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HIGHLIGHTS

• A new and facile method to synthesize N, F-codoped microporous carbon nanofiber (N, F-MCF) electrocatalysts via electrospinning, 
hydrothermal process, and thermal treatment.

• Polyvinylidene fluoride is applied as a fluorine source in oxygen reduction reaction (ORR) catalysis for the first time in literature.

• N, F-MCFs exhibit distinguished electrocatalytic activity, stability, and methanol tolerance for ORR in alkaline media.

ABSTRACT Currently, the oxygen reduc-
tion reaction (ORR) mainly depends on pre-
cious metal platinum (Pt) catalysts. However, 
Pt-based catalysts have several shortcomings, 
such as high cost, scarcity, and poor long-term 
stability. Therefore, development of efficient 
metal-free electrocatalysts to replace Pt-based 
electrocatalysts is important. In this study, we 
successfully prepared nitrogen- and fluorine-
codoped microporous carbon nanofibers (N, 
F-MCFs) via electrospinning polyacrylonitrile/
polyvinylidene fluoride/polyvinylpyrrolidone 
(PAN/PVDF/PVP) tricomponent polymers fol-
lowed by a hydrothermal process and thermal 
treatment, which was achieved for the first time 
in the literature. The results indicated that N, F-MCFs exhibit a high catalytic activity (Eonset: 0.94 V vs. RHE, E1/2: 0.81 V vs. RHE, and 
electron transfer number: 4.0) and considerably better stability and methanol tolerance for ORR in alkaline solutions as compared to com-
mercial Pt/carbon (Pt/C, 20 wt%) catalysts. Furthermore, in acidic media, N, F-MCFs showed a four-electron transfer pathway for ORR. 
This study provides a new strategy for in situ synthesis of N, F-MCFs as highly efficient metal-free electrocatalysts for ORR in fuel cells.
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1 Introduction

Oxygen reduction reaction (ORR) electrocatalysts for pro-
ton exchange membrane fuel cells (PEMFCs) have gained 
significant attention because of their sluggish kinetic pro-
cess [1–5]. To date, platinum (Pt)-loaded carbon is con-
sidered as the most effective ORR electrocatalyst [6–9]. 
However, Pt-based catalysts still have several shortcom-
ings, such as poor durability, limited reserves, high cost, 
and carbon monoxide (CO) poisoning [10, 11]. Currently, 
metal-free heteroatom-doped carbons are widely consid-
ered as promising catalysts to replace Pt-based carbon 
catalysts in the near future because of their high electro-
catalytic activity toward ORR, cost effectiveness, long-
term cycling stability, and excellent tolerance to methanol 
and CO oxidations [12, 13]. Among these materials, nitro-
gen (N)-doped carbons are extensively studied because 
the electronegativity of N (3.04) induces charge redistri-
bution of adjacent atoms in an N-doped carbon surface 
layer, which greatly enhances the ORR activity of carbon 
electrocatalysts [14–18]. Besides N, other nonmetal atoms 
with different electronegativities, such as boron (B) [19, 
20], sulfur (S) [21, 22], phosphorus (P) [23, 24], and fluo-
rine (F) [25–29], can enhance the ORR activity of carbon 
catalysts.

In addition, the largest electronegativity is observed in 
F atoms (4.0). Ishizaki et al. reported that F atoms bonded 
to ionic and semi-ionic C atoms can act as electron accep-
tors, which promote charge transfer between the F and C 
atoms, thereby resulting in higher conductivity and modifi-
cation of the electronic properties of pristine carbons [30]. 
Moreover, Lu et al. reported that F doping can improve 
the wettability of the catalyst surface, thereby facilitat-
ing both electrolyte and  O2 transportation within porous 
frameworks [31]. Therefore, F doping is advantageous for 
ORR activities. Moreover, N and F atoms can enhance 
ORR activities by a synergetic effect. N, F-codoped carbon 
electrocatalysts, such as carbon black [25], mesoporous 
carbon [26, 32], graphdiyne [33], porous carbon [34], 
carbon nanoparticles [30], graphene [35], and graphite 
nanofibers [27], are widely prepared, and they exhibited 
excellent properties as ORR electrocatalysts in alkaline 
media. It is difficult to dope F atoms into carbon matrix; 
thus, a large number of F sources are required. Currently, 
 NH4F is the most commonly used F source. However, the 

facile decomposition property of  NH4F increases the syn-
thesis difficulty of F-doped carbons. Further, the F-doped 
content in obtained carbon samples is less than 1 at%, 
while the mass amount of  NH4F used is 20 times more 
than that of the carbon source [25, 27, 33]. Thus, it is 
important to develop new F sources and highly efficient 
F-doping methods.

Besides heteroatom doping, carbon morphology 
is another key factor that affects catalyst activities. 
High surface areas along with suitable micropores or 
mesopores can increase the number of active sites for 
ORR and facilitate  O2 transportation during ORR. In this 
study, we present a facile in situ method to synthesize N, 
F-codoped microporous carbon nanofibers (N, F-MCFs) 
as electrocatalysts with high Brunauer–Emmett–Teller 
(BET) surface area via electrospinning polyacrylonitrile/
polyvinylidene f luoride/polyvinylpyrrolidone (PAN/
PVDF/PVP) tricomponent polymers followed by a hydro-
thermal process and thermal treatment. PVDF is used as a 
source of F and C atoms. PAN acts as a source of N and C 
atoms. PVP, which is removed by the hydrothermal pro-
cess, is applied as a porogen for N, F-MCFs. The as-syn-
thesized N, F-MCFs are characterized systematically, and 
their ORR activities and stabilities are investigated. Ben-
efitted from the N, F-codoped effect and unique nanofiber 
structure with microporous pore walls, N, F-MCFs exhibit 
both highly catalytic activity and stabilities for ORR in 
alkaline solutions. The catalytic activity of N, F-MCFs in 
acidic solutions is also investigated preliminarily.

2  Experimental Methods

2.1  Materials and Chemicals

PA N  (Mw =  1 5 0 , 0 0 0   g   m o l − 1)  a n d  P V P 
(Mw = 10,000 g mol−1) were purchased from J&K Scien-
tific Ltd. PVDF (Solef 5130) was obtained from Solvay. 
5%  Nafion® solution (Nafion 117) was obtained from E. I. 
DuPont Company. Other chemicals, such as N,N-dimethyl-
formamide (DMF), potassium hydroxide (KOH), and etha-
nol, were purchased from Sinopharm Chemical Reagent 
CO., Ltd. and used as received. Deionized water was used 
throughout the experiments.
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2.2  Electrospinning of PAN/PVP/PVDF Membranes

The tricomponent PAN/PVP/PVDF nanofibrous mem-
branes were prepared via facile single-nozzle electrospin-
ning. The PAN (3 wt%), PVP (3 wt%), and PVDF (3 wt%) 
membranes were mixed in a sealed glass bottle with DMF 
and magnetically stirred for 24 h at room temperature as 
a precursor solution. Further, this precursor solution was 
loaded into a 3-mL plastic syringe connected with a stain-
less needle of 0.5 mm inner diameter. During the electro-
spinning process, the operating voltages were 12 kV, the 
flow rate was 0.2 mL h−1, and the collecting distance was 
14 cm. The electrospun PAN/PVP/PVDF membranes were 
peeled off from the aluminum foil.

2.3  Preparation of N, F‑MCFs

The electrospun PAN/PVP/PVDF membranes were trans-
ferred into a 100-mL Teflon stainless autoclave with 
deionized water and hydrothermally treated under 110 °C 
for 6 h to remove PVP. Further, the hydrothermal-treated 
membranes were washed with deionized water and dried 
under 100 °C in a blast oven to obtain PAN/PVDF fibrous 
membranes.

The peroxidation and carbonization of these PAN/PVDF 
fibers were performed in an electric heating tube furnace. 
First, the dried PAN/PVDF fibrous membranes were sealed 
in a graphite boat covered by a carbon paper. Subsequently, 
the samples were preoxidized in an air atmosphere under 
220 °C for 2 h at a heating rate of 2 °C min−1. Further, 
the samples were carbonized in an N atmosphere under 
1000 °C for 2 h at a heating rate of 2 °C min−1. The as-
prepared samples (N, F-MCFs) were cooled down to the 
room temperature.

2.4  Physical and Electrochemical Characterization

The morphology of N, F-MCFs was characterized by trans-
mission electron microscopy (TEM) and scanning electron 
microscopy (SEM) using Nova NanoSEM 450 and Talos 
F200X (both from FEI Company, USA), respectively. X-ray 
photoelectron spectroscopy (XPS, Kα) analyses were per-
formed on an AXIS UltraDLD X-ray photoelectron spec-
trometer system equipped with Al radiation as a probe, 

and the analysis spot size was 400 μm in diameter. Raman 
spectra were collected by DXR Micro-Raman Spectros-
copy (Thermo Fisher Scientific, USA), equipped with a 
holographic grating of 1800 lines  mm−1 and a He–Ne laser 
(532 nm) as the excitation source. BET measurements were 
performed on an ASAP 2460 surface area and porosimetry 
analyzer (Micromeritics Instrument Corp., USA).

All electrochemical measurements were performed on an 
Autolab PGSTAT302 (Metrohm, Netherlands) electrochemi-
cal workstation with a standard three-electrode system. A 
glassy carbon electrode, Ag/AgCl, and Pt wire were used as 
the working, reference, and counter electrodes, respectively. 
The catalyst ink consisted of 1-mg sample, 8 μL 5% Nafion 
117 solution, ethanol, and water suspension. After ultrasonic 
homogenization, the ink was coated on a glassy carbon elec-
trode (working electrode), which led to a catalyst loading of 
about 0.3 mg cm−2 for all working electrodes. Linear sweep 
voltammetry (LSV) measurement was performed by glassy 
carbon rotating disk electrode (RDE) cathodically scanned 
with varying rotating speed from 400 to 2000 rpm at a rate 
of 5 mV s−1. The electron transfer number per  O2 during the 
ORR process was calculated by the LSV curves and Kout-
ecky–Levich (K–L) equations (Eqs. 1–3)

where J is the measured current density, JK and JL are the 
kinetic and diffusion-limiting current densities, respectively, 
� is the angular velocity (rad s−1), F is the Faraday constant 
(96,485 C mol−1), n is the transfer electron number, Cb

O
2

 is 
the bulk concentration of  O2 (1.2 × 10−3 mol cm−3), D2∕3

O
2

 is 
the diffusion coefficient of  O2 in the electrolyte (1.9 × 10−5), 
v is the kinematic viscosity of the electrolyte (0.01 cm2 s−1), 
and kf is the electron transfer rate constant.

3  Results and Discussion

3.1  Structure and Morphology of N, F‑MCFs

The overall preparation process for N, F-MCFs is illustrated 
in Scheme 1. As shown in Scheme 1, the PAN/PVP/PVDF 
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tricomponent nanofibers are first obtained by electrospin-
ning a mixture of PAN, PVP, and PVDF in the DMF solu-
tion. Further, they are hydrothermally treated under 110 °C 
for 6 h, and then preoxidized and carbonized at 220 and 
1000 °C, respectively, thereby resulting in N, F-MCFs. 
There are two mass ratios of PAN, PVP, and PVDF for the 
prepared N, F-MCFs, 1/1/1 and 1/1/1.5, which are separately 
named as N, F-MCFs-A and N, F-MCFs-B, respectively. To 
investigate the effects of pores and F atoms on N, F-MCFs, 
we synthesized N-MCFs-C without F atom doping from 

PAN/PVP bicomponent polymers and N, F-CFs-D without 
micropores from PAN/PVDF bicomponent polymers for 
comparison.

The morphology of electrospun PAN/PVP/PVDF nanofib-
ers for the entire preparation process was characterized by 
SEM. As shown in Fig. 1a, smooth and uniform electrospun 
PAN/PVP/PVDF nanofibers exhibited a mean diameter of 
about 180 nm with random orientation. After removing PVP 
of the hybrid fibers by hydrothermal treatment, the surface 
of the nanofibers becomes rough and uneven, as shown in 
Fig. 1b. We can observe that some pores appear on the fib-
ers. However, the continuous and uniform fiber structure is 
maintained after the hydrothermal treatment as well. The 
heat treatment of the porous nanofibers includes two pro-
cesses, pre-oxidation and carbonization. During pre-oxida-
tion in air at 220 °C, PAN undergoes cyclization and partial 
dehydrogenation, which make fibers more stable during 
subsequent high-temperature carbonization and create more 
defects for doping heterogeneous atoms [36]. As shown in 
Fig. 1c, d, the obtained N, F-MCFs became thinner and 
denser after carbonization, and cracks formed on their sur-
face. The nanofiber structure with pores and the amorphous 

Hydrothermal

V

PAN/PVP/PVDF
Electronspinning

PAN/PVDF
Microporous
Nanofibers

N, F-doped
Microporous

Carbon nanofibers

Carbonization

Scheme 1  Schematic illustration of N, F-MCFs ORR catalysts

200 nm 200 nm 200 nm

200 nm 50 nm 20 nm

(c)(b)(a)
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Fig. 1  SEM images of a electrospun PAN/PVP/PVDF nanofibers, b PAN/PVDF porous nanofibers after hydrothermal treatment, N, F-MCFs 
with different compositions, c PAN/PVP/PVDF = 1/1/1, and d PAN/PVP/PVDF = 1/1/1.5. e, f TEM images of N, F-MCFs
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carbon microcrystalline structure can be observed in the 
TEM images of N, F-MCFs-A (Fig. 1e, f).

The crystal structure and degree of graphitization are fur-
ther characterized by XRD analyses and Raman spectrum. 
Two broad peaks at around 2θ = 25° and 44°, corresponding 
to the (002) and (100) planes of carbon, respectively, vali-
date the amorphous carbon structure in Fig. 2a. Figure 2b 
shows three typical D, G, and 2D bands at about 1344, 1598, 
and 2798 cm−1, respectively. The D-band represents the 
defects and disordered structure of carbon lattice, while the 
G-band is a characteristic feature of in-plane vibration of sp2 
bonded carbon atoms, which indicates the ordered structure 
of the carbon materials. It is known that the ratio of D-band 
and G-band (ID/IG) is attributed to determine the degree of 
graphitization or the defect density of carbon materials. The 
ID/IG ratios of N, F-MCFs-A and N, F-MCFs-B are as high 
as 2.98 and 2.31, respectively, which suggests that many 
defect sites and disordered structures are caused by doping 
N and F atoms. Moreover, they are in accordance with the 
broad peak of (002) obtained from the XRD results.

The pore structure of N, F-MCFs was investigated by 
adsorption–desorption isotherms of  N2 at − 196 °C. As 
shown in Fig. 2c, d, both isotherms are between type I iso-
therms with type H4 hysteresis loops following IUPAC clas-
sification, thereby indicating the existence of micropores. 
The BET surface areas of N, F-MCFs-A and N, F-MCFs-B 
are 709.78 and 621.46 m2 g−1, respectively. The correspond-
ing pore size distributions of the two samples are calculated 
by Barrett–Joyner–Halenda (BJH) desorption, and their 
average pore widths are 2.37 and 2.77 nm. The large BET 
surface area and the existence of micropores are advanta-
geous for high ORR activities.

The elemental composition and the contents of N and 
F heteroatoms onto the catalysts surface were character-
ized by XPS measurements. The XPS survey spectra for 
N, F-MCFs-A and N, F-MCFs-B showed the existence of 
the C 1s, O 1s, N 1s, and F 1s peaks. The XPS quantita-
tive result demonstrated that the relative surface mass ratios 
of C, O, N, and F are 89.01, 6.12, 2.06, and 2.81% in N, 
F-MCFs-A, and 87.48, 8.26, 1.79, and 2.48% in N, F-MCFs-
B, respectively. The high-resolution N 1s spectrum can be 
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further deconvoluted into four peaks centered at 398.5 ± 0.2 
eV, 400.1 ± 0.2 eV, 401.1 ± 0.2 eV, and 404 ± 0.2 eV, corre-
sponding to pyridinic N, pyrrolic N, graphitic N, and quater-
nary N, respectively. The relative content of pyridinic N and 
graphitic N is much higher than that of pyrrolic N and qua-
ternary N, which may contribute to the high ORR activity of 
the catalyst [26, 27, 34]. The method of doping F atoms via 
PVDF can obtain higher content (> 2%) than those methods 
discussed in the earlier literature, which could be beneficial 
to the ORR electrocatalytic activity. The high-resolution 
F 1s spectrum was usually deconvoluted into semi-ionic F 
(688.8 ± 0.2 eV) and ionic F (685.4 ± 0.2 eV). These two 
peaks can be observed in the F 1s spectrum of N, F-MCFs-B 
in Fig. 3f, while the F 1s spectrum of N, F-MCFs-A can be 
deconvoluted into three peaks in Fig. 3e, which include ionic 
F (685.4 ± 0.2 eV) and two kinds of semi-ionic F,  CH2–CF2 
(689 ± 0.2 eV) and CHF–CHF (687.2 ± 0.2 eV). We com-
pared the high-resolution F 1s spectrum of F-monodoped 
catalyst (prepared by PVDF carbon fibers catalysts) with N, 
F-MCFs in Fig. S4. The binding energy of the semi-ionic 
F in F-doped catalysts is lower than that in N, F-codoped 
catalysts, and the ionic F content of F-monodoped catalyst is 
much lower than N, F-codoped catalysts, which are probably 

because of the synergistic interactions between the F and N 
atoms. It is observed that ionic F can result in higher electri-
cal conductivity and modification of electronic structures of 
carbon frameworks. Compared to the mass ratio of ionic F 
in N, F-MCFs-B (7.18%), the higher mass ratio of the ionic 
F in N, F-MCFs-A (14.83%) can provide more active sites 
for ORR to enhance the activity of the catalysts.

3.2  Electrocatalytic Activities Toward ORR of N, 
F‑MCFs

The electrocatalytic activities of N, F-MCFs were first evalu-
ated by cyclic voltammetry (CV) measurements in  N2- and 
 O2-saturated 0.1 M KOH solution. The CV curves of N, 
F-MCFs-A and N, F-MCFs-B in  N2- and  O2-saturated 0.1 M 
KOH solution are shown in Fig. S1. Figure 4a shows that the 
CV curves of N, F-MCFs-A and N, F-MCFs-B present two 
peak potentials at 0.881 and 0.846 V, respectively, which 
are higher than those of N-MCFs-C (prepared from PAN/
PVP bicomponent polymers, without F-doped atoms) and 
N, F-CFs-D (prepared from PAN/PVDF bicomponent poly-
mers without micropores). The more positive peak potentials 
indicate that more active sites for ORR are created by the 
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high BET surface area and synergistic effect of the codoped 
heteroatoms. As shown in Fig. S2, the onset potential, half-
wave potential, and limiting current density of N, F-MCFs-A 
are all higher than those of N-MCFs-C, which can also prove 
that F doping improves the ORR activity. To further investi-
gate the high ORR catalytic activity of N, F-MCFs-A and N, 
F-MCFs-B, the linear sweep voltammetry (LSV) measure-
ments were performed via a rotating disk electrode (RDE) 
in  O2-saturated 0.1 M KOH solution. As depicted in Fig. 4b, 
N, F-MCFs-A present more positive onset potential (0.94 V 
vs. RHE) than that of N, F-MCFs-B (0.87 V vs. RHE) and 
it is also more approaching to that of the commercial Pt/C 
(0.95 V vs. RHE) because of its larger BET surface area and 
more doped content of N and F. The high ORR electrocata-
lytic activity of N, F-MCFs-A can also be gleaned from its 

higher half-wave potential (0.81 V vs. RHE) than that of N, 
F-MCFs-B (0.71 V vs. RHE) and close to commercial Pt/C 
(JM20, 0.83 V vs. RHE). However, N, F-MCFs-A exhibit 
a lower limiting current density (4.9 mA cm−2) than Pt/C 
(6.1 mA cm−2). In addition, because of concerning about the 
impact of glass corrosion [37], we measured the LSV curves 
of N, F-MCFs-A and Pt/C in  O2-saturated 0.1 M KOH solu-
tion with Teflon container (Fig. S5) and confirmed that in the 
short test time poison of Pt/C catalyst by impurities released 
from the glass cell in alkaline medium should be very little 
and not detectable.

To further estimate the ORR reaction kinetics of N, 
F-MCFs, a series of LSV tests were carried out with 
various rotation speeds from 400 to 2000  rpm in an 
 O2-saturated 0.1  M KOH electrolyte (Fig.  4c, e). On 
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the basis of LSV curves at different rotations, the Kout-
ecky–Levich plots and the electron transfer numbers (n) 
for ORR were obtained from the K–L equations. The 
great linearity and parallelism of the K–L plots (Fig. 4d, 
f) suggest a direct four-electron pathway for better ORR 
efficiency. The average n value of N, F-MCFs-A and N, 
F-MCFs-B is 4.0 and 4.1, which suggested that the com-
plete reduction of  O2 to  OH− over N, F-MCFs by a four-
electron transfer process in 0.1 M KOH. For further confir-
mation of  4e− selectivity, the yield of  H2O2 was measured 
via rotating ring-disk electrode (RRDE) in Fig. S3. The 
percentage of  H2O2 of N, F-MCFs-A is below 10%, and 
n is about 3.75 in the potential range from 0 to 0.8 V ver-
sus RHE (Fig. 4g) in 0.1 M KOH, which indicates the 
low peroxide formation and promising ORR activity. The 
poisoning experiment with  CN−, which can strongly bond 
to active metal sites, was performed to identify the active 
sites of the prepared catalysts [38]. As shown in Fig. 4h, 
although the limiting current density drops a little, the 
onset potential and half-wave potential of N, F-MCFs-A 

almost unchanged with and without  CN− in 0.1 M KOH. 
That means the catalytic active sites in N, F-MCFs-A are 
primarily derived from the F-doped and N-doped carbon 
sites rather than from other metallic coordination sites.

The ORR electrocatalytic performance of N, F-MCFs was 
also tested in acid media. In Fig. 5a, CV measurements in 
 O2-saturated 0.5 M  H2SO4 show that the curve peak of N, 
F-MCFs-A is at 0.649 V (vs. RHE), at which the poten-
tial is negative as compared to that of commercial Pt/C 
(0.748 V vs. RHE). Similarly, LSV measurements (Fig. 5b) 
in  O2-saturated 0.5 M  H2SO4 with various rotating speeds 
from 400 to 2000 rpm and a scan rate of 10 mV s−1 also 
exhibit slightly poor onset potential (0.635 V vs. RHE) and 
half-wave potential (0.257 V vs. RHE). However, the elec-
tron transfer number is calculated to be approximately 4.0 
for N, F-MCFs in 0.5 M  H2SO4 from the corresponding K–L 
plots (Fig. 5c), which indicates that N, F-MCFs have a prob-
able application prospect for ORR electrocatalytic activity 
in acid media.
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Furthermore, the durability and tolerance to methanol 
oxidation of N, F-MCFs-A in 0.1 M KOH were also investi-
gated. The current–time (i–t) chronoamperometric responses 
of N, F-MCFs-A and commercial Pt/C were measured under 
0.6 V (vs. RHE) in  O2-saturated 0.1 M KOH at a rotating 
rate of 1600 rpm for 10,000 s. As shown in Fig. 6a, the rela-
tive current density of N, F-MCFs-A decreased more slowly 
than commercial Pt/C with continuous reaction. It retained 
a superior higher relative current of 95.7%, while commer-
cial Pt/C only retained 87.0%. The CV curves of methanol 
tolerance test (Fig. 6b, c) showed that methanol has almost 
no effect on N, F-MCFs-A; however, a typical methanol oxi-
dation/reduction curve can be observed for Pt/C. Thus, N, 
F-MCFs-A exhibit not only higher stability but also better 
methanol resistance than commercial Pt/C, which indicates 
that N, F-MCFs-A can be a practical metal-free ORR cata-
lyst in fuel cells.

4  Conclusions

In summary, we demonstrated a facile method to synthesize 
N, F-MCF electrocatalysts via electrospinning PAN/PVDF/
PVP tricomponent polymers followed by the hydrothermal 
process and thermal carbonization. N, F-MCFs exhibited 
distinguished electrocatalytic activity for ORR in alkaline 
media, including higher onset potential (0.94 V vs. RHE), 
half-wave potential (0.81 V vs. RHE), and electron transfer 
number (4.0) because of their unique nanofiber structure 
with microporous pore walls and synergistic effect of high 
doped F and N content. In acidic media, the N, F-MCFs also 
exhibited a four-electron transfer pathway for ORR. In addi-
tion, the N, F-MCFs showed outstanding tolerance to metha-
nol and superior stability (95.7%) compared to commercial 
Pt/C catalysts. As a result of all the superior electrocatalytic 
performance, this work provides an efficient pathway of 
in situ synthesis of N, F-MCFs as a highly active metal-free 
ORR electrocatalyst in the further application of fuel cells.
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