs accept and release electrons, thereby improving 
the separation of light-induced electrons and holes, which 
leads to higher catalytic activity with increasing POM con-
centration in the composite materials. Ding’s group synthe-
sized a series of  Co3O4/CuO hollow polyhedral nanocages 
(HPNC) using ZIF-67/Cu hydroxide (HD) polyhedrons with 
various Co/Cu molar ratios as sacrificial templates [68]. 
With an optimized Co/Cu molar ratio,  Co3O4/CuO-3 HPNCs 
afforded a high TOF of 4.9 × 10−3  s−1 per metal atom and 
performed well in the stability test.

In addition, Prussian blue analogue (PBA), a type of 
crystalline MOF built from divalent and trivalent metal 
ions (such as Fe, Co, and Ni) linked by cyanide ligands, has 
also been chosen as the precursor to fabricate water oxi-
dation photocatalysts, such as Fe/Co/Ni-oxides and their 
solid solutions. Ding’s group reported the use of low-cost 
porous iron-based oxides derived from the calcination of 
PBA  (Mx[Fe(CN)6]y, where M = Fe, Co, Ni) and porous 
Co-based oxide nanocages derived from the calcination 
of PBA  (Mx[Co(CN)6]y, where M = Fe, Co, and Mn) as 
catalysts in photocatalytic water oxidation [94, 95]. The 
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obtained series of Fe photocatalysts followed the order of 
 CoxFe3−xO4 > NixFe3−xO4 > Fe2O3, and  CoxFe3−xO4 afforded 
an initial TOF of 5.4 × 10−4  s−1 per transition metal atom. 
Meanwhile, the obtained series of Co photocatalysts fol-
lowed the order of  Co3O4 > MnxCo3−xO4 > FexCo3−xO4, 
and  Co3O4 porous nanocages exhibited the highest TOF of 
3.2 × 10−4  s−1 per Co atom.

In summary, tremendous efforts have been devoted to 
develop efficient photocatalysts toward water splitting with 
MOFs or their hybrids as the precursors, and great progress 

has been made in this regard. However, the currently devel-
oped photocatalytic systems based on MOF-derived porous 
structures only involve one isolated half-reaction, and sacri-
ficial reagents are needed to replace the other half-reaction. 
More studies have been performed on hydrogen evolution 
reaction than oxygen evolution reaction due to the intrinsic 
difficulty associated with OER in multiple-electron transfer 
and sluggish kinetics. However, the practical application 
of water splitting demands the production of stoichiomet-
ric amounts of  H2 and  O2 driven by sunlight without any 
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sacrificial reagents. Therefore, photocatalytic overall water-
splitting systems with high efficiency are highly desired. 
Moreover, the porous structures of photocatalysts can influ-
ence the attachment of gas bubbles on the surface of the 
catalysts, which can potentially block the active sites and 
prohibit mass transportation under strong gas evolution con-
ditions, leading to bubble overpotential [106]. As far as we 
know, no investigation on the influence of pore structure 
of MOFs-derived photocatalysts on overpotential for water-
splitting reaction, especially OER, has been performed, and 
therefore, further studies are needed.

4  Photocatalytic  CO2 Reduction

The global climate issues caused by the rapidly increasing 
 CO2 emissions have accelerated studies on photocatalytic 
 CO2 reduction to CO or hydrocarbons, which can not only 
decrease the  CO2 level in the atmosphere, facilitating envi-
ronmental protection, but also generate materials for chemi-
cal industry or energy storage. Nowadays, the photocata-
lytic  CO2 reduction process is attracting growing attention 
because of its usage of solar power as the primary energy 
source. Photocatalytic  CO2 reduction involves the follow-
ing steps: light harvesting, separation, transfer of photogen-
erated charge carriers, as well as adsorption and conver-
sion of  CO2 [107]. Therefore, in addition to the impacts of 
light utilization, charge transfer efficiency, and active sites, 
the adsorption of  CO2 is another important factor to expe-
dite the  CO2 reduction process in a photocatalytic system. 
The  CO2 reduction products include HCOOH, CO, HCHO, 
 CH3OH, and  CH4. MOF-derived materials are considered 
highly potential photocatalysts for  CO2 reduction due to their 
advantages such as structural and compositional variety and 
high surface areas. Some excellent works have been reported 

on MOF-derived materials as  CO2 reduction photocatalysts 
(Table 3).

Ye’s group developed a MIL-101-derived Fe@C catalyst, 
consisting of an iron core (< 10 nm) and ultrathin (1–3 lay-
ers) carbon layers, for the photocatalytic reduction of  CO2 
to CO [108]. The obtained Fe@C photocatalysts could pro-
duce 2196.17 µmol CO under broadband light irradiation for 
120 min, which was better than that reported for most of the 
catalysts. Through a thorough investigation, they found that 
the intense adsorption of visible light and infrared radiation 
induced a thermal effect, which helped to drive the reaction, 
and UV-light-induced iron local surface-plasmon resonances 
also played a significant role in activating the nonpolar  CO2 
molecules. Furthermore, DFT calculations revealed that 
the ultrathin layers of carbon shells on the Fe nanoparticles 
dramatically promoted desorption of the produced CO from 
the catalyst surface, thereby increasing the CO selectivity 
(99.76%). Another study on the photocatalytic  CO2 reduc-
tion to CO with MOF-derived materials as catalysts was 
reported by Lou’s group; they rationally fabricated hierarchi-
cal  In2S3–CdIn2S4 heterostructured nanotubes via sequential 
ion exchange reactions with MIL-68 as the initial precur-
sor (Fig. 9) [74]. Benefiting from the unique structural and 
compositional features, such as nanosized interfacial con-
tacts between  In2S3 and  CdIn2S4 nanospecies, reduced dif-
fusion length for charge carrier separation and migration, 
large surface area for  CO2 adsorption and concentration, and 
rich catalytically active sites for surface redox reactions, the 
obtained hierarchical  In2S3–CdIn2S4 nanotubes manifested 
an optimized CO generation rate under visible light. Very 
recently, a three-component heterojunction C–Cu2−xS@g-
C3N4 photocatalyst was found to be active toward the reduc-
tion of  CO2 to CO. With MOF-199 as the precursor, hol-
low tubular  Cu2−xS with carbon coating was successfully 

Table 3  Selected MOF derivatives that serve as photocatalysts for  CO2 reduction

a Unit: ppm (g h)−1

Photocatalyst MOF precursors Eg (eV) Illumination range Main products Reaction rate 
(µmol (g h)−1)

Recycled 
times

Refer-
ences

Fe@C MIL-101 – UV–Vis light CO 18,301 5 [108]
ZnMn2O4 Zn/Mn–MOF 2.51 UV–Vis light CO 23.99 – [111]
In2S3/CdIn2S4 MIL-68 2.21 Visible light CO 825 6 [74]
C–Cu2−xS@g-C3N4 MOF-199 – Visible light CO 88.55 – [109]
ZnO/NiO Zn/Ni–MOF – UV–Vis light CH3OH 1.57 – [64]
Au/TiO2 Au/MIL-125 – UV light CH4 240a 2 [110]
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fabricated, and further, different amounts of the material 
were loaded on g-C3N4 to form a series of C–Cu2−xS@g-
C3N4 photocatalysts. Under visible-light irradiation and 
water vapor condition, the optimized C–Cu2−xS@g-C3N4 
with 0.71 wt% of C–Cu2−xS exhibited a high reactivity of 
1062.6 μmol g−1 and selectivity of 97% [109].

Photocatalytic reduction of  CO2 to hydrocarbons by water 
vapor with proper catalysts has also been taken into account. 
Fischer and coworkers have fabricated an Au NP/TiO2 
(GNP/TiO2) photocatalyst active for the reduction of  CO2 to 
 CH4 [110]. After deposition of preformed and surfactant-sta-
bilized gold nanoparticles on the surface of  NH2-MIL-125, 
GNP/NH2-MIL-125 was transformed to GNP/TiO2 through 
a thermal treatment; the product contained rutile  TiO2 and 
possessed the morphology of  NH2-MIL-125. Compared with 
the  TiO2 sample obtained via the pyrolysis of  NH2-MIL-125 
without GNP, P25, and commercial Au/TiO2, the GNP/
TiO2 photocatalyst delivered a significantly higher yield of 
 CH4 due to the presence of GNP. Metal oxide composites 
obtained with MOFs as precursors were also utilized as cata-
lysts for the photocatalytic reduction of  CO2 to hydrocarbons 
by Zhang’s group [64]. They fabricated a series of ZnO/
NiO porous hollow spheres with sheet-like subunits through 
the calcination of bimetallic Zn/Ni–MOFs with different 
ratios of Zn/Ni. The p–n heterojunctions formed by p-type 
ZnO and n-type NiO, and the hollow character enhanced 
the performance of ZnO/NiO composites by facilitating the 
separation of the photogenerated hole–electron carriers. As 
a result, the optimized ZnO/NiO composites (ZN-30) acted 
three times better than pure ZnO in the photocatalytic reduc-
tion of  CO2 to  CH3OH.

To date, despite the high potential in sustainability and 
energy storage, only few studies have been focused on the 
photocatalytic reduction of  CO2 with MOF-derived materi-
als as catalysts. Therefore, more progress should be made 
on developing more efficient photocatalysts that can enhance 

the utilization of solar energy and perform better, in terms 
of both the activity and selectivity.

5  Photocatalytic Organic Reaction

The photocatalytic synthesis of organic compounds is a 
promising approach due to its mild, clean and atom effi-
ciency methodologies, compared with the methods involving 
high temperature and pressure, and the current industrial 
synthetic strategies, which generate harmful by-products 
[112]. Photoinduced charge carriers transferred from semi-
conductor nanomaterials to organic molecules can catalyti-
cally trigger a variety of organic redox reactions. Recently, 
functionalized MOFs have served as interesting photocata-
lysts for various organic redox reactions due to their unique, 
tailorable, and highly porous characteristics. However, the 
poor thermal stability of MOFs hampers their commer-
cialized utilization [51]. On the other hand, MOF-derived 
semiconductors, which can inherit the porous structure and 
diversity in structure from parent MOFs, as photocatalysts, 
have the advantages of high surface areas, high stability, 
and controllable band gaps, which can match the different 
HOMO–LUMO positions of the organic molecules. The 
photocatalytic mechanism of organic redox reaction shares 
similar process with other photocatalytic systems, i.e., light 
adsorption, separation and transfer of photoinduced charge 
carriers, and the subsequent redox reactions on the surface-
active sites of the photocatalysts. In Table 4, some examples 
of MOF-derived porous structures exhibiting high perfor-
mance in visible-light-driven photoredox catalysis are given.

Long-lived photogenerated carriers play an important role 
in improving the activity of photocatalysts. Multiple strate-
gies, including structural engineering, semiconductor com-
positing, doping and so on, have been developed to enhance 
the transfer and separation efficiency of electrons and holes. 
The facile method with MOFs as the templates and precur-
sors has been proven ideal for engineering photocatalysts 

Table 4  Selected MOF derivatives that serve as photocatalysts for organic reactions

Photocatalyst MOF precursors Illumination range Reaction type Time (h) Yield (%) Recycled 
times

Refer-
ences

N-doped  Cu2O@N–C NTU-105 LED, 450 nm CDC reaction 24 98.5 5 [63]
CNPC MOF-199 LED, 450 nm CDC reaction 25 95 5 [114]
N-doped  TiO2@N–C NH2-MIL-125 LED, 450 nm Oxidation cou-

pling of amine
17 99 5 [113]
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with suitable structures and compositions. Our group have 
reported N-doped  Cu2O@N–C NP catalysts derived from a 
N-rich NTU-105, which share several favorable features for 
photocatalysis: (1) a porous C matrix substrate, which facili-
tated uniform distribution of the small  Cu2O nanoparticles 
by stabilizing them and preventing their aggregation and 
(2) high conductivity, attributed to the N-doped  Cu2O and 
C substrate, which facilitated electron and hole transfer and 
separation [63]. The N-doped  Cu2O@N–C NPs exhibited 
excellent performance in cross-dehydrogenative coupling 
(CDC) reactions, owning to the long-lived holes, whose 
existence was revealed by femtosecond transient absorption 
spectroscopy. By utilizing  NH2-MIL-125 as a hard template, 
N-doped  TiO2@N–C with butterfly structure (TNPC) was 
also fabricated as a highly efficient photocatalyst for visible-
light-induced amine oxidation [113]. Through an in-depth 
investigation with femtosecond transient absorption spec-
troscopy and DFT calculation, the number of actively long-
lived holes was found to be in the order  TiO2 < N-doped 
 TiO2 < TNPC, leading to significantly enhanced photocata-
lytic activity of TNPC.

Moreover, MOFs have been realized as the templates 
for the construction of multilevel structures of composites, 
which can improve the utilization efficiency of light through 
the multiple reflections, thereby enhancing the activity of 
photocatalytic organic reactions. Combined with the struc-
tural features of N doping and C compositing,  Cu2O nano-
particles anchored on an N-doped porous carbon yolk–shell 
cuboctahedral (CNPC) framework were fabricated with a 
benzimidazole-modified Cu-btc MOF as the precursor, 
which possessed a multilevel structure at the same time 
(Fig. 10) [114]. Benefiting from the structural characteris-
tics, the obtained CNPC nanoparticles, as a photocatalyst, 
provided several favorable features: prolonged lifetime of 
photogenerated electrons and holes, multiple reflection of 
light by the yolk–shell structure, and improved stability and 
dispersibility of  Cu2O NPs, leading to excellent performance 
in CDC reactions under visible-light illumination.

In general, research on photocatalytic organic reactions 
over MOF-derived catalysts is still in its early stage, and 
more progress, such as development of more efficient photo-
catalytic systems from MOFs and broadening their applica-
tions in photoredox catalysis, needs to be made.

6  Photocatalytic Pollutant Degradation

Organic pollutants in water, as an overwhelming problem 
in environmental chemistry, have raised many concerns. 
Photodegradation of organic pollutants is considered an 
ideal strategy to solve the issue, which usually involves 
 O2 as the oxidizing agent to degrade organic pollutants to 
 CO2, water, and other inorganic species. Among the vari-
ous photocatalytic systems, MOF-derived materials, such 
as porous metal oxides, metal sulfides, and their composites 
(mostly combined with carbon materials) can serve as highly 
potential photocatalysts due to the merits of high stability, 
excellent optical absorption/mass transfer, and improved 
electron–hole separation. In this part, we will summarize the 
progress in MOF-derived photocatalysts for the degradation 
of pollutants, which are mostly normal dye pollutants, such 
as methylene blue (MB), methyl orange (MO), and rhoda-
mine B (RhB) (Fig. 11), and organic pollutants, for example, 
nitrobenzene. In Table 5, the performances of MOF-derived 
photocatalysts for pollutant degradation are presented.

6.1  MOF‑Derived Porous Metal Oxides

As the most commonly used metal oxides in photocatalysis, 
 TiO2 and ZnO show high activities for pollutant photodeg-
radation. With proper MOFs as the precursors,  TiO2- and 
ZnO-based photocatalysts with highly improved perfor-
mances could be obtained via a simple thermal treatment. 
For example, MIL-125, one of the earliest reported Ti-
containing MOFs, is a good choice to fabricate  TiO2-based 
photocatalysts, and according to reports, tunable products 
could be obtained by changing the calcining atmosphere. 
Pan’s group achieved cake-like porous  TiO2 particles with 
the mixed anatase/rutile (A/R  TiO2) phase via the pyrolysis 
of MIL-125 under air atmosphere; the as-prepared materi-
als served as photocatalysts for nitrobenzene degradation 
[116]. Due to the reduced electron–hole pair recombina-
tion, the obtained A/R  TiO2 showed better catalytic activ-
ity compared with pure rutile or anatase  TiO2. Zhao and 
coworkers found that a series of  TiOx/C composites could 
be obtained by the thermal treatment of MIL-125 under an 
Ar atmosphere; these composites exhibited high catalytic 
activities toward the photodegradation of MB under UV 
light [117]. In the series of  TiOx/C composites, the product 
achieved at 1000 °C acted as the best photocatalyst due to its 
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high surface area, reduced  Ti3O5 composition, and conduc-
tive carbon matrix. In addition, Zhao and coworkers also 
reported that the heterometallic MOF (ZTOF-1) containing 
 Zn2+ and  Ti4+ could be used as the precursor to fabricate 
 TiOx-based catalysts, whereby Zn could be removed via 
vaporization at 1000 °C, leading to the  TiOx/C composite 
[118]. The obtained  TiOx/C contained the extra pores formed 
in the process of vaporization of Zn, and these were readily 
accessible to MB, leading to a considerable increase in the 

N N+

N

S
CH3 CH3

CH3

(CH3)2N SO3Na

methyl orange (MO)

methylene blue (MB) rhodamine B (RhB)

N=N

H3C

ON

COOH
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Fig. 11  Structures of the three normal dye pollutants

Table 5  Selected MOF derivatives that serve as photocatalysts for pollutant degradation

Photocatalyst MOF precursors Eg (eV) Target pollutant Additive k  (min−1) Illumination range Refer-
ences

ZnO/RGO ZIF-8–RGO 3.18 MB None – Visible light [115]
Fe3O4@C/Cu Fe3O4@HKUST-1 1.75 MB H2O2 – Visible light [131]
ZnS Zn–MOF – MB None 0.0223 Visible light [132]
CdS Cd–MOF – MB None 0.0238 Visible light [132]
C,N-doped ZnO ZIF-8 2.98 MB None 0.068 UV–Vis light [96]
In2O3/Co3O4@PAL composites Co–In–MOFs–PAL composites – MB None – UV–Vis light [127]
ZnO/3DGN ZIF-8–3DGN – MB None – UV light [121]
TiOx/C Zn–Ti heterometallic MOF – MB None 0.2224 UV light [118]
TiOx/C MIL-125 – MB None 0.0207 UV light [117]
MgO nanorods Mg–MOF – MB None – UV light [123]
Porous ZnO ZIF-8 – MB None – UV light [61]
In2S3 In–MOF 2.07 MB None – UV light [133]
ZnIn2S4 Zn–MOF and In–MOF 2.30 MB None – UV light [133]
CdIn2S4 Cd–MOF and In–MOF 2.30 MB None – UV light [133]
porous N-doped  Cu2O/C Cu–MOF 2.2 MO None – Visible light [128]
ZnO@C–N–Co core–shell 

nanostructure
Hollow Zn–Co–ZIF – MO None – UV light [119]

ZnO@Silica ZIF-8 – MO None – UV light [115]
C-doped ZnO ZIF-8 2.93 RhB None 0.0015 Visible light [62]
CoP/Fe2P@mC Co–Fe–MOF 2.11 RhB None – Visible light [138]
CuO nanofibers Cu–MOF – RhB H2O2 0.01712 Visible light [124]
Zn0.95Co0.05–ZIF@Zn0.95Co0.05O Zn0.95Co0.05–ZIF – RhB None 0.41 Visible light [134]
Au/ZnO GSH-Au NCs–ZIF-8 3.17 RhB None – Visible light [67]
Porous N-doped ZnO Urea and ZIF-8 mixture – RhB None 0.0049 Visible light [120]
Porous ZnO MOF-5 – RhB None 0.0053 UV light [139]
ZIF-8@Zn0.95Ni0.05O ZIF-8–Ni2+ – RhB None 0.175 UV light [136]
γ-Fe2O3/C MIL-53(Fe) – MG H2O2 – Solar light [129]
CdS/MPC ZIF-8 – Cephalexin None 0.024 UV–Vis light [137]
ZIF-NC/g-C3N4 ZIF-8 – BPA HSO5

− 0.05134 Visible light [135]
A/R  TiO2 MIL-125 3.07 Nitrobenzene None – UV light [116]
GdCoO3 Gd–Co–MOF – OG None – UV light [126]

RBBR None – UV light
RhB None – UV light
RBL None – UV light
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photocatalytic activity compared with that of the pyrolytic 
products obtained below 1000 °C.

ZIF-8 or its hybrids have been commonly utilized as the 
precursors to fabricate ZnO-based materials as catalysts for 
pollutant photodegradation [67, 115, 119]. In the past few 
years, various ZnO-based photocatalytic systems, includ-
ing porous ZnO, porous C- or/and N-doped ZnO, ZnO/
carbon materials composites, and other ZnO-based com-
posites, were fabricated (Fig. 12). With pure ZIF-8 as the 
template and precursor, which contains ligands with nitro-
gen, i.e., 2-methylimidazole, the resulting products could 
be tuned as porous ZnO, porous C-doped ZnO, and porous 
C,N-doped ZnO by changing the calcination conditions, 
including calcination atmosphere, calcination step, and cal-
cination temperature [61, 62, 96], while, with the mixture 
of ZIF-8 and urea as the precursors, N-doped ZnO could 
be obtained [120]. A photocatalytic investigation on these 
catalysts proved that they all performed well in dye deg-
radation; particularly, porous C-doped ZnO reported by 
Zhang and coworkers and porous N-doped ZnO reported 
by Yao’s group exhibited visible-light photodegradation of 
RhB due to the narrower band gap of C- and N-doped ZnO 
[62, 120]. When combined with carbon materials such as 
three-dimensional graphene networks (3DGN), ZIF-8-based 
hybrids could be transformed to the corresponding ZnO-
based hybrids [121]. Zhang’s group developed a method to 
synthesize the ZnO/3DGN composite via a two-step anneal-
ing process with ZIF-8/3DGN as the precursor, whereby 
ZIF-8/3DGN was fabricated by the direct synthesis of ZIF-8 
on 3DGN. The obtained ZnO/3DGN exhibited high activ-
ity in MB photodegradation as well as durability. Zhu and 
coworkers incorporated RGO to ZIF-8-derived ZnO via the 
microwave-assisted method to fabricate ZnO/RGO hybrids 
[122]. Attributed to the synergistic effect of enhanced light 
absorption and suppression of charge carrier recombination 
resulting from the interaction between ZnO and RGO, the 
ZnO/RGO composites were able to show higher activity for 
the visible-light degradation of MB than pure ZnO. In the 
series of composites with different amounts of RGO, the 
as-prepared composite with 1.5 wt% of RGO showed an 
optimal photocatalytic performance.

In addition to  TiO2 and ZnO, other metal oxide-based 
photocatalysts for the pollutant degradation have also been 
derived from the corresponding MOF materials [123–125]. 
In 2007, Madras and Natarajan et al. reported the photo-
degradation of four organic pollutants, including RhB, 

Rhodamine Blue (RBL), Orange G (OG), and Remazol 
Brilliant Blue R (RBBR), with a bimetallic Gd/Co–MOF-
derived nanosized  GdCoO3 as the catalyst [126]. At differ-
ent calcination temperatures,  GdCoO3 with different particle 
sizes could be obtained. Compared with P25, the as-syn-
thesized ~ 3 nm  GdCoO3 particles showed higher rates of 
degradation rates for the four pollutants. Wang’s group has 
fabricated  In2O3/Co3O4–palygorskite (PAL) composite pho-
tocatalysts for the degradation of MB and tetracycline (TC) 
from a Co/In–MOF/PAL hybrid [127]. In the presence of 
PAL, the photocatalytic activities were improved due to 
their higher adsorption of the substrates and the electro-
static interactions between photogenerated charge carriers 
and negatively charged PAL. Two-dimensional (2D) porous 
N-doped  Cu2O/C composites derived from square-shaped 
Cu–MOF nanoplatelets as a photocatalyst for MO degrada-
tion were reported by Ma and coworkers [128]. The high 
surface area of the annealed  Cu2O/C nanoplatelets led to 
a high degradation rate of 2.5 mg min−1g−1 for MO pollu-
tion under visible light. Moreover, magnetic photocatalysts, 
such as γ-Fe2O3/C, Co/graphene materials,  Fe3O4@C/Cu, 
and  Fe3O4@CuO, for the degradation of pollutants with 
the advantage of easy separability were fabricated for the 
degradation of pollutants from the corresponding MOFs or 
MOF-based composites; these photocatalysts acted well in 
terms of both activity and reusability [129–131].

6.2  MOF‑Derived Porous Metal Sulfides

Various metal sulfides with tunable structures and morphol-
ogies have been fabricated via the sulfurization process or 
thermal treatment of MOFs. For instance, Li and coworkers 
developed a series of  MxSy@C (M = Co, Zn, Cd, Ni, and Cu) 
through one-pot sulfurization of five MOFs with the identi-
cal formula of [M(pa)(bib)]∞ [132]. Among them, pure ZnS 
and CdS were subsequently obtained by the combustion of 
ZnS@C and CdS@C (to remove carbon) and utilized as mod-
erately active photocatalysts for degradation of MB under 
visible-light illumination. Batabyal and coworkers developed 
a one-pot method, i.e., thermolysis of single- or dual-source 
coordination polymer precursors in the presence of different 
surfactants, to synthesize nanocrystals of  In2S3,  ZnIn2S4, and 
 CdIn2S4 [133]. The synthesized  In2S3 nanocrystals showed 
efficient photocatalytic degradation of MB under UV light 
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irradiation, and the photocatalytic activities of the ternary 
chalcogenides of  In2S3 were considerably enhanced.

In addition to MOF-derived metal oxides, metal sulfides, 
and their composites, some other kinds of MOF-derived 
materials have been reported as highly efficient photocata-
lysts for the degradation of organic pollutants, such as MOF-
derived metal phosphide composites, MOF-derived carbon-
modified g-C3N4, semi-transformed MOFs hybrids, and so 
on [134–137]. Although there are numerous papers focused 
on the photodegradation of organic pollutants with porous 
nanostructures derived from MOFs as photocatalysts, the gap 
between laboratory research and industrial application is still 
huge due to the following issues: (1) most of the MOF-derived 
photocatalysts show limited absorption of visible light and 
(2) the degradation mechanism is not thoroughly explored, 
and the degradation products are not clear. Therefore, more 
in-depth research on MOF-derived photocatalysts for the deg-
radation of organic pollutants should be carried out.

7  Summary and Outlook

In this review, we have discussed the improvements in MOF-
derived porous structures serving as photocatalysts for vari-
ous energy-/environment-related reactions, including water 
splitting, pollutant degradation,  CO2 reduction, and organic 
reactions, achieved in the last few years. Owing to the ben-
eficial structural features, such as versatility in components 
and well-defined pore structures, MOFs have been consid-
ered as the ideal precursors of porous semiconductor photo-
catalysts, including porous metal oxides and porous metal 
sulfides, and their heterostructures. The derived porous 
photocatalysts exhibit enhanced performances toward vari-
ous reactions due to their high accessible surface areas and 
rich pore structures. Moreover, porous heterostructures or 
solid solution photocatalysts can be rationally designed from 
multimetallic MOFs as the precursors. With tuned band gap, 
increased active sites, and increased efficiency of photogen-
erated charge carrier separation and migration, the photo-
catalytic activities of MOF-derived porous heterostructures 
and solid solutions have been further enhanced.

Despite the great progress achieved in the field of MOF-
derived photocatalyst development, there are some pend-
ing issues that need to be solved. Transformation processes 
always involve high-temperature reactions and lack pre-
cise control over the pore structure and active sites, which, 

however, will have great influence on the photocatalytic per-
formances. Therefore, more efforts should be devoted to the 
controlled synthesis of MOF-derived materials with desired 
pore structures as well as the active sites, which also call 
forth in situ techniques to track the transformation process 
of MOFs. Moreover, MOF-derived semiconductor photo-
catalysts suffer from low solar-to-chemical-energy conver-
sion efficiency because only a few photocatalytic systems 
can mainly utilize the energy of the UV region, which is 
only 5% of the solar spectrum. The development of visible 
or near-infrared (NIR) light-driven photocatalytic systems 
with fast kinetics is still in active demand. Fabrication of 
composites with heterojunctions has shown its superiority in 
promoting charge separation, yet the intrinsic mechanism is 
far from well understood. An in-depth investigation should 
be carried out; the combination of experimental investiga-
tion and the corresponding theoretical calculation seems to 
be an effective method.

Finally, the other issues and their possible recommen-
dations are listed below toward the specific reactions. For 
photocatalytic water splitting, the currently developed photo-
catalysts derived from MOFs are aimed at only one isolated 
half-reaction, and sacrificial reagents are added to replace 
the other half-reaction. Yet the goal to produce hydrogen at a 
cost and scale that are comparable with fossil fuels should be 
realized by rational design of highly efficient water-splitting 
photocatalysts that can split pure water into stoichiometric 
amounts of  H2 and  O2, driven by sunlight without using 
any sacrificial reagents. Thus, MOFs-derived photocatalysts 
for overall water splitting are highly desired. For photocata-
lytic  CO2 reduction, the study is in its infancy, and the lower 
efficiency and selectivity of MOF-derived photocatalysts 
make it difficult to meet the demands of industrial appli-
cations, and therefore, further efforts are needed to make 
a breakthrough in the fabrication of photocatalysts. From 
the viewpoints of design principles, the increased adsorp-
tion of  CO2 can improve the reduction efficiency of  CO2. 
The exposure of special surface sites that can decrease the 
energy barrier of the reduction process or the enrichment of 
 CO2 molecules around the active sites can help to improve 
the photocatalytic performance. For photocatalytic organic 
redox reaction, hole scavengers or electron scavengers are 
usually used, and designing appropriate tandem reactions 
can help to avoid their use. With regard to photocatalytic 
pollutant degradation, research is mainly focused on the deg-
radation of the dye pollutants and some organic pollutants 
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by photogenerated reactive transient species of  O2. Owing 
to the non-selective property of the reactive species, the con-
clusion about the activity of photocatalysts is not accurate. 
In-depth research on MOF-derived photocatalysts with thor-
oughly explored degradation mechanism and clear degrada-
tion products should be carried out.

In this review, we give a comprehensive survey of MOF-
derived porous semiconductor structures as very promising 
photocatalysts toward various reactions. Given the beneficial 
features of porous structure and well-defined heterostruc-
tures, we believe that MOF-derived porous semiconductor 
structures will present a bright future toward photocatalysis.
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