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HIGHLIGHTS

•	 A skin-interfaced microneedle patch simultaneously and continuously measures six metabolic biomarkers from dermal interstitial 
fluid—glucose, uric acid, cholesterol, sodium, potassium, and pH.

•	 Modular microneedle units assembled on a compliant polystyrene-isoprene-polystyrene substrate offer mechanical robustness and 
excellent flexibility, enabling seamless adhesion, stable skin-sensor coupling, and user-specific configuration, which delivers durable, 
conformal wear with high signal fidelity in daily use.

•	 An end-to-end personalized health evaluation system: high-dimensional multiplexed signals are processed by an optimized machine-
learning pipeline to quantify and predict metabolic responses to daily behaviors, supporting personalized guidance (e.g., postprandial 
control, electrolyte balance).

ABSTRACT  Given the inherent com-
plexity of metabolic pathways and dis-
ease-associated agents, next-generation 
healthcare necessitates wearable, non-
invasive, and customized approaches to 
continuously monitor a broad spectrum 
of physiologically relevant biomarkers 
for personalized health management. 
Moreover, existing data-based ana-
lytical strategies remain inadequate for 
delivering quantitative and predictive 
evaluations of health status in real-life 
settings. Here, we report an electronic 
multiplexed microneedle-based biosen-
sor patch (eMPatch) that enables real-
time, minimally invasive monitoring of key metabolic biomarkers in interstitial fluid, including glucose, uric acid, cholesterol, sodium, 
potassium, and pH. By integrating modular microneedle (MN) sensors into a skin-interfaced flexible platform, the eMPatch achieves robust 
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mechanical stability and seamless skin conformity, thereby ensuring reliable and continuous sensing within the dermal space. In vivo 
validation in animal models under metabolic intervention highlights the strong capability of the eMPatch for real-time physiological track-
ing across diverse daily activities. Implemented with a machine learning algorithm, the eMPatch enables automatic feature extraction and 
multi-task health assessment, achieving a classification accuracy of 0.996 in distinguishing normal and diet-induced metabolic disorder 
for health condition identification and an R2 score of 0.977 for the corresponding degree evaluation. This study highlights the potential of 
the MN-integrated, machine learning-enhanced biosensing platform toward personalized health management.

KEYWORDS  Microneedle; Multiplexed sensing; Flexible patch; Machine learning; Personalized health

1  Introduction

By harnessing the rapid advancements of wearable biosens-
ing technologies, wireless electronics, miniaturized system 
integration, and data-driven analytical strategies, next-
generation personalized healthcare devices are emerging as 
transformative paradigm in medical diagnostics, enabling 
real-time, non-invasive metabolic profiling and precision 
assessment at the individual level [1–3]. In contrast to con-
ventional gold-standard blood and urine analyses that are 
inherently invasive, time-consuming, resource-intensive, and 
limited in temporal resolution, skin-interfaced wearable bio-
sensors continuously transduce dynamic metabolic fluctua-
tions into quantifiable biomedical signals for understanding 
key physiological parameters related to the wearer’s health 
status (e.g., metabolic dysregulation, stress) and facilitate 
proactive disease management (e.g., chronic kidney disease, 
diabetes) with minimal clinical intervention (Fig. 1a) [4–6].

To this end, wearable biosensors have been widely inte-
grated into healthcare applications to enable continuous, 
on-body monitoring of physiologically relevant biomark-
ers in alternative biofluids, such as sweat, tears, saliva, and 
interstitial fluid (ISF) [7–9]. However, epidermal biosensing 
platforms face intrinsic limitations, often requiring sophis-
ticated microfluidic configurations, anti-interference strate-
gies, and intricate sample collection or dilution processes 
to ensure analytical reliability [10, 11]. These challenges 
collectively hinder the practical translations for long-term 
health surveillance and clinical decision-making. Among the 
biofluid-based sensing modalities, dermal ISF—defined as 
a peripheral biofluid surrounding cellular and tissue matri-
ces—provides a metabolically informative medium that 
exhibits strong correlations with blood biomarkers owing to 
the continuous transcapillary exchange with systemic circu-
lation [12, 13]. Instead of surface sampling, direct ISF inves-
tigation circumvents the inherent drawbacks of non-invasive 
epidermal biosensing, including ambient contamination, 

sampling inconsistency, and temporal delays [14–16]. Con-
sequently, ISF-oriented sensing is emerging as a compelling 
avenue for real-time, high-fidelity physiological monitoring.

Microneedle (MN) technology, characterized by its 
mechanically sharp, robust, yet minimally invasive needle-
like architecture, ensures efficient skin penetration without 
bleeding or tissue damage, allowing direct, continuous, and 
real-time ISF analysis [17–19]. The unique capability of 
MN can be greatly enhanced by integrating on-tip electro-
chemical sensing with noble metal-sputtered solid interface 
to track clinically significant, blood-correlated biomarkers 
with high specificity and accuracy, positioning MN-based 
biosensors as an innovative solution capable of bridging the 
long-standing gap between laboratory-based diagnostics 
and decentralized evaluation in personalized medicine and 
digital healthcare [20–23]. However, existing MN-based bio-
sensors predominantly focus on single-biomarker detection 
(e.g., glucose), resulting in limited metabolic insights and 
incomplete health evaluations [24–26]; the absence of a uni-
versal and adaptable fabrication strategy constrain the devel-
opment of multiplexed MN architecture capable of simulta-
neous multi-biomarker monitoring; seamless integration of 
rigid MN components with soft, skin-compatible substrates 
remains technically challenging, often compromising wear-
ability, comfort, and long-term operational stability [27–29]; 
the lack of robust data analytics results in suboptimal extrac-
tion, classification, and prediction of metabolic trends and 
thereby the clinical utility in personalized health manage-
ment [30, 31]. Collectively, there is a strong desire for a 
miniaturized, multiplexed, and flexible MN-based biosens-
ing platform that not only enables comprehensive metabolic 
monitoring but also integrates algorithm-driven interpreta-
tion and predictive health analysis in precision healthcare, 
yet such a prototype remains largely unfulfilled.

Here, we present a skin-interfaced flexible electronic 
multiplexed MN-based biosensor patch (eMPatch) capable 
of simultaneous monitoring of six metabolic biomarkers in 
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real-time, thereby enabling holistic and dynamic profiling 
of metabolic variations during daily activities. As a proof 
of concept, the MNs were fabricated and assembled into 
modular sensing units that allow personalized sensor 
configurations tailored to individual health needs. Bio-
recognition elements were selectively functionalized onto 
the MNs to enable multiplexed detection of key metabolic 
biomarkers—including glucose, uric acid (UA), cholesterol, 
sodium (Na⁺), potassium (K⁺), and pH, which are pivotal 
metabolic indicators that can collectively reflect metabolic 
status and electrolyte homeostasis. Simultaneous monitoring 

of these interdependent biomarkers enables a comprehensive 
understanding of systemic physiological health and its 
dynamic variations during daily activities (Fig.  1b). 
Engineered with a mechanically compliant yet durable 
polystyrene-block-polyisoprene-block-polystyrene (SIS) 
substrate, the eMPatch achieved seamless skin adhesion 
and stable sensor-skin interactions, which greatly enhanced 
the wearability and signal fidelity (Fig. 1c, e). Integrating 
wearable MN-based biosensors with artificial intelligence 
algorithms represented a transformative pathway toward 
data-driven personalized health management. To this 

Fig. 1   eMPatch for personalized health management. a Schematic showing the role of the eMPatch for personalized healthcare during daily 
activities. b Schematic illustrating the modular configuration of the eMPatch with arrays of ion-selective and enzymatic sensors and illustration 
of the eMPatch on the skin, exhibiting the minimally invasive approach of MN in the dermis. c Schematic displaying the multi-layered structure 
of the eMPatch. d-e Photographs of the eMPatch. Scale bar, 1 cm. f Schematic of deep learning-driven data processing for personalized health 
management



	 Nano-Micro Lett.          (2026) 18:248   248   Page 4 of 21

https://doi.org/10.1007/s40820-026-02095-x© The authors

end, the high-dimensional multiplexed datasets acquired 
from the eMPatch were analyzed through an optimized 
machine learning (ML) framework, enabling quantitative 
and predictive assessment of metabolic health status with 
exceptional accuracy and reliability (Fig. 1f).

2 � Experimental Section

2.1 � Chemicals and Materials

Polystyrene (PS), potassium ferricyanide (K3Fe(CN)6), 
potassium ferrocyanide (K4Fe(CN)6), iron (III) chloride 
(FeCl3), hydrochloric acid (HCl), 3,4-ethylenedioxy-
thiophene (EDOT), poly(4-styrenesulfonic acid) (PSS), 
uricase (UOx) (20 U mg−1), cholesterol oxidase (ChOx) 
(≥ 10 U mg−1), sodium ionophore X, sodium tetrakis[3,5-
bis(trifluoromethyl)phenyl] borate (Na-TFPB), valinomy-
cin, bis(2-ethylehexyl) sebacate (DOS), polyvinyl chloride 
(PVC), aniline, polyvinyl butyral (PVB), tetrahydrofuran 
(THF), D-glucose monohydrate, uric acid (UA), choles-
terol, sodium chloride (NaCl), potassium chloride (KCl), 
calcium chloride (CaCl2), magnesium chloride (MgCl2), 
L-ascorbic acid (AA), L-histidine, L-tryptophan, acetyl-
salicylic acid (aspirin), 4-acetamidophenol, potassium 
oxonate (PO), hypoxanthine (HX), sodium carboxymethyl 
cellulose (CMC), methanol, toluene, N,N-dimethylforma-
mide (DMF), Triton X-100, and phosphate buffer solution 
(PBS) (1 × , pH 7.4) were purchased from Adamas-beta. 
Polystyrene-block-polyisoprene-block-polystyrene (styrene 
17 wt%), poly(ethylene glycol) diglycidyl ether (PEGDE), 
and chitosan (medium molecular weight) were purchased 
from Macklin Biochemical. Glucose oxidase (GOx) from 
Aspergillus niger (> 180 U mg−1) and sodium tetraphenylbo-
rate were purchased from Sigma-Aldrich. The artificial inter-
stitial fluid (aISF) was prepared according to our previous 
study [32]. PDMS (Sylgard 184) was purchased from Dow 
Corning. Medical tapes (1587) and Tegaderm (1624W) were 
purchased from 3M. Polyethylene terephthalate (PET) films 
(thickness: 0.1 mm) were purchased from Ocan Polymer. Sil-
ver ink was purchased from Julong Electronic Technology. 
Standard mouse diet (AIN-93 M) and diet-induced obesity 
(DIO) diet (SFD010) were purchased from SPF Biotechnol-
ogy. Commercial colorimetric assay kits were acquired from 
Nanjing Jiancheng Bioengineering Institute.

2.2 � Fabrication of MN

PS-based MN was fabricated with the micro-molding 
technique. A PDMS mold was prepared by mixing PDMS 
elastomer with a curing agent in a 9:1 ratio and stirring 
thoroughly for 20 min. The mixture was degassed in a 
vacuum oven for 15 min and then cured at 80 °C for 2 h. The 
layout of the MN was designed using AutoCAD software and 
carved onto the PDMS mold by a 25 W CO2 laser platform 
(Dahong Laser) using drill mode. The depth and radius of 
the laser-drilled holes were controlled by the parameters 
of the laser. The optimized parameters were a power of 
2 W, speed of 100 mm  s−1, and pitch of 0.05 mm. The 
as-fabricated PDMS mold was immersed in a PS solution 
(300 mg mL−1 in DMF) and centrifuged at 5000 rpm for 
5 min. The filled mold was dried on a heating plate at 80 °C 
for 12 h. The resulting MN consisted of 2 × 3 microneedles 
with a length of 1000 μm and a diameter of 300 μm. The 
multiplexed sensing relies on a group of enzymatic sensors 
composed of three enzymatic working electrodes (WE), 
another group of three ion-selective working electrodes, 
one shared CE made of Cr/Au, and one shared Ag/AgCl 
RE. For WE and CE, a thin layer of Cr (~ 10 nm) was first 
coated onto the MN surface by magnetron sputtering at 
10 mA for 20 s, followed by Au (~ 150 nm) sputtering at 
25 mA for 120 s (GVC-2000, Ion Beam). Then, PEDOT: 
PSS was introduced to WE by electropolymerization (1040c, 
CH Instruments) to increase electrochemical surface area 
and enhance sensitivity. In brief, the Au-sputtered MN was 
immersed in a 0.2 wt% EDOT and 4 wt% PSS aqueous 
solution while applying cyclic voltammetry from 0.2 to 
0.9 V at a scan rate of 50 mV s−1 for 10 cycles. The MN was 
then dried and cured at 80 °C for 1 h and chilled at 4 °C for 
further experiments. For RE, 10 μL of 0.05 M FeCl3 solution 
was drop-casted onto the Cr/Ag coated MN (20 mA, 90 s 
for Ag sputtering) for 30 s, and then rinsed with deionized 
water for three times, followed by drop-casting of a cocktail 
solution containing 50 mg NaCl, 79.1 mg PVB in 1 mL 
methanol for electrode protection.

2.3 � Preparation of Enzymatic Sensors

To prepare glucose and cholesterol sensors, a thin mediator 
layer of Prussian Blue (PB) was electrodeposited by cyclic 
voltammetry from − 0.2 to 0.4 V at a scan rate of 20 mV s−1 
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for 15 cycles in a fresh solution containing 2.5 mM FeCl3, 
2.5 mM K3Fe(CN)6, 0.1 M KCl in 0.1 M HCl. The UA 
sensor was prepared in the same process for 5 cycles. The 
PB-modified MN was washed with deionized water and 
dried, followed by drop-casting of 10 μL enzyme cocktails 
onto the corresponding WE. The enzyme cocktails were 
prepared by mixing enzyme solutions (GOx 10 mg mL−1, 
UOx 20 mg mL−1, and ChOx 10 mg mL−1) with chitosan 
(1 wt% in 1% acetic acid) in an optimized ratio of 1:1. After 
drying, 10 μL of 1% PEGDE was drop-coated for enzyme 
crosslinking and protection.

2.4 � Preparation of Ion‑Selective Sensors

To prepare ion-sensitive sensors, ion-selective membrane 
cocktails were made as follows: Na+ selective membrane 
consisted of 1  mg sodium ionophore X, 0.55  mg 
Na-TFPB, 33 mg PVC, and 65.45 mg DOS, which were 
dissolved in 660 μL THF. The K+ selective membrane 
consisted of 2  mg valinomycin, 0.55  mg sodium 
tetraphenylborate, 33  mg PVC, and 65.45  mg DOS, 
which were dissolved in 660 μL THF. Then, 10 μL of 
the ion-selective membrane cocktails was drop-casted 
onto the corresponding PEDOT:PSS-modified WE 
and left for drying. To prepare the pH sensor, PANI 
was electropolymerized onto WE by scanning cyclic 
voltammetry from − 0.2 to 1.0 V for 30 cycles at a scan 
rate of 100 mV  s−1 using a 0.1 M aniline solution in 
0.1 M HCl.

2.5 � Morphology Characterization of the MN Sensors

The morphology of the MN and modified components 
was characterized using scanning electron microscopy 
(SEM, Sigma 300, ZEISS). The element composition of the 
as-prepared MN sensor was determined by energy-dispersive 
X-ray spectroscopy (EDS) (Xplore 30, Oxford).

2.6 � Biocompatible Characterization of the MN Sensors

Mouse fibroblast cells L929 (Princella) were cultured 
in DMEM culture media added with 10% FBS and 1% 
penicillin–streptomycin at 37  °C and under 5% CO2 
atmosphere. After cell proliferation, the L929 cells were 

cultured in a 24-well plate. The MN sensor was rinsed 
with 75% ethanol for three times and then placed into the 
24-well plate for 24 or 48 h. A Cell Counting Kit-8 (CCK-
8, Beyotime) was used to determine cell viability. The 
absorbance was measured at 450 nm using a microplate 
reader (Infinite M200 pro, Tecan). The morphology of 
cells was determined using a Live/Dead staining assay kit 
(Beyotime). The fluorescent images were captured by a 
biological inverted microscope (BDS400-FL, CNOptec).

2.7 � Fabrication and Assembly of the Flexible eMPatch

To fabricate an elastic SIS substrate, 200 mg  mL−1 SIS 
solution in toluene was evenly spin-coated on a Si wafer 
at a speed of 3000  rpm for 60  s (WS-650–23, Laurell 
Technology) and cured at 80 °C for 2 h. The resulting SIS 
substrate with a thickness of about 0.45 mm was then cut 
and carved with serial 3.5 mm × 5 mm × 0.2 mm grooves, 
of which the layout was designed by AutoCAD software. 
Modified MN sensors, CE, and RE were fixed into the laser-
carved grooves using an SIS solution. A laser-patterned PET 
tape was then attached to the SIS substrate as the printing 
mask. Stretchable silver ink composed of silver ink and SIS 
in a weight ratio of 4:1, mixed by a planetary centrifugal 
mixer (MSK-PVC-300, Kejing Star Technology) at a speed 
of 1500 rpm for 10 min, was screen printed onto the pre-
patterned PET mask to form stretchable interconnects, which 
were connected to the fixed MNs using silver ink. After 
being cured at 80 °C for 1 h, the PET mask was removed 
and a double-sided medical tape (70–80 µm) was aligned 
onto the SIS substrate, followed by a layer of Tegaderm 
adhesive dressing (40–50 µm). Both the medical tape and 
Tegaderm were patterned using laser-cutting to selectively 
expose only the MN tips, while the surrounding baseplate 
was fully covered by the adhesive layer to ensure insulation 
and structural stability during skin attachment. Finally, the 
sensing area was attached with a thin layer of PET backing 
(0.1 mm) to support the MN during physical deformation. 
The optimized working parameters for the laser platform are 
listed in Table S1.

2.8 � In Vitro Electrochemical Characterization

Electrochemical experiments, including chronoamperometry, 
OCP, and CV, were performed using a multichannel 



	 Nano-Micro Lett.          (2026) 18:248   248   Page 6 of 21

https://doi.org/10.1007/s40820-026-02095-x© The authors

electrochemical workstation (1040c, CH Instruments). 
Electrochemical impedance spectroscopy (EIS) was 
operated using CHI 660e. For the enzymatic MN sensors, 
chronoamperometric measurements were performed at a 
potential of -0.1 V in PBS (pH = 7.4) with corresponding 
target analytes, including glucose ranging from 0 to 20 mM, 
UA ranging from 0 to 1000 μM, and cholesterol ranging 
from 0 to 10 mM. For the ion-selective sensors, OCP tests 
were performed with analytes of NaCl ranging from 5 to 
160 mM, and KCl ranging from 1 to 32 mM. Na2HPO4/citric 
acid buffer solutions were adjusted to standard pH from 3 
to 8 for the pH sensor. Calibration curves were obtained 
from the correlation between the current/potential readouts 
and corresponding concentrations. Commercial colorimetric 
assay kits and a pH meter (PHS-3CB, Yueping) were used 
to validate the accuracy of the MN sensors in the aISF. 
Target analytes with high concentration were diluted for 
colorimetric detection.

To evaluate the selectivity of each sensor, commonly 
found interferences in ISF were added stepwise, followed 
by serial addition of target analytes. The selectivity of 
enzymatic sensors was tested using 300 μM UA, 300 μM 
AA, 5 mM NaCl2, 5 mM KCl, 500 μM histidine, 500 μM 
tryptophan, 100  μM aspirin, 100  μM acetaminophen, 
5 mM glucose, 5 mM lactate, and 5 mM cholesterol. For 
the ion-selective sensors, 5 mM NaCl, 5 mM KCl, 2 mM 
MgCl2, 4 mM CaCl2, 5 mM glucose, 300 μM UA, and 
5 mM cholesterol were used as interferents. The short-term 
stability was investigated by repetitive measurements of 
step-up concentrations of target analytes using the same one 
or a batch of three sensors. The continuous stability was 
investigated by monitoring the electrochemical responses 
of all sensing channels over a 120-min measurement period. 
The shelf-life stability was explored by recording the 
electrochemical performance of each sensor once a day for 
14 days, during which the sensors were stored at 4 °C. The 
batch-to-batch reproducibility was evaluated by measuring 
the electrochemical signals of sensors from five batches 
(eight independently fabricated sensors for each batch) 
toward corresponding analytes within their physiological 
ranges. All selectivity and stability experiments were 
conducted in the aISF solution.

2.9 � Design and Integration of the Electronic System

The electrochemical electronic system was designed by 
Altium Designer software. The hardware layout comprises 
a microcontroller unit (MCU), an electrochemical analog 
front end (AFE), an external ADC chip (ADS1115), a chan-
nel selector, and a Bluetooth communication module. The 
low-power STM32L431 MCU, based on the ARM Cortex-
M4 core, manages data acquisition, command processing, 
and task scheduling. The electrochemical AFE (AD5941) 
utilizes the serial peripheral interface (SPI) protocol for bidi-
rectional communication with the MCU, enabling precise 
control over measurement modes and parameter configu-
rations through register manipulation. External interrupts 
from the front end trigger the MCU to retrieve measurement 
results. The ADC chip communicates with the MCU via 
the inter-integrated circuit (I2C) protocol, ensuring reliable 
and high-precision acquisition of OCP signals. The channel 
selector features a single-pole eight-throw (1P8T) multi-
plexer (AD1408) and a customized adapter board connected 
to the mainboard via a 12-pin FPC cable. The system sup-
ports multichannel chronoamperometric and potentiometric 
measurements. These channels operate concurrently, with 
the OCP channels directly interfacing with the ADC chip for 
independent measurement, enabling simultaneous collection 
of data across all channels. Wireless communication is facil-
itated by a low-power Bluetooth Low Energy (BLE) module 
(CC2540), which pairs with a custom-designed JavaScript 
Object Notation (JSON)-based data exchange protocol to 
ensure efficient and reliable transmission of real-time data 
and commands. The system is powered by a 300 mAh lith-
ium battery, supported by a USB Type-C compatible charg-
ing circuit, offering up to six hours of continuous operation.

T h e  d ev i c e  o p e r a t e s  i n  a  s i n g l e  m o d e , 
simultaneously performing measurements across 
three chronoamperometric measurement channels 
and three OCP channels. The firmware architecture 
is based on the open-source FreeRTOS platform, 
enabling real-time multitasking for functions, such as 
electrochemical measurements, command processing, 
and data communication. Data acquisition is performed 
at an adjustable rate by the electrochemical AFE, with the 
MCU retrieving data via the SPI protocol upon external 
interrupts. Potentiometric signals are independently 
acquired through the ADC chip and transmitted to the 
MCU via I2C. Commands are parsed and queued for 
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execution, with results packaged into JSON responses 
marked with statuses, such as success or error. These 
responses are transmitted to mobile devices via Bluetooth 
during idle periods.

2.9.1 � Mechanical Characterization of the eMPatch

Mechanical stability was evaluated upon the skin penetration 
capacity of the MN sensor and the flexibility tests of the 
MN patch. To mimic the minimally invasive skin penetration 
manner, the process of a single MN inserting into an agarose 
hydrogel (1.4% agarose in PBS) was photographed by a 
biological inverted microscope. Mechanical compression 
tests were performed using a universal testing machine (HY-
0580, Hengyi). The initial distance between the MN tips and 
the workbench was set to 1.0 mm. The compression rate and 
force threshold were set to 0.5 mm min−1 and 10  N. The 
load and displacement were recorded every 0.1 s to plot the 
load–displacement curve.

The stretchability of interconnects was first evaluated 
by comparing the resistance of the stretchable silver ink 
composed of different ratios of SIS under different strains 
(3706A, Keithley). The electrochemical responses of each 
MN sensor under different mechanical deformations (i.e., 
bending and twisting) in the aISF with standard analytes 
were measured by chronoamperometry and OPC test using 
an electrochemical workstation (1040c, CH Instruments). 
To characterize the after-bending stability, electrochemical 
measurements were performed before and after 100, 
200, 300, 400, and 500 cycles of mechanical bending of 
the same MN patch. The sensing stability of SIS-based 
and PI-based MN patches under twisting deformation 
was demonstrated by comparing the motion artifacts 
generated during chronoamperometric measurements of 
MN sensors in a 5 mM [Fe(CN)6]3−/4− solution. Sequential 
mechanical vibration was applied to the sensing area for 
60 s. The PI-based MN patch was fabricated with the same 
configuration using PI substrates.

2.9.2 � Finite Element Simulation for the eMPatch

The stretchability of the MN patch was evaluated by finite 
element simulations (COMSOL Multiphysics software, 
version 6.2). Two models were developed by applying a 

15% stretching deformation on a flexible MN patch with 
or without a PET film. It was assumed that the rigid MN 
sensors were supported by the PET film, and therefore, 
the electrochemical measurements remained stable, and 
no detachment of MN was observed under stretching 
deformation. Three types of materials were introduced to 
the models, including a flexible elastomer (SIS) with elastic 
modulus E = 1 MPa, Poisson’s ratio ν = 0.5, a non-stretchable 
PET film with elastic modulus E = 7 GPa, Poisson’s ratio 
ν = 0.32, and a rigid PSMN with elastic modulus E = 3.5 
GPa, Poisson’s ratio ν = 0.35. The boundary conditions are 
horizontal stretching deformation and limited displacement 
in the vertical direction. The stress-stretch relationship can 
be obtained through Hooke’s law:

where ε was the strain, σ was the stress, γ was the shear 
strain, τ was the shear stress, and G was the shear modulus. 
The relationship between G and E was:

2.9.3 � In Vivo Evaluation for Continuous Monitoring

In vivo evaluation and validation of the eMPatch were 
carried out in compliance with the guidelines and ethical 
regulations of protocol R20230603, which was approved 
by the Animal Ethics Committee of East China Normal 
University. Continuous multiplexed monitoring was 
conducted on male SD rats (6–8 weeks, 180–200 g), which 
were obtained from SPF Biotechnology and accommodated 
in a standard laboratory animal center (12-h light/dark cycle, 
50 ± 10% relative humidity, and a temperature of 23 ± 2 °C) 
for one week before all experiments. SD rats (n = 15) were 
categorized into a normal group (NORM), a high glucose 
group (HG), and a high UA group (HUA). After overnight 
fasting for 12 h, the rats were induced to anesthesia with 
isoflurane (5% mg kg−1), and the dorsal hair was shaved off, 
followed by disinfection with 75% ethanol for two times. The 
HG group was intraperitoneally injected with 10% glucose 
at a dose of 0.05 mL 10 g−1, and the HUA group was treated 
with 25 mg mL−1 PO and HX (dispersed in 0.5% CMC) 

(1)� =
�

E

(2)� =
�

G

(3)G =
E

2(1 + �)
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at 0.05 mL/10 g, while the NORM group received saline 
as a control. The eMPatch was applied to the bare skin, 
leaving pin electrodes exposed for the connections of the 
wireless electronic system. Chronoamperometric and OPC 
measurements were run for 5 min to stabilize the signals. 
Parameters were used the same as in vitro demonstrations. 
A commercial glucometer (UG-12, Sinocare) was used 
for glucose validation. Tail blood was collected for the 
validation of UA, cholesterol, sodium, and potassium using 
commercial colorimetric assay kits. The values of pH were 
measured by a commercial micro pH meter (9826BN, 
Orion).

2.9.4 � In Vivo Evaluation for Long‑Term Monitoring

For long-term monitoring, eight-week-old male SD rats 
(n = 9) were purchased from SPF Biotechnology and divided 
into three groups randomly with three rats each: a control 
group (CON) fed with a standard diet; a high-fat-high-
fructose diet (HFFD) group fed with a DIO diet; a high-
fat-high-fructose-high-salt (HFFSD) group fed with a DIO 
diet mixed with 8% (w/w) NaCl. Long-term monitoring 
was carried out by measuring the biochemical signals 
using the eMPatch once a week for 4 weeks. Five-minute 
measurements were allowed for the signal stabilization, 
and the following data from the biosensors were collected 
for the next 5 min. The body weight and gold-standard 
measurements of the rats were recorded every week.

2.9.5 � Algorithm Development Platform

To ensure the objectivity and reliability of the model’s 
evaluation, all the algorithms are implemented in the 
interactive programming environment Jupyter Notebook 
with Python 3.8.10. All the programs are carried out on the 
Windows 11 (× 64) operating system, powered by an Intel 
(R) Core (TM) i7-14650HX CPU and NVIDIA GeForce 
RTX 4060 Laptop GPU. To accelerate the training process 
of deep learning, a GPU is used for parallel computing. 
CUDA™ (Compute Unified Device Architecture) is a 
general-purpose parallel computing architecture launched 
by NVIDIA, enabling GPUs to solve complex computing 
problems. It includes the CUDA instruction set architecture 
(ISA) and the parallel computing engine inside the GPU. 
In this study, we utilized the CUDA-enabled version of 

PyTorch (V1.12.1) and scikit-learn (V1.3.2) to optimize 
computation.

2.9.6 � Data Preprocessing

Data preprocessing is a critical step to ensure the quality 
of input data for machine learning models. For raw data, 
data standardization must be performed before feeding it 
into the model. The Z-score standardization technique is 
employed, scaling feature values to a standardized form 
with a mean of 0 and a standard deviation of 1. This ensures 
that different feature values have a balanced influence on 
weight updates during model training, enhances the model’s 
stability, and accelerates the convergence process. For the 
standardized dataset, a fivefold cross-validation method is 
applied to split the data into training and validation sets. This 
approach ensures effective data utilization while mitigating 
the risk of overfitting. The entire dataset is evenly divided 
into five equally sized subsets. The model is trained and 
validated five times, with each iteration using a different 
subset as the validation set and the remaining four subsets 
as the training set. This means that each subset serves as the 
validation set once and is used as part of the training set in 
the other four iterations, ensuring the model’s performance 
remains balanced across all data. During the subset 
partitioning process, it is essential to maintain balanced 
class distributions for classification tasks and target value 
distributions for regression tasks. This helps to reduce bias 
caused by imbalanced data distributions and ensures the 
accuracy and fairness of the model evaluation. The metrics 
used in ML evaluations are provided in the Supporting 
Information.

3 � Results and Discussion

3.1 � Design of the eMPatch

The wearable eMPatch consists of a modular MN sensing 
component functionalized with different bio-recognition 
elements for molecular analyses and a flexible polymer 
substrate with mechanical elasticity and robustness for 
intimate skin conformability. The MN sensing component 
was designed with three enzyme-based sensors, three ion-
selective sensors, a shared counter electrode (CE), and a 
shared reference electrode (RE), which was assembled 
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separately on the laser-patterned SIS elastomer substrate as 
an integrated biosensor system. The stretchable interconnects 
were attached to the MN patch by screen printing (Fig. S1). 
Then, the sandwich-structured eMPatch was fabricated by 
attaching a patterned dressing film and a PET backing to the 
top and bottom of the patch using commercial medical tapes, 
respectively (see Experimental Section and Figs. S2 and S3 
for details of the fabrication process). Biochemical signals 
were collected from the multilayered functionalized MN 
sensors by chronoamperometry and open circuit potential 
(OCP) measurements for multiplexed monitoring. Due 
to the high similarity between the composition of blood 
and ISF, glucose, UA, cholesterol, Na+, K+, and pH were 
targeted for their crucial roles in metabolic pathways. A self-
developed electronic system comprising a microcontroller 
unit, a potentiostat, and a Bluetooth module was interfaced 
for multichannel signal collection, processing, and wireless 
communication. Further integrated with an ML pipeline, the 
eMPatch can be customized to pinpoint the physiological 
status with interpretative and predictive outputs, thereby 
offering a dynamic perspective for home-care management 
of health and chronic diseases with holistic monitoring and 
clinical analysis.

3.2 � Fabrication and Characterization of the MN Sensor

The polystyrene-based MN (PSMN) was fabricated using 
the conventional demolding technique based on a previously 
reported study [33]. Briefly, a PS solution was prepared in 
DMF and cast into a laser-drilled poly(dimethylsiloxane) 
(PDMS) micromold by centrifugation (Fig.  2a). After 
12 h overnight drying, an array of conical PSMN with six 
independent MN was demolded for further modification 
(Fig. 2b). The as-fabricated MN array was arranged with 
1000 μm in height, 600 μm in base diameter, and 800 μm in 
needle-to-needle space, which ensured the balance among 
surface area, mechanical strength, and insertion efficiency 
(Fig. S4). Scanning electron microscopy (SEM) images 
showed the zoom-in morphology of a sharp and intact nee-
dle tip with a radius of 10 μm for reliable skin penetration 
(Figs. 2c and S5). The 3D architecture of MN promoted 
mass transport and provided a large geometric surface 
(exposed surface area of the MN cone) for analyte cou-
pling compared to the planar electrode [34]. In principle, 
a higher aspect ratio of MN, as well as a smaller needle 

tip radius, can further elevate the electrochemical response 
[35]. Cyclic voltammetry (CV) scans of the Cr/Au sput-
tered MN (AuMN) and the planar electrode with a similar 
electrode area demonstrated that the redox peak of the MN 
electrode was 2.8 times more prominent than that of the 
planar electrode (Fig. 2d). To render the multiplexed sensing 
in ISF, a versatile layer-by-layer modification strategy was 
proposed for the MN sensor (Fig. 2e). The solid MN were 
first sputtered with a thin Cr/Au layer to form conductive 
substrates. A poly(2,3-dihydrothieno-1,4-dioxin):poly(styr
enesulfonate) (PEDOT:PSS) film was electropolymerized 
onto the Au-coated MN with an optimized EDOT concen-
tration of 0.2 wt%, enabling a stable solid-contact layer for 
the detection of ion species (Na⁺, K⁺, and H+) (Fig. S6). For 
enzymatic sensing, the Au-PEDOT:PSS-modified MN were 
further functionalized with a Prussian Blue (PB) mediator 
layer. Enzymatic cocktails were subsequently immobilized 
onto the MN surface using a chitosan-poly(ethylene glycol) 
diglycidyl ether (PEGDE) crosslinked network. Notably, the 
final tip diameter of the fully functionalized MN electrodes 
remained below 50 μm, enabling effective skin penetration 
without compromising mechanical integrity or insertion 
capability (Figs. S7 and S8) [36].

The rough nature of PEDOT:PSS with a high 
electrochemically active surface area (ECSA) provides 
sufficient geometry for the loadings of mediators, 
enzymes, and crosslinking agents (Fig.  2f) [37]. The 
ECSA was estimated from the experimentally obtained 
double-layer capacitance, demonstrating the higher ECSA 
of the PEDOT:PSS-coated AuMN than that of planar Au 
and bare AuMN (Figs. S9 and S10). Energy dispersive 
X-ray spectroscopy (EDS) analyses further confirmed 
the successful modification of PEDOT:PSS and PB by 
the presence of sulfur (S), iron (Fe), and potassium (K) 
(Figs.  2g and S1!). The thickness of PB was tailored 
with different scanning cycles based on the levels of 
biomarkers in ISF (Fig.  S12). In principle, a thicker 
PB layer leads to a wider linear range while the thinner 
exhibits higher sensitivity toward low-concentration 
biomarkers due to the faster charge transfer kinetics [38]. 
Therefore, the as-modified MN electrode demonstrated 
a diffusion-controlled mode for mass transport with 
superior conductivity, enabling efficient electrochemical 
performance for multiplexed sensing (Fig.  S13). The 
pH sensor was prepared by the electropolymerization 
of hydrogen ion-sensitive polyaniline (PANI) on 
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the PEDOT:PSS decorated AuMN (Fig. S14). The modi-
fication steps were characterized by EIS and CV scans 
(Figs. 2h and S15). The PEDOT:PSS decoration led to an 
increased peak current in the CV plot and lower imped-
ance in the Nyquist plot, indicating the film could promote 

both electronic and ionic charge transport for preparing 
enzymatic and ion-selective sensors [39].

The skin penetration capability of the MN was 
comprehensively evaluated through the following experiments. 
The mechanical strength of the MN synthesized with different 
concentrations of PS (100, 200, 300, and 400 mg mL−1) 

Fig. 2   Design and characterization of the MN sensor. a Schematic showing the fabrication of the MN. b Photograph of the MN. Scale bar, 
1 mm. c SEM images of the MN (left) (scale bar, 400 μm) and one needle (right) (scale bar, 100 μm). d CV scans of the Au-sputtered MN and 
planar electrodes with similar electrode areas in a 5 mM [Fe(CN)6]3−/4− solution. Scan rate, 50 mV  s−1. e Schematic showing the multilayer 
modifications of the MN sensor. f SEM image of the electrodeposited PEDOT:PSS. Scale bar, 10 μm. g SEM and EDS mapping images of 
the modified MN sensor. Scale bar, 25 μm. h EIS measurements of the MN sensor in a 5 mM [Fe(CN)6]3−/4− solution after each modification 
step: Au, PEDOT:PSS, PB, and enzyme/CS/PEGDE network. i Mechanical compression test of MN fabricated with different concentrations 
of PS. j Relationship between Young’s modulus and toughness. Error bar indicates SD from three replicates (n = 3). k Microscopic images of 
an MN before/during/after penetrating artificial skin tissue. Scale bar, 200 μm. l H&E staining image of the rat skin tissue after MN insertion. 
Dash lines indicate the micropore formed by the insertion manner. Scale bar, 100 μm. m Zoom-in images showing the recovery process of 0, 
10, 20, and 30 min after MN insertion. Scale bar, 0.5 cm. n Schematic showing the cell viability experimental setup. o Fluorescent micrographs 
exhibiting the viability of mouse fibroblast L929 after 24 and 48 h of incubation. Scale bar, 100 μm. Error bar indicates SD from three replicates 
(n = 3). p Cell viability results of mouse fibroblast L929 after incubating with/without the MN sensors for 24 and 48 h. ns, P > 0.05. One-way 
ANOVA with Dunnett’s test
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was investigated through a compression test (Fig. 2i). The 
MN with 100 mg mL−1 could withstand a maximum force 
of 2.1 N (0.35 N needle−1) without obvious fracture, which 
was greater than the required robustness for skin penetration 
[40]. However, the 400 mg mL−1 PS with a higher yield point 
(5.8 N) was subject to poor toughness, which may lead to 
brittle fracture of needle tips after MN insertion or during 
physical movement (a sharp drop of force indicated the yield 
point of needle tips). Therefore, an optimized concentration 
of 300 mg mL−1 was selected for further tests according to 
the correlation between Young’s modulus and toughness 
(Fig. 2j). An agarose-prepared artificial skin tissue was used 
to mimic the skin penetration process, where an intact needle 
tip was observed before and after the MN insertion (Fig. 2k). 
In Parafilm (in vitro) and porcine skin (ex vivo) tests, the MN 
successfully penetrated Parafilm and porcine skin with well-
defined microholes, confirming effective penetration and 
structural integrity of the MN (Fig. S16). As demonstrated in 
the Hematoxylin and eosin (H&E) images, the MN accurately 
reached the ISF in the dermis layer without damaging 
subcutaneous capillaries (Fig. 2l). The recovery capability was 
assessed by monitoring the MN-induced trace over time (0, 10, 
20, and 30 min) (Fig. 2m). A group of noticeable microholes 
on the rat’s dorsal skin was observed after the removal of the 
MN (0 min), which recovered within 30 min without leaving 
any visible skin damage or irritation. The biocompatibility 
of the MN sensor was evaluated by the cell viability assay 
and Live/Dead staining (Fig. 2n). Compared with the control 
group, no significant effect on cell viability was observed 
during the 24 and 48 h incubation period, indicating the 
excellent biocompatibility of the MN sensor for long-term 
monitoring (Fig. 2o, p). In addition, photographs of rat skin 
after prolonged wear of the MN for 7 days showed no visible 
signs of erythema or inflammation (Fig. S17). H&E staining of 
major organs (heart, liver, spleen, lung, and kidney) collected 
at 1 day and 7 days post-wearing revealed no noticeable 
pathological alterations compared with the control group, 
indicating strong biocompatibility of the eMPatch during 
prolonged use (Fig. S18).

3.3 � Electrochemical Performance of the Integrated 
eMPatch

The eMPatch consists of amperometric glucose, UA, choles-
terol sensors, and potentiometric ion-selective Na+, K+, pH 

sensors (Fig. 3a), enabling the enzymatic sensing based on 
the PB mediator with a low redox potential, and ion-selec-
tive sensing with PEDOT:PSS as the intermediate solid-
contact layer for the efficient ion-to-electron transduction 
(Fig. 3b, c). The feasibility of each sensor was evaluated in 
standard solutions containing corresponding analytes with 
physiologically relevant concentrations.

The electrochemical performance of enzymatic sensors 
was displayed with representative chronoamperometric 
responses to glucose (0–20  mM), UA (0–1000  μM), 
and cholesterol (0–10 mM) (Fig. 3d–f??). Strong linear 
correlations of glucose, UA, and cholesterol sensor 
(r = 0.991, 0.994, 0.983) were obtained with the sensitivities 
of 0.1122  μA  cm−2  mM−1, 0.001395  μA  cm−2  μM−1, 
and 0.1637  μA  cm−2  mM−1, respectively. The limit of 
detection (LOD) was calculated as 0.39  mM, 2.7  μM, 
and 0.52 mM, respectively (LOD = 3.3σ/S, where σ is the 
standard deviation of the baseline noise and S is the slope 
of the calibration curves). The results indicated the real-
world practicability of the eMPatch for glucose, UA, and 
cholesterol monitoring over the physiologically relevant 
ranges of 4.4–6.6  mM, 130–460  μM, and 2.9–5.2  mM 
[41–43]. For the ion-selective sensors, well-defined OCP 
curves were obtained with near-Nernstian sensitivities of 
52.87 mV (r = 0.987) and 58.46 mV (r = 0.997) per decade 
concentration, covering the physiological ranges of Na+ 
(135–145 mM) and K+ (3.5–5 mM) (Fig. 3g, h??) [44]. The 
pH sensor exhibited a linear response of 57.61 mV pH−1 
(r = 0.997) by switching the protonation status of the PANI 
surface over a physiologically relevant range of 6.6 to 7.6, 
which is wider than the values in the blood due to the lack 
of buffer molecules in ISF (Fig. 3i??) [45]. The accuracy of 
the calibrated eMPatch was validated against the commercial 
colorimetric assay kits in the aISF (Fig. S19). In addition, 
the influence of pH and temperature on the eMPatch 
was optimized under different environmental conditions 
(Fig. S20) [46].

The eMPatch displayed high sensitivity against potential 
interfering species commonly found in ISF (Fig. S21). All 
the MN sensors showed negligible signal drifts within 6% 
to each addition of other interference analytes, followed by 
notable increases upon incremental addition of the target 
analytes. The repeatability of eMPatch patches toward 
cyclically elevated concentrations was exhibited, which 
indicated strong reliability against drastic level changes 
during continuous monitoring (Figs. S22 and S23). To 
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further evaluate the stability of the eMPatch over long-term 
monitoring, all MN sensors were continuously operated in 
the aISF with corresponding analytes in physiologically 
relevant concentrations for 120 min, during which stable 

electrochemical signals with more than 88% signal retention 
were maintained for targeted biomarkers (Fig. S24). In 
addition, the eMPatch maintained a steady-state response 
with a relative standard deviation (RSD) below 2.64% 

Fig. 3   Electrochemical characterization of the eMPatch. a Schematic of the eMPatch that comprises enzymatic and ion-selective sensors for 
glucose, UA, cholesterol, Na+, K+, and pH monitoring. b-c Schematic demonstrating the mechanism of the MN sensors for enzymatic and ion-
selective sensing (b) and the cross-linked enzyme/CS/PEGDE network (c). d–f Chronoamperometric responses of the glucose (d), UA (e), and 
cholesterol sensors (f) to target analytes. Insets, the corresponding calibration curves in different ranges. Error bar indicates SD from three repli-
cates (n = 3). g–i OCP responses of the Na+ (g), K+ (h), and pH sensors (i) to target analytes. Insets, the corresponding calibration curves in dif-
ferent ranges. Error bar indicates SD from three replicates (n = 3). j-k Photograph (j) and schematic diagram (k) of the self-developed electronic 
system for wireless monitoring. Scale bar, 1 cm. l Comparison of the linear fitted curves of glucose and pH measured by the electronic system 
and electrochemical workstation (CHI 1040c). Error bar indicates SD from three replicates (n = 3)
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for all MN sensors during a 14-day storage experiment, 
demonstrating the reliable shelf-life stability (Fig. S25). The 
eMPatch exhibited high reproducibility with RSD within 
2.21% by comparing the normalized outputs from five 
batches (eight patches for each batch, n = 8), demonstrating 
good stability of the as-proposed eMPatch for mass 
production and universal application (Fig. S26).

The fully integrated eMPatch was also interfaced with 
a self-developed electronic system for multiplexed signal 
processing and wireless communication. The schematic 
illustration, optical image, and overview of the system 
are shown in Fig. 3j, k???, which was designed with an 
electrochemical analog front end (AFE) providing the 
circuitry for multiplexed chronoamperometric measurements 
and signal conditioning (amplification and filtering), and 
an external analog-to-digital (ADC) unit incorporated for 
multichannel potentiometry. Data acquisition, command 
processing, and task scheduling were managed by a low-
power microcontroller unit (MCU). A low-power Bluetooth 
Low Energy (BLE) module was utilized for wireless 
communication. Power of the electronics was sourced by a 
lithium-ion battery with a USB Type-C compatible charging 
circuit for up to six hours of continuous operation. The 
detailed circuit, firmware, and software designs are shown 
in Figs. S27 and S28. The accuracy of the AFE sensing 
module and the ADC chip was strongly validated through 
the well-established calibration curves between the wireless 
electronic system and the electrochemical station (glucose 
and pH measurements as examples) (Fig. 3l).

3.4 � Mechanical Evaluation of the eMPatch

The combination of rigid MN sensors and a soft skin-worn 
substrate allows for efficient MN sensing with excellent 
adaptability and conformability (Fig. 4a). Therefore, the 
mechanical stability of the as-proposed eMPatch was inves-
tigated when unexpected deformations occurred.

The effect of skin penetration on the eMPatch was 
evaluated. First, no noticeable fracture or blunting of the 
MN tips, as well as delamination or cracking of the MN 
surface, were observed after MN insertion, confirming the 
mechanical robustness and pierceability of the MN (Figs. 4b, 
S29, and S30). The variations in sensitivities and mass of the 
eMPatch suggested a maximum of three times insertion with 
acceptable integrity of sensing layers for reliable monitoring, 

which provided opportunities against incomplete MN 
penetration and MN detachment in daily activities (Figs. 4c 
and S31). The conductive performance of the stretchable 
interconnects was tailored by the concentration of SIS. A 
weight ratio of 25% SIS exhibited both stable resistance and 
stretchability under up to 30% strain deformation (Fig. 4d). 
The thin PET backings underneath the eMPatch ensured the 
structural integrity by providing supportive strength against 
undesirable deformations during on-body operations. Finite 
element simulations demonstrated the uniform distribution 
of stress on the PET-protected eMPatch compared to the 
counterpart without PET backings, which exhibited higher 
principal stress on the MN sensors under 15% strain (Fig. 4e, 
f). The results indicated a higher risk of MN delamination 
of the eMPatch without PET backings by stress-induced 
deformations (Fig. S32). The excellent mechanical resilience 
of the eMPatch after different deformations is shown in 
Fig. 4g. The patch was unfolded with no apparent device 
disassembly after bending for 180° and neck twisting for 
90°. The influence of these deformations on the sensing 
performance was also evaluated by an ex vivo experimental 
setup (Fig. S33). As shown in Fig. 4h, bending exerted 
negligible effects during the electrochemical measurements 
of all MN sensors. Although the effects of twisting indicated 
slight signal deviations of 5.7% and 4.1% for glucose and 
cholesterol sensors, the concentration-correlated readouts 
were still maintained within the physiological range. 
Reliable mechanical stability against the bending manner 
was observed by recording the electrochemical signals of 
each MN sensor after every 100 repetitive bending cycles in 
the aISF (Fig. 4i, j). Twisting-induced motion artifact noises 
were quantified between an SIS-based and a non-stretchable 
polyimide (PI)-based MN patch, showing four times lower 
vibration amplitude generated from the SIS-based eMPatch 
compared with the PI-based patch (Fig. 4k, l).

3.5 � In Vivo Validation of the eMPatch for Multiplexed 
Monitoring

To demonstrate the feasibility of the eMPatch for continuous 
monitoring of physiologically relevant biomarkers in ISF, 
controlled experiments were performed on three groups of 
Sprague–Dawley (SD) rat models using metabolic interven-
tions on the levels of glucose and UA, which tend to fluctu-
ate rapidly due to daily dietary intake and activities (Fig. 5a). 
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Fig. 4   Mechanical characterization of the eMPatch. a Exploded view detailing the layer-by-layer configuration of the eMPatch. b Images show-
ing the MN tips before and after multiple insertions into rat skin. Scale bar, 200 μm. c The influence of different insertion times on the electro-
chemical responses to 5 mM glucose. Error bar indicates SD from three replicates (n = 3). d Resistive change of the stretchable interconnects 
with different ratios of SIS under varying uniaxial strain percentages. e–f Finite element simulations of the distribution of stress on the eMPatch 
with (e) and without (f) the PET backings under a horizontal strain percentage of 15%. g Optical images showing the mechanical resilience of 
the eMPatch under bending (left) and twisting (middle), and after these deformations (right). Scale bar, 1 cm. h Normalized electrochemical 
readouts of each sensor to standard analyte solutions before and under mechanical deformations (Glucose: 5 mM, UA: 300 μM, cholesterol: 
5 mM, Na+: 140 mM, K+: 5 mM, pH: 7.0). Error bar indicates SD from three replicates (n = 3). **P < 0.01, ns, P > 0.05. One-way ANOVA with 
Dunnett’s test. i Normalized current of enzymatic sensors to standard analyte solutions after every 100 stretching (vertical) cycles up to 500 
cycles (Glucose: 5 mM, UA: 300 μM, cholesterol: 5 mM). Error bar indicates SD from three replicates (n = 3). Glu: glucose, Chol: Cholesterol. 
j Normalized potential of ion-selective sensors to standard analyte solutions after every 100 stretching (vertical) cycles up to 500 cycles (Na+: 
140 mM, K+: 5 mM, pH: 7.0). Error bar indicates SD from three replicates (n = 3). k Chronoamperometric measurements of SIS-based and PI-
based MN patches in a 5 mM [Fe(CN)6]3−/4− probe with the same magnitude of mechanical disturbance simultaneously. l Current amplitude of 
motion artifacts on SIS-based and PI-based MN sensors. Error bar indicates SD from twelve measurements (n = 12). ****P < 0.0001. Unpaired, 
two-tailed t-test
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Briefly, the high glucose group (HG) was intraperitoneally 
injected with glucose solution while the high UA group 
(HUA) was treated with hypoxanthine (HX) and potas-
sium oxonate (PO), which are the typical UA precursor and 
uricase inhibitor. The normal group (NORM) was injected 
with saline as a control for the experimental comparison. 
In vivo evaluation of the eMPatch was performed through 

dynamic monitoring of physiological variations in the three 
groups after interventions (Fig. 5b, c). The level of each 
biomarker was extracted for comparison in the stages of: 
after overnight fasting, peak, and 45 min after intervention 
(Fig. S34). The performance of the eMPatch was validated in 
comparison with a commercial glucometer and colorimetric 

Fig. 5   In vivo evaluation of the eMPatch on rat models. a Schematic demonstrating the animal experiment process. HX, hypoxanthine; PO, 
potassium oxonate. b, c Continuous monitoring of multiplexed biomarkers in rat groups that received different treatments for an hour. d, e Com-
parison of the targeted biomarkers in ISF in the stage of: after overnight fasting, peak, and 45 min after the glucose (d) and HX & PO (e) treat-
ments. Error bar indicates SD from five rats (n = 5). **P < 0.01, ****P < 0.0001, ns, P > 0.05. One-way ANOVA with Tukey’s test. (Note: some 
graphics are created with Biorender.com)
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assay kits. The glucometer was measured every 5 min, and 
assay kits were tested every 20 min.

For the HG group, the glucose levels increased rapidly 
after the injection of glucose solution, reaching peak 
concentrations at ~ 20 min, followed by a ~ 30 min return 
to the baseline levels, indicating a well-defined insulin-
regulated metabolism [46]. The trend of glucose levels 
in ISF and blood exhibited high similarity based on the 
results obtained using the standard glucometer (Fig. 5d). 
For the HUA group, stable dynamic signals of UA were 
observed for the initial ~ 15 min, followed by a substantial 
increase of averaged UA levels from ~ 160.2 to ~ 1015 μM, 
and remained consistent for ~ 30 min as the result of HX 
and PO administration (Fig.  5e) [47]. Compared with 
the experimental groups, all the dynamic profiles of the 
NORM group remained relatively stable responding to the 
intraperitoneal injection of saline (Fig. S35). Therefore, 
these results demonstrated the reliable capability of the 
eMPatch for real-time monitoring of physiologically relevant 
biomarkers during daily activities.

3.6 � Evaluation of the eMPatch for Deep 
Learning‑driven Personalized Health Management

To evaluate the performance of the eMPatch for long-term 
health evaluation, in vivo experiments using diet-induced rat 
models were conducted: a control (CON) group, a high-fat-
high-fructose diet (HFFD) group, and a high-fat-high-fruc-
tose-high-salt diet (HFFSD) group (Fig. S36). A biomarker 
dataset was constructed based on all sensor responses col-
lected from the three groups (Figs. S37 and S38, Table S2). 
A pattern recognition algorithm was applied to this dataset 
to achieve high-performance real-time analysis of rat health.

In this work, a multi-task convolutional neural network 
(MTL-CNN) model was designed to simultaneously perform 
health conditions classification and health degrees evalua-
tion. The deep learning model consists of three core mod-
ules, including a hard-shared block and two task-specific 
branches (Fig. 6a, Table S3). The shared block, consisting 
of five convolutional layers, is shared by both tasks and auto-
matically extracts features from the raw electrochemical data 
input into the model. The extracted deep-level features are 
then fed into two branches, one dedicated to classification 

and the other to regression. Feature extraction was validated 
by the t-distributed stochastic neighbor embedding (t-SNE) 
dimensionality reduction and clustering, where overlap-
ping and disordered data distribution was observed by pro-
jecting high-dimensional raw data into two-dimensional 
space (Fig. 6b). However, the embedded high-level features 
extracted by the MTL-CNN exhibited more distinctive clus-
ters, demonstrating the superior automatic feature extraction 
capability of the deep learning model (Fig. 6c).

The MTL-CNN model was trained and validated using 
fivefold cross-validation. The loss values for both tasks 
significantly decreased while the evaluation metrics 
closely overlap and steadily increase across the five folds, 
indicating the model’s highly improved fitting performance 
on the training set (Figs. 6d and S39). The model strongly 
outperformed classical ML models, with the average 
classification accuracy of 0.996 for health conditions and 
the average R2 score of 0.977 for health degrees evaluation, 
demonstrating the high accuracy, strong robustness, and 
excellent inter-task synergy of the MTL-CNN in health 
management (Fig. 6e). The precision-recall (PR) curve of 
the MTL-CNN model achieved a strong balance, indicating 
robust predictions of physiological conditions without 
misclassifications (Fig. 6f). In contrast, the classical models 
exhibited higher prediction errors owing to the inadaptation 
to complex patterns or overfitting (Fig. S40). The high 
accuracy of the confusion matrix and the strong fit of the 
violin plot further validated the advantages of the MTL-
CNN model in multi-task scenarios (Figs. S41 and S42).

The Pearson correlation coefficients between the obtained 
data from the eMPatch were presented in Fig.  6g. The 
strongest association between glucose and cholesterol 
reflected a highly consistent relationship in metabolic 
pathways. The distribution of correlations provided powerful 
insights into targeted biomarkers in the decision-making 
logic of the model. To assess the feature contribution of each 
biomarker, SHapley Additive exPlanations (SHAP) analysis 
was conducted. In this regard, glucose and cholesterol 
emerged as major shared features with high SHAP values 
in both tasks, indicating their critical roles in both health 
classification and prediction (Fig. 6h, i). In the classification 
task, cholesterol made the highest contribution, primarily 
distinguishing between the CON and the experimental 
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Fig. 6   Deep learning-driven health evaluation. a Schematic of the structure of the MTL-CNN model. b t-SNE clustering analysis of the original 
biomarker dataset, visually demonstrating feature distribution in a two-dimensional space. c t-SNE clustering analysis of deeply embedded fea-
tures, illustrating the automatic feature extraction capability of the MTL-CNN. d Training curves of cross-entropy loss and MSE loss under five-
fold cross-validation. e Validation performance of classical ML algorithms and deep learning algorithms for health evaluation. KNN, K-Nearest 
Neighbors; SVM, Support Vector Machine; DT, Decision Tree; RF, Random Forest; XGBoost, Extreme Gradient Boosting. f Precision-recall 
curves of different ML models used for health assessment. g Chord graph showing the relative correlations of data corresponding to different 
MN sensors. h Sankey diagram based on SHAP analysis, indicating the relative contributions of different biomarkers, used as model input fea-
tures for health classification. i SHAP analysis of the health degrees evaluation process, highlighting the importance of different features in the 
regression task. j SHAP summary plot for health classification based on 1000 instances, with each axis displaying the distribution of SHAP val-
ues for validation samples corresponding to the respective feature. k SHAP decision plot explaining the process by which the MTL-CNN model 
utilized molecular features to classify health conditions. l Schematic showing the deep learning-coupled eMPatch for health management. m 
Real-time monitoring of physiologically relevant biomarkers from randomly selected rat models. n Output of the MTL-CNN model based on the 
sensor data acquired by the eMPatch
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groups while glucose focused more on differentiating 
variations between the HFFD and HFFSD groups. However, 
glucose displayed significantly higher SHAP values than 
cholesterol for the assessment of health degrees, reflecting 
its direct regulatory role in metabolic pathways.

The SHAP summary plots and decision plots offered 
more granular insights into feature contributions. The 
distribution and direction of feature contributions confirmed 
the important role of glucose and cholesterol in classifying 
health conditions (Fig.  6j). Additionally, the notable 
but opposite direction of glucose values in the HFFD 
and HFFSD groups indicated that the MTL-CNN could 
differentiate similar yet distinct categories. The decision 
plots evaluated the decision-making process of the model 
and the misclassified samples-induced prediction bias 
and errors (Fig. 6k). The SHAP analyses of health degree 
evaluation are shown in Fig. S43. On a broader scope, 
the SHAP-based interpretability analyses provided deep 
theoretical support for the optimization of the eMPatch 
and enhanced the transparency and reliability of the deep 
learning model.

To validate the health evaluation capability of the MTL-
CNN model under dynamic conditions, the eMPatch was 
first applied to a rat in the HFFD group for continuous 
monitoring of targeted biomarkers, and was then 
immediately transferred to a rat in the HFFSD group for 
further measurements. The resulting multiplexed datasets 
were subsequently fed into the trained MTL-CNN model 
(Fig. 6l). The eMPatch exhibited stable and continuous 
electrochemical responses throughout the measurement 
period (Fig. 6m). As shown in Fig. 6n, the model was able 
to accurately distinguish between the two health conditions 
and simultaneously provide a quantitative evaluation of 
the corresponding health degrees, which represent the 
continuous regression score derived from the multi-task 
network and reflect relative metabolic deviation from the 
reference health states (CON). In comparison with recent 
state-of-the-art wearable sensing platforms (Table  S4), 
the eMPatch assisted with an ML algorithm highlights 
the competitive potential to convert ambiguous metabolic 
disorders into interpretative physiological indicators, 
providing a data-driven avenue for wearable healthcare.

4 � Conclusions

In this article, we proposed a smart, wearable eMPatch that 
enables real-time, transdermal, and multiplexed health moni-
toring of molecular biomarkers, which paved the way for 
next-generation personalized healthcare. By integrating a 
laser-patterned, flexible elastomer substrate, the eMPatch 
offered customizable sensor configurations tailored for ver-
satile biomedical applications, while ensuring mechanical 
robustness for stable skin adhesion. Modular MN-based 
electrochemical sensors were assembled, exhibiting high 
selectivity and long-term stability for both enzymatic and 
ion-selective monitoring in dermal ISF without compromis-
ing structural integrity. Coupled with a custom-developed 
electronic system and deep learning-driven analytics, the 
eMPatch could continuously acquire high-dimensional met-
abolic data, enabling comprehensive physiological assess-
ment through advanced AI-based interpretation. With the 
aid of the implemented MTL-CNN, the eMPatch could 
leverage automated feature extraction to capture complex 
nonlinear physiological patterns from the collected data-
set. This approach enabled dual-task operations, achieving 
health classification with an accuracy of 0.996 and robust 
health degrees evaluation with an R2 score of 0.977. Future 
improvements in sensor sensitivity, energy efficiency, and 
fully integrated system miniaturization will be essential 
to advance our eMPatch toward large-scale applications. 
Human subject studies will be involved to further assess 
the translational potential for personalized health monitor-
ing. The eMPatch will facilitate comprehensive metabolic 
profiling, solidifying its role as a powerful, next-generation 
wearable platform for precision healthcare.
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