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HIGHLIGHTS

® A skin-interfaced microneedle patch simultaneously and continuously measures six metabolic biomarkers from dermal interstitial

fluid—glucose, uric acid, cholesterol, sodium, potassium, and pH.

e Modular microneedle units assembled on a compliant polystyrene-isoprene-polystyrene substrate offer mechanical robustness and
excellent flexibility, enabling seamless adhesion, stable skin-sensor coupling, and user-specific configuration, which delivers durable,

conformal wear with high signal fidelity in daily use.

® An end-to-end personalized health evaluation system: high-dimensional multiplexed signals are processed by an optimized machine-
learning pipeline to quantify and predict metabolic responses to daily behaviors, supporting personalized guidance (e.g., postprandial

control, electrolyte balance).
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multiplexed microneedle-based biosen-

sor patch (eMPatch) that enables real-
time, minimally invasive monitoring of key metabolic biomarkers in interstitial fluid, including glucose, uric acid, cholesterol, sodium,

potassium, and pH. By integrating modular microneedle (MN) sensors into a skin-interfaced flexible platform, the eMPatch achieves robust
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mechanical stability and seamless skin conformity, thereby ensuring reliable and continuous sensing within the dermal space. In vivo

validation in animal models under metabolic intervention highlights the strong capability of the eMPatch for real-time physiological track-

ing across diverse daily activities. Implemented with a machine learning algorithm, the eMPatch enables automatic feature extraction and

multi-task health assessment, achieving a classification accuracy of 0.996 in distinguishing normal and diet-induced metabolic disorder

for health condition identification and an R? score of 0.977 for the corresponding degree evaluation. This study highlights the potential of

the MN-integrated, machine learning-enhanced biosensing platform toward personalized health management.

KEYWORDS Microneedle; Multiplexed sensing; Flexible patch; Machine learning; Personalized health

1 Introduction

By harnessing the rapid advancements of wearable biosens-
ing technologies, wireless electronics, miniaturized system
integration, and data-driven analytical strategies, next-
generation personalized healthcare devices are emerging as
transformative paradigm in medical diagnostics, enabling
real-time, non-invasive metabolic profiling and precision
assessment at the individual level [1-3]. In contrast to con-
ventional gold-standard blood and urine analyses that are
inherently invasive, time-consuming, resource-intensive, and
limited in temporal resolution, skin-interfaced wearable bio-
sensors continuously transduce dynamic metabolic fluctua-
tions into quantifiable biomedical signals for understanding
key physiological parameters related to the wearer’s health
status (e.g., metabolic dysregulation, stress) and facilitate
proactive disease management (e.g., chronic kidney disease,
diabetes) with minimal clinical intervention (Fig. 1a) [4-6].

To this end, wearable biosensors have been widely inte-
grated into healthcare applications to enable continuous,
on-body monitoring of physiologically relevant biomark-
ers in alternative biofluids, such as sweat, tears, saliva, and
interstitial fluid (ISF) [7-9]. However, epidermal biosensing
platforms face intrinsic limitations, often requiring sophis-
ticated microfluidic configurations, anti-interference strate-
gies, and intricate sample collection or dilution processes
to ensure analytical reliability [10, 11]. These challenges
collectively hinder the practical translations for long-term
health surveillance and clinical decision-making. Among the
biofluid-based sensing modalities, dermal ISF—defined as
a peripheral biofluid surrounding cellular and tissue matri-
ces—provides a metabolically informative medium that
exhibits strong correlations with blood biomarkers owing to
the continuous transcapillary exchange with systemic circu-
lation [12, 13]. Instead of surface sampling, direct ISF inves-
tigation circumvents the inherent drawbacks of non-invasive
epidermal biosensing, including ambient contamination,

© The authors

sampling inconsistency, and temporal delays [14—16]. Con-
sequently, ISF-oriented sensing is emerging as a compelling
avenue for real-time, high-fidelity physiological monitoring.

Microneedle (MN) technology, characterized by its
mechanically sharp, robust, yet minimally invasive needle-
like architecture, ensures efficient skin penetration without
bleeding or tissue damage, allowing direct, continuous, and
real-time ISF analysis [17-19]. The unique capability of
MN can be greatly enhanced by integrating on-tip electro-
chemical sensing with noble metal-sputtered solid interface
to track clinically significant, blood-correlated biomarkers
with high specificity and accuracy, positioning MN-based
biosensors as an innovative solution capable of bridging the
long-standing gap between laboratory-based diagnostics
and decentralized evaluation in personalized medicine and
digital healthcare [20-23]. However, existing MN-based bio-
sensors predominantly focus on single-biomarker detection
(e.g., glucose), resulting in limited metabolic insights and
incomplete health evaluations [24—26]; the absence of a uni-
versal and adaptable fabrication strategy constrain the devel-
opment of multiplexed MN architecture capable of simulta-
neous multi-biomarker monitoring; seamless integration of
rigid MN components with soft, skin-compatible substrates
remains technically challenging, often compromising wear-
ability, comfort, and long-term operational stability [27-29];
the lack of robust data analytics results in suboptimal extrac-
tion, classification, and prediction of metabolic trends and
thereby the clinical utility in personalized health manage-
ment [30, 31]. Collectively, there is a strong desire for a
miniaturized, multiplexed, and flexible MN-based biosens-
ing platform that not only enables comprehensive metabolic
monitoring but also integrates algorithm-driven interpreta-
tion and predictive health analysis in precision healthcare,
yet such a prototype remains largely unfulfilled.

Here, we present a skin-interfaced flexible electronic
multiplexed MN-based biosensor patch (eMPatch) capable
of simultaneous monitoring of six metabolic biomarkers in

https://doi.org/10.1007/s40820-026-02095-x
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Fig. 1 eMPatch for personalized health management. a Schematic showing the role of the eMPatch for personalized healthcare during daily
activities. b Schematic illustrating the modular configuration of the eMPatch with arrays of ion-selective and enzymatic sensors and illustration
of the eMPatch on the skin, exhibiting the minimally invasive approach of MN in the dermis. ¢ Schematic displaying the multi-layered structure
of the eMPatch. d-e Photographs of the eMPatch. Scale bar, 1 cm. f Schematic of deep learning-driven data processing for personalized health

management

real-time, thereby enabling holistic and dynamic profiling
of metabolic variations during daily activities. As a proof
of concept, the MNs were fabricated and assembled into
modular sensing units that allow personalized sensor
configurations tailored to individual health needs. Bio-
recognition elements were selectively functionalized onto
the MNs to enable multiplexed detection of key metabolic
biomarkers—including glucose, uric acid (UA), cholesterol,
sodium (Na*), potassium (K*), and pH, which are pivotal
metabolic indicators that can collectively reflect metabolic
status and electrolyte homeostasis. Simultaneous monitoring
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of these interdependent biomarkers enables a comprehensive
understanding of systemic physiological health and its
dynamic variations during daily activities (Fig. 1b).
Engineered with a mechanically compliant yet durable
polystyrene-block-polyisoprene-block-polystyrene (SIS)
substrate, the eMPatch achieved seamless skin adhesion
and stable sensor-skin interactions, which greatly enhanced
the wearability and signal fidelity (Fig. lc, e). Integrating
wearable MN-based biosensors with artificial intelligence
algorithms represented a transformative pathway toward
data-driven personalized health management. To this

@ Springer
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end, the high-dimensional multiplexed datasets acquired
from the eMPatch were analyzed through an optimized
machine learning (ML) framework, enabling quantitative
and predictive assessment of metabolic health status with
exceptional accuracy and reliability (Fig. 1f).

2 Experimental Section
2.1 Chemicals and Materials

Polystyrene (PS), potassium ferricyanide (K;Fe(CN)j),
potassium ferrocyanide (K,Fe(CN)y), iron (III) chloride
(FeCly), hydrochloric acid (HCI), 3,4-ethylenedioxy-
thiophene (EDOT), poly(4-styrenesulfonic acid) (PSS),
uricase (UOx) (20 U mg_l), cholesterol oxidase (ChOx)
(>10U mg‘l), sodium ionophore X, sodium tetrakis[3,5-
bis(trifluoromethyl)phenyl] borate (Na-TFPB), valinomy-
cin, bis(2-ethylehexyl) sebacate (DOS), polyvinyl chloride
(PVC), aniline, polyvinyl butyral (PVB), tetrahydrofuran
(THF), D-glucose monohydrate, uric acid (UA), choles-
terol, sodium chloride (NaCl), potassium chloride (KCl),
calcium chloride (CaCl,), magnesium chloride (MgCl,),
L-ascorbic acid (AA), L-histidine, L-tryptophan, acetyl-
salicylic acid (aspirin), 4-acetamidophenol, potassium
oxonate (PO), hypoxanthine (HX), sodium carboxymethyl
cellulose (CMC), methanol, toluene, N,N-dimethylforma-
mide (DMF), Triton X-100, and phosphate buffer solution
(PBS) (1x, pH 7.4) were purchased from Adamas-beta.
Polystyrene-block-polyisoprene-block-polystyrene (styrene
17 wt%), poly(ethylene glycol) diglycidyl ether (PEGDE),
and chitosan (medium molecular weight) were purchased
from Macklin Biochemical. Glucose oxidase (GOx) from
Aspergillus niger (> 180 U mg™") and sodium tetraphenylbo-
rate were purchased from Sigma-Aldrich. The artificial inter-
stitial fluid (aISF) was prepared according to our previous
study [32]. PDMS (Sylgard 184) was purchased from Dow
Corning. Medical tapes (1587) and Tegaderm (1624W) were
purchased from 3M. Polyethylene terephthalate (PET) films
(thickness: 0.1 mm) were purchased from Ocan Polymer. Sil-
ver ink was purchased from Julong Electronic Technology.
Standard mouse diet (AIN-93 M) and diet-induced obesity
(DIO) diet (SFD010) were purchased from SPF Biotechnol-
ogy. Commercial colorimetric assay kits were acquired from
Nanjing Jiancheng Bioengineering Institute.

© The authors

2.2 Fabrication of MN

PS-based MN was fabricated with the micro-molding
technique. A PDMS mold was prepared by mixing PDMS
elastomer with a curing agent in a 9:1 ratio and stirring
thoroughly for 20 min. The mixture was degassed in a
vacuum oven for 15 min and then cured at 80 °C for 2 h. The
layout of the MN was designed using AutoCAD software and
carved onto the PDMS mold by a 25 W CO, laser platform
(Dahong Laser) using drill mode. The depth and radius of
the laser-drilled holes were controlled by the parameters
of the laser. The optimized parameters were a power of
2 W, speed of 100 mm s~', and pitch of 0.05 mm. The
as-fabricated PDMS mold was immersed in a PS solution
(300 mg mL~! in DMF) and centrifuged at 5000 rpm for
5 min. The filled mold was dried on a heating plate at 80 °C
for 12 h. The resulting MN consisted of 2 X 3 microneedles
with a length of 1000 pm and a diameter of 300 pm. The
multiplexed sensing relies on a group of enzymatic sensors
composed of three enzymatic working electrodes (WE),
another group of three ion-selective working electrodes,
one shared CE made of Cr/Au, and one shared Ag/AgCl
RE. For WE and CE, a thin layer of Cr (~ 10 nm) was first
coated onto the MN surface by magnetron sputtering at
10 mA for 20 s, followed by Au (~ 150 nm) sputtering at
25 mA for 120 s (GVC-2000, Ion Beam). Then, PEDOT:
PSS was introduced to WE by electropolymerization (1040c,
CH Instruments) to increase electrochemical surface area
and enhance sensitivity. In brief, the Au-sputtered MN was
immersed in a 0.2 wt% EDOT and 4 wt% PSS aqueous
solution while applying cyclic voltammetry from 0.2 to
0.9 V at a scan rate of 50 mV s~! for 10 cycles. The MN was
then dried and cured at 80 °C for 1 h and chilled at 4 °C for
further experiments. For RE, 10 pL of 0.05 M FeCl; solution
was drop-casted onto the Cr/Ag coated MN (20 mA, 90 s
for Ag sputtering) for 30 s, and then rinsed with deionized
water for three times, followed by drop-casting of a cocktail
solution containing 50 mg NaCl, 79.1 mg PVB in 1 mL
methanol for electrode protection.

2.3 Preparation of Enzymatic Sensors
To prepare glucose and cholesterol sensors, a thin mediator

layer of Prussian Blue (PB) was electrodeposited by cyclic
voltammetry from —0.2 to 0.4 V at a scan rate of 20 mV s~

https://doi.org/10.1007/s40820-026-02095-x
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for 15 cycles in a fresh solution containing 2.5 mM FeCl,,
2.5 mM K;Fe(CN)4, 0.1 M KCl1 in 0.1 M HCI. The UA
sensor was prepared in the same process for 5 cycles. The
PB-modified MN was washed with deionized water and
dried, followed by drop-casting of 10 pL enzyme cocktails
onto the corresponding WE. The enzyme cocktails were
prepared by mixing enzyme solutions (GOx 10 mg mL™!,
UOx 20 mg mL™!, and ChOx 10 mg mL™") with chitosan
(1 wt% in 1% acetic acid) in an optimized ratio of 1:1. After
drying, 10 pL of 1% PEGDE was drop-coated for enzyme
crosslinking and protection.

2.4 Preparation of Ion-Selective Sensors

To prepare ion-sensitive sensors, ion-selective membrane
cocktails were made as follows: Na™ selective membrane
consisted of 1 mg sodium ionophore X, 0.55 mg
Na-TFPB, 33 mg PVC, and 65.45 mg DOS, which were
dissolved in 660 pL THF. The K* selective membrane
consisted of 2 mg valinomycin, 0.55 mg sodium
tetraphenylborate, 33 mg PVC, and 65.45 mg DOS,
which were dissolved in 660 pL THF. Then, 10 pL of
the ion-selective membrane cocktails was drop-casted
onto the corresponding PEDOT:PSS-modified WE
and left for drying. To prepare the pH sensor, PANI
was electropolymerized onto WE by scanning cyclic
voltammetry from — 0.2 to 1.0 V for 30 cycles at a scan
rate of 100 mV s~! using a 0.1 M aniline solution in
0.1 M HCIL.

2.5 Morphology Characterization of the MN Sensors

The morphology of the MN and modified components
was characterized using scanning electron microscopy
(SEM, Sigma 300, ZEISS). The element composition of the
as-prepared MN sensor was determined by energy-dispersive
X-ray spectroscopy (EDS) (Xplore 30, Oxford).

2.6 Biocompatible Characterization of the MN Sensors

Mouse fibroblast cells 1929 (Princella) were cultured
in DMEM culture media added with 10% FBS and 1%
penicillin—streptomycin at 37 °C and under 5% CO,
atmosphere. After cell proliferation, the L929 cells were

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

cultured in a 24-well plate. The MN sensor was rinsed
with 75% ethanol for three times and then placed into the
24-well plate for 24 or 48 h. A Cell Counting Kit-8 (CCK-
8, Beyotime) was used to determine cell viability. The
absorbance was measured at 450 nm using a microplate
reader (Infinite M200 pro, Tecan). The morphology of
cells was determined using a Live/Dead staining assay kit
(Beyotime). The fluorescent images were captured by a
biological inverted microscope (BDS400-FL, CNOptec).

2.7 Fabrication and Assembly of the Flexible eMPatch

To fabricate an elastic SIS substrate, 200 mg mL~! SIS
solution in toluene was evenly spin-coated on a Si wafer
at a speed of 3000 rpm for 60 s (WS-650-23, Laurell
Technology) and cured at 80 °C for 2 h. The resulting SIS
substrate with a thickness of about 0.45 mm was then cut
and carved with serial 3.5 mm X5 mm X 0.2 mm grooves,
of which the layout was designed by AutoCAD software.
Modified MN sensors, CE, and RE were fixed into the laser-
carved grooves using an SIS solution. A laser-patterned PET
tape was then attached to the SIS substrate as the printing
mask. Stretchable silver ink composed of silver ink and SIS
in a weight ratio of 4:1, mixed by a planetary centrifugal
mixer (MSK-PVC-300, Kejing Star Technology) at a speed
of 1500 rpm for 10 min, was screen printed onto the pre-
patterned PET mask to form stretchable interconnects, which
were connected to the fixed MNs using silver ink. After
being cured at 80 °C for 1 h, the PET mask was removed
and a double-sided medical tape (70-80 pm) was aligned
onto the SIS substrate, followed by a layer of Tegaderm
adhesive dressing (40-50 um). Both the medical tape and
Tegaderm were patterned using laser-cutting to selectively
expose only the MN tips, while the surrounding baseplate
was fully covered by the adhesive layer to ensure insulation
and structural stability during skin attachment. Finally, the
sensing area was attached with a thin layer of PET backing
(0.1 mm) to support the MN during physical deformation.
The optimized working parameters for the laser platform are
listed in Table S1.

2.8 In Vitro Electrochemical Characterization

Electrochemical experiments, including chronoamperometry,
OCP, and CV, were performed using a multichannel

@ Springer



248 Page 6 of 21

Nano-Micro Lett. (2026) 18:248

electrochemical workstation (1040c, CH Instruments).
Electrochemical impedance spectroscopy (EIS) was
operated using CHI 660e. For the enzymatic MN sensors,
chronoamperometric measurements were performed at a
potential of -0.1 V in PBS (pH=7.4) with corresponding
target analytes, including glucose ranging from 0 to 20 mM,
UA ranging from 0O to 1000 pM, and cholesterol ranging
from O to 10 mM. For the ion-selective sensors, OCP tests
were performed with analytes of NaCl ranging from 5 to
160 mM, and KCl ranging from 1 to 32 mM. Na,HPO/citric
acid buffer solutions were adjusted to standard pH from 3
to 8 for the pH sensor. Calibration curves were obtained
from the correlation between the current/potential readouts
and corresponding concentrations. Commercial colorimetric
assay kits and a pH meter (PHS-3CB, Yueping) were used
to validate the accuracy of the MN sensors in the alSF.
Target analytes with high concentration were diluted for
colorimetric detection.

To evaluate the selectivity of each sensor, commonly
found interferences in ISF were added stepwise, followed
by serial addition of target analytes. The selectivity of
enzymatic sensors was tested using 300 pM UA, 300 pM
AA, 5 mM NaCl,, 5 mM KCl, 500 pM histidine, 500 pM
tryptophan, 100 pM aspirin, 100 pM acetaminophen,
5 mM glucose, 5 mM lactate, and 5 mM cholesterol. For
the ion-selective sensors, 5 mM NaCl, 5 mM KCI, 2 mM
MgCl,, 4 mM CaCl,, 5 mM glucose, 300 pM UA, and
5 mM cholesterol were used as interferents. The short-term
stability was investigated by repetitive measurements of
step-up concentrations of target analytes using the same one
or a batch of three sensors. The continuous stability was
investigated by monitoring the electrochemical responses
of all sensing channels over a 120-min measurement period.
The shelf-life stability was explored by recording the
electrochemical performance of each sensor once a day for
14 days, during which the sensors were stored at 4 °C. The
batch-to-batch reproducibility was evaluated by measuring
the electrochemical signals of sensors from five batches
(eight independently fabricated sensors for each batch)
toward corresponding analytes within their physiological
ranges. All selectivity and stability experiments were
conducted in the aISF solution.

© The authors

2.9 Design and Integration of the Electronic System

The electrochemical electronic system was designed by
Altium Designer software. The hardware layout comprises
a microcontroller unit (MCU), an electrochemical analog
front end (AFE), an external ADC chip (ADS1115), a chan-
nel selector, and a Bluetooth communication module. The
low-power STM32L.431 MCU, based on the ARM Cortex-
M4 core, manages data acquisition, command processing,
and task scheduling. The electrochemical AFE (AD5941)
utilizes the serial peripheral interface (SPI) protocol for bidi-
rectional communication with the MCU, enabling precise
control over measurement modes and parameter configu-
rations through register manipulation. External interrupts
from the front end trigger the MCU to retrieve measurement
results. The ADC chip communicates with the MCU via
the inter-integrated circuit (I2C) protocol, ensuring reliable
and high-precision acquisition of OCP signals. The channel
selector features a single-pole eight-throw (1P8T) multi-
plexer (AD1408) and a customized adapter board connected
to the mainboard via a 12-pin FPC cable. The system sup-
ports multichannel chronoamperometric and potentiometric
measurements. These channels operate concurrently, with
the OCP channels directly interfacing with the ADC chip for
independent measurement, enabling simultaneous collection
of data across all channels. Wireless communication is facil-
itated by a low-power Bluetooth Low Energy (BLE) module
(CC2540), which pairs with a custom-designed JavaScript
Object Notation (JSON)-based data exchange protocol to
ensure efficient and reliable transmission of real-time data
and commands. The system is powered by a 300 mAh lith-
ium battery, supported by a USB Type-C compatible charg-
ing circuit, offering up to six hours of continuous operation.

The device operates in a single mode,
simultaneously performing measurements across
three chronoamperometric measurement channels
and three OCP channels. The firmware architecture
is based on the open-source FreeRTOS platform,
enabling real-time multitasking for functions, such as
electrochemical measurements, command processing,
and data communication. Data acquisition is performed
at an adjustable rate by the electrochemical AFE, with the
MCU retrieving data via the SPI protocol upon external
interrupts. Potentiometric signals are independently
acquired through the ADC chip and transmitted to the
MCU via I2C. Commands are parsed and queued for

https://doi.org/10.1007/s40820-026-02095-x
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execution, with results packaged into JSON responses
marked with statuses, such as success or error. These
responses are transmitted to mobile devices via Bluetooth
during idle periods.

2.9.1 Mechanical Characterization of the eMPatch

Mechanical stability was evaluated upon the skin penetration
capacity of the MN sensor and the flexibility tests of the
MN patch. To mimic the minimally invasive skin penetration
manner, the process of a single MN inserting into an agarose
hydrogel (1.4% agarose in PBS) was photographed by a
biological inverted microscope. Mechanical compression
tests were performed using a universal testing machine (HY-
0580, Hengyi). The initial distance between the MN tips and
the workbench was set to 1.0 mm. The compression rate and
force threshold were set to 0.5 mm min~' and 10 N. The
load and displacement were recorded every 0.1 s to plot the
load—displacement curve.

The stretchability of interconnects was first evaluated
by comparing the resistance of the stretchable silver ink
composed of different ratios of SIS under different strains
(3706A, Keithley). The electrochemical responses of each
MN sensor under different mechanical deformations (i.e.,
bending and twisting) in the alSF with standard analytes
were measured by chronoamperometry and OPC test using
an electrochemical workstation (1040c, CH Instruments).
To characterize the after-bending stability, electrochemical
measurements were performed before and after 100,
200, 300, 400, and 500 cycles of mechanical bending of
the same MN patch. The sensing stability of SIS-based
and PI-based MN patches under twisting deformation
was demonstrated by comparing the motion artifacts
generated during chronoamperometric measurements of
MN sensors in a 5 mM [Fe(CN)6]3_/4_ solution. Sequential
mechanical vibration was applied to the sensing area for
60 s. The PI-based MN patch was fabricated with the same
configuration using PI substrates.

2.9.2 Finite Element Simulation for the eMPatch
The stretchability of the MN patch was evaluated by finite

element simulations (COMSOL Multiphysics software,
version 6.2). Two models were developed by applying a

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

15% stretching deformation on a flexible MN patch with
or without a PET film. It was assumed that the rigid MN
sensors were supported by the PET film, and therefore,
the electrochemical measurements remained stable, and
no detachment of MN was observed under stretching
deformation. Three types of materials were introduced to
the models, including a flexible elastomer (SIS) with elastic
modulus £=1 MPa, Poisson’s ratio v=0.5, a non-stretchable
PET film with elastic modulus £=7 GPa, Poisson’s ratio
v=0.32, and a rigid PSMN with elastic modulus E=3.5
GPa, Poisson’s ratio v =0.35. The boundary conditions are
horizontal stretching deformation and limited displacement
in the vertical direction. The stress-stretch relationship can
be obtained through Hooke’s law:

f O
_E (])
=X

r==2 @)

where & was the strain, ¢ was the stress, y was the shear
strain, 7 was the shear stress, and G was the shear modulus.
The relationship between G and E was:

_E
Y= 30y 3)

2.9.3 In Vivo Evaluation for Continuous Monitoring

In vivo evaluation and validation of the eMPatch were
carried out in compliance with the guidelines and ethical
regulations of protocol R20230603, which was approved
by the Animal Ethics Committee of East China Normal
University. Continuous multiplexed monitoring was
conducted on male SD rats (6—8 weeks, 180-200 g), which
were obtained from SPF Biotechnology and accommodated
in a standard laboratory animal center (12-h light/dark cycle,
50 +10% relative humidity, and a temperature of 23 +2 °C)
for one week before all experiments. SD rats (n=15) were
categorized into a normal group (NORM), a high glucose
group (HG), and a high UA group (HUA). After overnight
fasting for 12 h, the rats were induced to anesthesia with
isoflurane (5% mg kg_l), and the dorsal hair was shaved off,
followed by disinfection with 75% ethanol for two times. The
HG group was intraperitoneally injected with 10% glucose
at a dose of 0.05 mL 10 g™, and the HUA group was treated
with 25 mg mL~' PO and HX (dispersed in 0.5% CMC)

@ Springer
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at 0.05 mL/10 g, while the NORM group received saline
as a control. The eMPatch was applied to the bare skin,
leaving pin electrodes exposed for the connections of the
wireless electronic system. Chronoamperometric and OPC
measurements were run for 5 min to stabilize the signals.
Parameters were used the same as in vitro demonstrations.
A commercial glucometer (UG-12, Sinocare) was used
for glucose validation. Tail blood was collected for the
validation of UA, cholesterol, sodium, and potassium using
commercial colorimetric assay kits. The values of pH were
measured by a commercial micro pH meter (9826BN,
Orion).

2.9.4 In Vivo Evaluation for Long-Term Monitoring

For long-term monitoring, eight-week-old male SD rats
(n=9) were purchased from SPF Biotechnology and divided
into three groups randomly with three rats each: a control
group (CON) fed with a standard diet; a high-fat-high-
fructose diet (HFFD) group fed with a DIO diet; a high-
fat-high-fructose-high-salt (HFFSD) group fed with a DIO
diet mixed with 8% (w/w) NaCl. Long-term monitoring
was carried out by measuring the biochemical signals
using the eMPatch once a week for 4 weeks. Five-minute
measurements were allowed for the signal stabilization,
and the following data from the biosensors were collected
for the next 5 min. The body weight and gold-standard
measurements of the rats were recorded every week.

2.9.5 Algorithm Development Platform

To ensure the objectivity and reliability of the model’s
evaluation, all the algorithms are implemented in the
interactive programming environment Jupyter Notebook
with Python 3.8.10. All the programs are carried out on the
Windows 11 (X 64) operating system, powered by an Intel
(R) Core (TM) i7-14650HX CPU and NVIDIA GeForce
RTX 4060 Laptop GPU. To accelerate the training process
of deep learning, a GPU is used for parallel computing.
CUDA™ (Compute Unified Device Architecture) is a
general-purpose parallel computing architecture launched
by NVIDIA, enabling GPUs to solve complex computing
problems. It includes the CUDA instruction set architecture
(ISA) and the parallel computing engine inside the GPU.
In this study, we utilized the CUDA-enabled version of

© The authors

PyTorch (V1.12.1) and scikit-learn (V1.3.2) to optimize
computation.

2.9.6 Data Preprocessing

Data preprocessing is a critical step to ensure the quality
of input data for machine learning models. For raw data,
data standardization must be performed before feeding it
into the model. The Z-score standardization technique is
employed, scaling feature values to a standardized form
with a mean of 0 and a standard deviation of 1. This ensures
that different feature values have a balanced influence on
weight updates during model training, enhances the model’s
stability, and accelerates the convergence process. For the
standardized dataset, a fivefold cross-validation method is
applied to split the data into training and validation sets. This
approach ensures effective data utilization while mitigating
the risk of overfitting. The entire dataset is evenly divided
into five equally sized subsets. The model is trained and
validated five times, with each iteration using a different
subset as the validation set and the remaining four subsets
as the training set. This means that each subset serves as the
validation set once and is used as part of the training set in
the other four iterations, ensuring the model’s performance
remains balanced across all data. During the subset
partitioning process, it is essential to maintain balanced
class distributions for classification tasks and target value
distributions for regression tasks. This helps to reduce bias
caused by imbalanced data distributions and ensures the
accuracy and fairness of the model evaluation. The metrics
used in ML evaluations are provided in the Supporting
Information.

3 Results and Discussion

3.1 Design of the eMPatch

The wearable eMPatch consists of a modular MN sensing
component functionalized with different bio-recognition
elements for molecular analyses and a flexible polymer
substrate with mechanical elasticity and robustness for
intimate skin conformability. The MN sensing component
was designed with three enzyme-based sensors, three ion-
selective sensors, a shared counter electrode (CE), and a
shared reference electrode (RE), which was assembled

https://doi.org/10.1007/s40820-026-02095-x
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separately on the laser-patterned SIS elastomer substrate as
an integrated biosensor system. The stretchable interconnects
were attached to the MN patch by screen printing (Fig. S1).
Then, the sandwich-structured eMPatch was fabricated by
attaching a patterned dressing film and a PET backing to the
top and bottom of the patch using commercial medical tapes,
respectively (see Experimental Section and Figs. S2 and S3
for details of the fabrication process). Biochemical signals
were collected from the multilayered functionalized MN
sensors by chronoamperometry and open circuit potential
(OCP) measurements for multiplexed monitoring. Due
to the high similarity between the composition of blood
and ISF, glucose, UA, cholesterol, Nat, K*, and pH were
targeted for their crucial roles in metabolic pathways. A self-
developed electronic system comprising a microcontroller
unit, a potentiostat, and a Bluetooth module was interfaced
for multichannel signal collection, processing, and wireless
communication. Further integrated with an ML pipeline, the
eMPatch can be customized to pinpoint the physiological
status with interpretative and predictive outputs, thereby
offering a dynamic perspective for home-care management
of health and chronic diseases with holistic monitoring and
clinical analysis.

3.2 Fabrication and Characterization of the MN Sensor

The polystyrene-based MN (PSMN) was fabricated using
the conventional demolding technique based on a previously
reported study [33]. Briefly, a PS solution was prepared in
DMF and cast into a laser-drilled poly(dimethylsiloxane)
(PDMS) micromold by centrifugation (Fig. 2a). After
12 h overnight drying, an array of conical PSMN with six
independent MN was demolded for further modification
(Fig. 2b). The as-fabricated MN array was arranged with
1000 pm in height, 600 pm in base diameter, and 800 pm in
needle-to-needle space, which ensured the balance among
surface area, mechanical strength, and insertion efficiency
(Fig. S4). Scanning electron microscopy (SEM) images
showed the zoom-in morphology of a sharp and intact nee-
dle tip with a radius of 10 pm for reliable skin penetration
(Figs. 2c and S5). The 3D architecture of MN promoted
mass transport and provided a large geometric surface
(exposed surface area of the MN cone) for analyte cou-
pling compared to the planar electrode [34]. In principle,
a higher aspect ratio of MN, as well as a smaller needle
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tip radius, can further elevate the electrochemical response
[35]. Cyclic voltammetry (CV) scans of the Cr/Au sput-
tered MN (AuMN) and the planar electrode with a similar
electrode area demonstrated that the redox peak of the MN
electrode was 2.8 times more prominent than that of the
planar electrode (Fig. 2d). To render the multiplexed sensing
in ISF, a versatile layer-by-layer modification strategy was
proposed for the MN sensor (Fig. 2e). The solid MN were
first sputtered with a thin Cr/Au layer to form conductive
substrates. A poly(2,3-dihydrothieno-1,4-dioxin):poly(styr
enesulfonate) (PEDOT:PSS) film was electropolymerized
onto the Au-coated MN with an optimized EDOT concen-
tration of 0.2 wt%, enabling a stable solid-contact layer for
the detection of ion species (Na*, K*, and H") (Fig. S6). For
enzymatic sensing, the Au-PEDOT:PSS-modified MN were
further functionalized with a Prussian Blue (PB) mediator
layer. Enzymatic cocktails were subsequently immobilized
onto the MN surface using a chitosan-poly(ethylene glycol)
diglycidyl ether (PEGDE) crosslinked network. Notably, the
final tip diameter of the fully functionalized MN electrodes
remained below 50 pm, enabling effective skin penetration
without compromising mechanical integrity or insertion
capability (Figs. S7 and S8) [36].

The rough nature of PEDOT:PSS with a high
electrochemically active surface area (ECSA) provides
sufficient geometry for the loadings of mediators,
enzymes, and crosslinking agents (Fig. 2f) [37]. The
ECSA was estimated from the experimentally obtained
double-layer capacitance, demonstrating the higher ECSA
of the PEDOT:PSS-coated AuMN than that of planar Au
and bare AuMN (Figs. S9 and S10). Energy dispersive
X-ray spectroscopy (EDS) analyses further confirmed
the successful modification of PEDOT:PSS and PB by
the presence of sulfur (S), iron (Fe), and potassium (K)
(Figs. 2g and S1!). The thickness of PB was tailored
with different scanning cycles based on the levels of
biomarkers in ISF (Fig. S12). In principle, a thicker
PB layer leads to a wider linear range while the thinner
exhibits higher sensitivity toward low-concentration
biomarkers due to the faster charge transfer kinetics [38].
Therefore, the as-modified MN electrode demonstrated
a diffusion-controlled mode for mass transport with
superior conductivity, enabling efficient electrochemical
performance for multiplexed sensing (Fig. S13). The
pH sensor was prepared by the electropolymerization
of hydrogen ion-sensitive polyaniline (PANI) on
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the PEDOT:PSS decorated AuMN (Fig. S14). The modi-  both electronic and ionic charge transport for preparing

fication steps were characterized by EIS and CV scans  enzymatic and ion-selective sensors [39].

(Figs. 2h and S15). The PEDOT:PSS decoration led to an The skin penetration capability of the MN was

increased peak current in the CV plot and lower imped-  comprehensively evaluated through the following experiments.

ance in the Nyquist plot, indicating the film could promote =~ The mechanical strength of the MN synthesized with different
concentrations of PS (100, 200, 300, and 400 mg mL‘l)

© The authors https://doi.org/10.1007/s40820-026-02095-x
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was investigated through a compression test (Fig. 2i). The
MN with 100 mg mL~! could withstand a maximum force
of 2.1 N (0.35 N needle™") without obvious fracture, which
was greater than the required robustness for skin penetration
[40]. However, the 400 mg mL~"' PS with a higher yield point
(5.8 N) was subject to poor toughness, which may lead to
brittle fracture of needle tips after MN insertion or during
physical movement (a sharp drop of force indicated the yield
point of needle tips). Therefore, an optimized concentration
of 300 mg mL™~! was selected for further tests according to
the correlation between Young’s modulus and toughness
(Fig. 2j). An agarose-prepared artificial skin tissue was used
to mimic the skin penetration process, where an intact needle
tip was observed before and after the MN insertion (Fig. 2k).
In Parafilm (in vitro) and porcine skin (ex vivo) tests, the MN
successfully penetrated Parafilm and porcine skin with well-
defined microholes, confirming effective penetration and
structural integrity of the MN (Fig. S16). As demonstrated in
the Hematoxylin and eosin (H&E) images, the MN accurately
reached the ISF in the dermis layer without damaging
subcutaneous capillaries (Fig. 21). The recovery capability was
assessed by monitoring the MN-induced trace over time (0, 10,
20, and 30 min) (Fig. 2m). A group of noticeable microholes
on the rat’s dorsal skin was observed after the removal of the
MN (0 min), which recovered within 30 min without leaving
any visible skin damage or irritation. The biocompatibility
of the MN sensor was evaluated by the cell viability assay
and Live/Dead staining (Fig. 2n). Compared with the control
group, no significant effect on cell viability was observed
during the 24 and 48 h incubation period, indicating the
excellent biocompatibility of the MN sensor for long-term
monitoring (Fig. 20, p). In addition, photographs of rat skin
after prolonged wear of the MN for 7 days showed no visible
signs of erythema or inflammation (Fig. S17). H&E staining of
major organs (heart, liver, spleen, lung, and kidney) collected
at 1 day and 7 days post-wearing revealed no noticeable
pathological alterations compared with the control group,
indicating strong biocompatibility of the eMPatch during
prolonged use (Fig. S18).

3.3 Electrochemical Performance of the Integrated
eMPatch

The eMPatch consists of amperometric glucose, UA, choles-
terol sensors, and potentiometric ion-selective Na™, K*, pH
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sensors (Fig. 3a), enabling the enzymatic sensing based on
the PB mediator with a low redox potential, and ion-selec-
tive sensing with PEDOT:PSS as the intermediate solid-
contact layer for the efficient ion-to-electron transduction
(Fig. 3b, c¢). The feasibility of each sensor was evaluated in
standard solutions containing corresponding analytes with
physiologically relevant concentrations.

The electrochemical performance of enzymatic sensors
was displayed with representative chronoamperometric
responses to glucose (0-20 mM), UA (0-1000 pM),
and cholesterol (0-10 mM) (Fig. 3d—f??). Strong linear
correlations of glucose, UA, and cholesterol sensor
(r=0.991, 0.994, 0.983) were obtained with the sensitivities
of 0.1122 pA cm™> mM~', 0.001395 pA cm™ pM~!,
and 0.1637 pA cm™ mM™!, respectively. The limit of
detection (LOD) was calculated as 0.39 mM, 2.7 pM,
and 0.52 mM, respectively (LOD =3.306/S, where o is the
standard deviation of the baseline noise and S is the slope
of the calibration curves). The results indicated the real-
world practicability of the eMPatch for glucose, UA, and
cholesterol monitoring over the physiologically relevant
ranges of 4.4-6.6 mM, 130-460 uM, and 2.9-5.2 mM
[41-43]. For the ion-selective sensors, well-defined OCP
curves were obtained with near-Nernstian sensitivities of
52.87 mV (r=0.987) and 58.46 mV (r=0.997) per decade
concentration, covering the physiological ranges of Na*
(135-145 mM) and K* (3.5-5 mM) (Fig. 3g, h??) [44]. The
pH sensor exhibited a linear response of 57.61 mV pH™!
(r=0.997) by switching the protonation status of the PANI
surface over a physiologically relevant range of 6.6 to 7.6,
which is wider than the values in the blood due to the lack
of buffer molecules in ISF (Fig. 31??) [45]. The accuracy of
the calibrated eMPatch was validated against the commercial
colorimetric assay kits in the alSF (Fig. S19). In addition,
the influence of pH and temperature on the eMPatch
was optimized under different environmental conditions
(Fig. S20) [46].

The eMPatch displayed high sensitivity against potential
interfering species commonly found in ISF (Fig. S21). All
the MN sensors showed negligible signal drifts within 6%
to each addition of other interference analytes, followed by
notable increases upon incremental addition of the target
analytes. The repeatability of eMPatch patches toward
cyclically elevated concentrations was exhibited, which
indicated strong reliability against drastic level changes
during continuous monitoring (Figs. S22 and S23). To
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further evaluate the stability of the eMPatch over long-term
monitoring, all MN sensors were continuously operated in
the aISF with corresponding analytes in physiologically
relevant concentrations for 120 min, during which stable
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electrochemical signals with more than 88% signal retention

were maintained for targeted biomarkers (Fig. S24). In

addition, the eMPatch maintained a steady-state response
with a relative standard deviation (RSD) below 2.64%
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for all MN sensors during a 14-day storage experiment,
demonstrating the reliable shelf-life stability (Fig. S25). The
eMPatch exhibited high reproducibility with RSD within
2.21% by comparing the normalized outputs from five
batches (eight patches for each batch, n=8), demonstrating
good stability of the as-proposed eMPatch for mass
production and universal application (Fig. S26).

The fully integrated eMPatch was also interfaced with
a self-developed electronic system for multiplexed signal
processing and wireless communication. The schematic
illustration, optical image, and overview of the system
are shown in Fig. 3j, k???, which was designed with an
electrochemical analog front end (AFE) providing the
circuitry for multiplexed chronoamperometric measurements
and signal conditioning (amplification and filtering), and
an external analog-to-digital (ADC) unit incorporated for
multichannel potentiometry. Data acquisition, command
processing, and task scheduling were managed by a low-
power microcontroller unit (MCU). A low-power Bluetooth
Low Energy (BLE) module was utilized for wireless
communication. Power of the electronics was sourced by a
lithium-ion battery with a USB Type-C compatible charging
circuit for up to six hours of continuous operation. The
detailed circuit, firmware, and software designs are shown
in Figs. S27 and S28. The accuracy of the AFE sensing
module and the ADC chip was strongly validated through
the well-established calibration curves between the wireless
electronic system and the electrochemical station (glucose
and pH measurements as examples) (Fig. 31).

3.4 Mechanical Evaluation of the eMPatch

The combination of rigid MN sensors and a soft skin-worn
substrate allows for efficient MN sensing with excellent
adaptability and conformability (Fig. 4a). Therefore, the
mechanical stability of the as-proposed eMPatch was inves-
tigated when unexpected deformations occurred.

The effect of skin penetration on the eMPatch was
evaluated. First, no noticeable fracture or blunting of the
MN tips, as well as delamination or cracking of the MN
surface, were observed after MN insertion, confirming the
mechanical robustness and pierceability of the MN (Figs. 4b,
S29, and S30). The variations in sensitivities and mass of the
eMPatch suggested a maximum of three times insertion with
acceptable integrity of sensing layers for reliable monitoring,
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which provided opportunities against incomplete MN
penetration and MN detachment in daily activities (Figs. 4c
and S31). The conductive performance of the stretchable
interconnects was tailored by the concentration of SIS. A
weight ratio of 25% SIS exhibited both stable resistance and
stretchability under up to 30% strain deformation (Fig. 4d).
The thin PET backings underneath the eMPatch ensured the
structural integrity by providing supportive strength against
undesirable deformations during on-body operations. Finite
element simulations demonstrated the uniform distribution
of stress on the PET-protected eMPatch compared to the
counterpart without PET backings, which exhibited higher
principal stress on the MN sensors under 15% strain (Fig. 4e,
f). The results indicated a higher risk of MN delamination
of the eMPatch without PET backings by stress-induced
deformations (Fig. S32). The excellent mechanical resilience
of the eMPatch after different deformations is shown in
Fig. 4g. The patch was unfolded with no apparent device
disassembly after bending for 180° and neck twisting for
90°. The influence of these deformations on the sensing
performance was also evaluated by an ex vivo experimental
setup (Fig. S33). As shown in Fig. 4h, bending exerted
negligible effects during the electrochemical measurements
of all MN sensors. Although the effects of twisting indicated
slight signal deviations of 5.7% and 4.1% for glucose and
cholesterol sensors, the concentration-correlated readouts
were still maintained within the physiological range.
Reliable mechanical stability against the bending manner
was observed by recording the electrochemical signals of
each MN sensor after every 100 repetitive bending cycles in
the aISF (Fig. 41, j). Twisting-induced motion artifact noises
were quantified between an SIS-based and a non-stretchable
polyimide (PI)-based MN patch, showing four times lower
vibration amplitude generated from the SIS-based eMPatch
compared with the PI-based patch (Fig. 4k, 1).

3.5 In Vivo Validation of the eMPatch for Multiplexed
Monitoring

To demonstrate the feasibility of the eMPatch for continuous
monitoring of physiologically relevant biomarkers in ISF,
controlled experiments were performed on three groups of
Sprague—Dawley (SD) rat models using metabolic interven-
tions on the levels of glucose and UA, which tend to fluctu-
ate rapidly due to daily dietary intake and activities (Fig. 5a).
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Fig. 5 In vivo evaluation of the eMPatch on rat models. a Schematic demonstrating the animal experiment process. HX, hypoxanthine; PO,
potassium oxonate. b, ¢ Continuous monitoring of multiplexed biomarkers in rat groups that received different treatments for an hour. d, e Com-
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graphics are created with Biorender.com)

Briefly, the high glucose group (HG) was intraperitoneally
injected with glucose solution while the high UA group
(HUA) was treated with hypoxanthine (HX) and potas-
sium oxonate (PO), which are the typical UA precursor and
uricase inhibitor. The normal group (NORM) was injected
with saline as a control for the experimental comparison.
In vivo evaluation of the eMPatch was performed through

N
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P <0.0001, ns, P>0.05. One-way ANOVA with Tukey’s test. (Note: some

dynamic monitoring of physiological variations in the three
groups after interventions (Fig. 5b, c¢). The level of each
biomarker was extracted for comparison in the stages of:
after overnight fasting, peak, and 45 min after intervention
(Fig. S34). The performance of the eMPatch was validated in
comparison with a commercial glucometer and colorimetric
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assay kits. The glucometer was measured every 5 min, and
assay kits were tested every 20 min.

For the HG group, the glucose levels increased rapidly
after the injection of glucose solution, reaching peak
concentrations at~20 min, followed by a~30 min return
to the baseline levels, indicating a well-defined insulin-
regulated metabolism [46]. The trend of glucose levels
in ISF and blood exhibited high similarity based on the
results obtained using the standard glucometer (Fig. 5d).
For the HUA group, stable dynamic signals of UA were
observed for the initial ~ 15 min, followed by a substantial
increase of averaged UA levels from~160.2 to~ 1015 pM,
and remained consistent for ~30 min as the result of HX
and PO administration (Fig. 5e) [47]. Compared with
the experimental groups, all the dynamic profiles of the
NORM group remained relatively stable responding to the
intraperitoneal injection of saline (Fig. S35). Therefore,
these results demonstrated the reliable capability of the
eMPatch for real-time monitoring of physiologically relevant
biomarkers during daily activities.

3.6 Evaluation of the eMPatch for Deep
Learning-driven Personalized Health Management

To evaluate the performance of the eMPatch for long-term
health evaluation, in vivo experiments using diet-induced rat
models were conducted: a control (CON) group, a high-fat-
high-fructose diet (HFFD) group, and a high-fat-high-fruc-
tose-high-salt diet (HFFSD) group (Fig. S36). A biomarker
dataset was constructed based on all sensor responses col-
lected from the three groups (Figs. S37 and S38, Table S2).
A pattern recognition algorithm was applied to this dataset
to achieve high-performance real-time analysis of rat health.

In this work, a multi-task convolutional neural network
(MTL-CNN) model was designed to simultaneously perform
health conditions classification and health degrees evalua-
tion. The deep learning model consists of three core mod-
ules, including a hard-shared block and two task-specific
branches (Fig. 6a, Table S3). The shared block, consisting
of five convolutional layers, is shared by both tasks and auto-
matically extracts features from the raw electrochemical data
input into the model. The extracted deep-level features are
then fed into two branches, one dedicated to classification

© The authors

and the other to regression. Feature extraction was validated
by the t-distributed stochastic neighbor embedding (t-SNE)
dimensionality reduction and clustering, where overlap-
ping and disordered data distribution was observed by pro-
jecting high-dimensional raw data into two-dimensional
space (Fig. 6b). However, the embedded high-level features
extracted by the MTL-CNN exhibited more distinctive clus-
ters, demonstrating the superior automatic feature extraction
capability of the deep learning model (Fig. 6¢).

The MTL-CNN model was trained and validated using
fivefold cross-validation. The loss values for both tasks
significantly decreased while the evaluation metrics
closely overlap and steadily increase across the five folds,
indicating the model’s highly improved fitting performance
on the training set (Figs. 6d and S39). The model strongly
outperformed classical ML models, with the average
classification accuracy of 0.996 for health conditions and
the average R? score of 0.977 for health degrees evaluation,
demonstrating the high accuracy, strong robustness, and
excellent inter-task synergy of the MTL-CNN in health
management (Fig. 6e). The precision-recall (PR) curve of
the MTL-CNN model achieved a strong balance, indicating
robust predictions of physiological conditions without
misclassifications (Fig. 6f). In contrast, the classical models
exhibited higher prediction errors owing to the inadaptation
to complex patterns or overfitting (Fig. S40). The high
accuracy of the confusion matrix and the strong fit of the
violin plot further validated the advantages of the MTL-
CNN model in multi-task scenarios (Figs. S41 and S42).

The Pearson correlation coefficients between the obtained
data from the eMPatch were presented in Fig. 6g. The
strongest association between glucose and cholesterol
reflected a highly consistent relationship in metabolic
pathways. The distribution of correlations provided powerful
insights into targeted biomarkers in the decision-making
logic of the model. To assess the feature contribution of each
biomarker, SHapley Additive exPlanations (SHAP) analysis
was conducted. In this regard, glucose and cholesterol
emerged as major shared features with high SHAP values
in both tasks, indicating their critical roles in both health
classification and prediction (Fig. 6h, i). In the classification
task, cholesterol made the highest contribution, primarily
distinguishing between the CON and the experimental

https://doi.org/10.1007/s40820-026-02095-x
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groups while glucose focused more on differentiating
variations between the HFFD and HFFSD groups. However,
glucose displayed significantly higher SHAP values than
cholesterol for the assessment of health degrees, reflecting
its direct regulatory role in metabolic pathways.

The SHAP summary plots and decision plots offered
more granular insights into feature contributions. The
distribution and direction of feature contributions confirmed
the important role of glucose and cholesterol in classifying
health conditions (Fig. 6j). Additionally, the notable
but opposite direction of glucose values in the HFFD
and HFFSD groups indicated that the MTL-CNN could
differentiate similar yet distinct categories. The decision
plots evaluated the decision-making process of the model
and the misclassified samples-induced prediction bias
and errors (Fig. 6k). The SHAP analyses of health degree
evaluation are shown in Fig. S43. On a broader scope,
the SHAP-based interpretability analyses provided deep
theoretical support for the optimization of the eMPatch
and enhanced the transparency and reliability of the deep
learning model.

To validate the health evaluation capability of the MTL-
CNN model under dynamic conditions, the eMPatch was
first applied to a rat in the HFFD group for continuous
monitoring of targeted biomarkers, and was then
immediately transferred to a rat in the HFFSD group for
further measurements. The resulting multiplexed datasets
were subsequently fed into the trained MTL-CNN model
(Fig. 61). The eMPatch exhibited stable and continuous
electrochemical responses throughout the measurement
period (Fig. 6m). As shown in Fig. 6n, the model was able
to accurately distinguish between the two health conditions
and simultaneously provide a quantitative evaluation of
the corresponding health degrees, which represent the
continuous regression score derived from the multi-task
network and reflect relative metabolic deviation from the
reference health states (CON). In comparison with recent
state-of-the-art wearable sensing platforms (Table S4),
the eMPatch assisted with an ML algorithm highlights
the competitive potential to convert ambiguous metabolic
disorders into interpretative physiological indicators,
providing a data-driven avenue for wearable healthcare.

© The authors

4 Conclusions

In this article, we proposed a smart, wearable eMPatch that
enables real-time, transdermal, and multiplexed health moni-
toring of molecular biomarkers, which paved the way for
next-generation personalized healthcare. By integrating a
laser-patterned, flexible elastomer substrate, the eMPatch
offered customizable sensor configurations tailored for ver-
satile biomedical applications, while ensuring mechanical
robustness for stable skin adhesion. Modular MN-based
electrochemical sensors were assembled, exhibiting high
selectivity and long-term stability for both enzymatic and
ion-selective monitoring in dermal ISF without compromis-
ing structural integrity. Coupled with a custom-developed
electronic system and deep learning-driven analytics, the
eMPatch could continuously acquire high-dimensional met-
abolic data, enabling comprehensive physiological assess-
ment through advanced Al-based interpretation. With the
aid of the implemented MTL-CNN, the eMPatch could
leverage automated feature extraction to capture complex
nonlinear physiological patterns from the collected data-
set. This approach enabled dual-task operations, achieving
health classification with an accuracy of 0.996 and robust
health degrees evaluation with an R? score of 0.977. Future
improvements in sensor sensitivity, energy efficiency, and
fully integrated system miniaturization will be essential
to advance our eMPatch toward large-scale applications.
Human subject studies will be involved to further assess
the translational potential for personalized health monitor-
ing. The eMPatch will facilitate comprehensive metabolic
profiling, solidifying its role as a powerful, next-generation
wearable platform for precision healthcare.
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