e-ISSN 2150-5551

Nano-Micr© Letters CN 31-2103/TB

REVIEW https:/doi.org/10.1007/540820-025-02028-0

() Synaptic Plasticity Engineering for Neural Precision,
it Temporal Learning, and Scalable Neuromorphic
I(\:Izi::o?ls\/ﬁcro Lett. SyStemS

(2026) 18:196

Received: 10 September 2025 Zhengjun Liu'2, Yuxiao Fang', Qing Liu' > Bobo Tian** ™, Chun Zhao' **
Accepted: 25 November 2025
© The Author(s) 2026

HIGHLIGHTS

e This review provides an in-depth discussion of computing-unit optimization through synaptic plasticity engineering, enabling precise

weight modulation in spatial models and effective temporal information processing in dynamic neural networks.

e [t delves into algorithmic advancement through plasticity modulation, improving accuracy, stability, and convergence in neuromorphic

computing models.

e [t explores resource-efficient neuromorphic architectures, integrating multifunctional devices, multimodal fusion, and heterogeneous

arrays for scalable, low-power, and generalizable intelligent systems.

ABSTRACT Manipulating the expression of synaptic plasticity in neuromorphic devices pro-
vides essential foundations for developing intelligent, adaptive hardware systems. In recent years,
advances have shifted from static emulation toward dynamic, network-oriented plasticity design,

offering enhanced computational accuracy and functional relevance. This review highlights how
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diversified plasticity behaviors, including multilevel long-term potentiation and depression for
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spatial models, tunable short-term memory for temporal models, as well as wavelength-selective L o8
response, excitatory and inhibitory synergy, and adaptive threshold modulation, collectively sup- % \
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port key tasks such as stable learning, temporal processing, and context-aware adaptation. Beyond
behavioral innovations, strategies such as multifunctional single-device integration, multimodal
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fusion, and heterogeneous system assembly enable compact, energy-efficient, and versatile neu- mm:u;;. ~

romorphic architectures. Recent developments at the array level further demonstrate high-perfor-

mance scalability and system-level applicability. Despite notable progress, current modulation strategies remain constrained in flexibility,
diversity, and large-scale coordination. Future research should focus on enriching the behavioral repertoire of plasticity, advancing cross-

modal convergence, and improving array-level uniformity, paving the way toward deployable, high-efficiency neuromorphic intelligence.
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1 Introduction

Driven by the rapid evolution of brain-inspired intelligence
and the proliferation of ubiquitous intelligent terminals, neu-
romorphic devices and networks are increasingly recognized
as the foundational hardware underpinning next-generation
artificial intelligence (AI) systems [1]. Neuromorphic
engineering, situated at the intersection of neuroscience,
materials science, electronics, and Al, aims to emulate the
multiscale information processing and adaptive learning
capabilities intrinsic to biological neural systems [2-5]. By
overcoming the fundamental limitations of traditional von
Neumann architectures, such as high energy consumption,
the separation of memory and computation, and data trans-
fer bottlenecks, neuromorphic hardware aspires to integrate
sensing, memory, and computing within unified physical
substrates [6—8]. This vision unlocks new possibilities for
building Al systems that are energy-efficient and adaptive,
as well as deployable in resource-constrained, edge, and
extreme-environment scenarios [9-11].

Two functionally differentiated but equally critical
research directions have emerged to meet the unique require-
ments of static and dynamic neural architectures [12, 13].
For spatial-domain, weight-driven networks such as con-
volutional neural networks (CNNs) and multilayer percep-
trons (MLPs), the emphasis is placed on achieving precise,
stable, and symmetric modulation of synaptic weights [14].
To support accurate and scalable training and inference in
neuromorphic networks, long-term memory (LTM) syn-
aptic devices must exhibit high-resolution analog weight
states, minimal nonlinearity, excellent long-term retention,
and strong environmental drift resistance [15]. Substantial
progress has been made in this area, as demonstrated by
advances in multilayer memristors, ferroelectric synapses,
and two-dimensional heterostructure devices, which collec-
tively offer excellent linearity, multistate modulation, and
symmetry [16—18]. In parallel, solid-state ionic systems have
demonstrated outstanding endurance and drift resistance,
further supporting the feasibility of deploying these devices
in large-scale neuromorphic arrays [19, 20].

On the other hand, temporally dynamic architectures such
as reservoir computing (RC) and spiking neural networks
(SNNss) require devices capable of emulating transient
synaptic behaviors that support time-domain information
processing [21]. Short-term memory (STM), paired-pulse
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facilitation (PPF), and spike-timing-dependent plasticity
(STDP) are critical for encoding spatiotemporal correla-
tions and enabling event-driven learning [15, 22, 23]. To
address these requirements, researchers have developed
neuromorphic devices that emulate such behaviors through
a variety of mechanisms. Notable advances include fully
quantum dot optoelectronic memristors, photon-avalanche
nanocrystal-based synapses, and hybrid organic transistor
systems [24-26]. These devices offer tunable memory win-
dows, nonlinear temporal dynamics, and dynamic thresh-
old modulation, features that render them highly suitable
for real-time pattern recognition, sequence prediction, and
low-power adaptive computing [27].

Earlier research mainly emphasized synaptic behav-
iors at the single-device level. However, the translation of
these advances into network- and system-level benefits has
been comparatively underexplored. In contrast, this review
emphasizes how diverse synaptic plasticity mechanisms
can directly enhance neural network algorithm optimiza-
tion, resource efficiency, and generalization (Fig. 1). Recent
advances in wavelength-selective plasticity, excitatory and
inhibitory synergy, and dynamically tunable metaplasticity
demonstrate significant algorithmic implications [28-34].
Wavelength-selective synapses facilitate targeted spectral
perception and intrinsic noise filtering, streamlining neural
network algorithms by reducing preprocessing complexity
and enhancing robustness under noisy, real-world condi-
tions [35]. Excitatory and inhibitory cooperative synapses,
mirroring biological receptive fields, realize spatial attention
mechanisms at the hardware level, prioritizing critical inputs
and suppressing irrelevant signals, thus reducing computa-
tional overhead and improving recognition accuracy even
under constrained computational budgets [36]. Additionally,
dynamically adjustable threshold plasticity and metaplastic-
ity enable neural networks to modulate learning sensitivity
and response thresholds based on environmental variabil-
ity and historical activity, accelerating model convergence,
reducing required training epochs, and enhancing adaptabil-
ity to uncertain conditions [37].

In parallel with the advancement of higher-order syn-
aptic plasticity mechanisms, recent developments in mul-
timodal integration, single-device multifunctionality, and
heterogeneous component co-design have established pow-
erful strategies for constructing energy-efficient, resource-
compact neuromorphic systems [50-52]. Multimodal
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synaptic devices capable of responding to diverse stimuli ~ environments [53]. Multifunctional synapses emphasize
such as light, pressure, gas, or humidity facilitate device-  internal behavioral richness, allowing single devices to
level information fusion and reduce data transfer overhead, = concurrently exhibit various plasticity modes, significantly
supporting robust and low-latency perception in dynamic  enhancing learning flexibility, reducing peripheral circuitry,
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Fig. 1 Overview of this review. Neuromorphic Units. Reproduced with permission [35]. Copyright 2023, The Authors. Advanced Science
published by Wiley-VCH GmbH. Reproduced with permission [36]. Copyright 2024, Wiley—~VCH GmbH. Reproduced with permission [37].
Copyright 2025, Wiley-VCH GmbH. Reproduced with permission [38]. Copyright 2024, The Author(s). Advanced Materials published by
Wiley-VCH GmbH. Reproduced with permission [39]. Copyright 2024, Wiley-VCH GmbH. Reproduced with permission [40]. Copyright 2021,
Wiley-VCH GmbH. Model Optimization. Reproduced with permission [41]. Copyright 2024, Wiley-VCH GmbH. Reproduced with permis-
sion [42]. Copyright 2024, Wiley-VCH GmbH. Reproduced with permission [43]. Copyright 2025, The American Association for the Advance-
ment of Science. Resource Strategies. Reproduced with permission [44]. Copyright 2024, The American Association for the Advancement of
Science. Reproduced with permission [45]. Copyright 2024, American Chemical Society. Reproduced with permission [46]. Copyright 2024,
The Authors. Advanced Materials published by Wiley-VCH GmbH. System Integration. Reproduced with permission [47]. Copyright 2024, The
Author(s). Advanced Materials Technologies published by Wiley—~VCH GmbH. Reproduced with permission [48]. Copyright 2024, The Ameri-
can Association for the Advancement of Science. Reproduced with permission [49]. Copyright 2023, American Chemical Society
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and enabling task-adaptive learning under tight hardware
constraints [54]. Complementing these approaches, het-
erogeneous integration architectures amalgamate sensory
transducers, memory units, logic elements, and actuators
into unified neuromorphic modules, supporting real-time
closed-loop operations. Compared to monolithic systems,
these heterogeneous platforms offer enhanced versatility,
scalability, and task-specific configurability, essential for
intelligent operation in power-constrained and bandwidth-
limited environments [55].

The evolution of synaptic plasticity has shifted from early
demonstrations emphasizing STM and LTM for precise
weight updates in artificial synapses toward more sophisti-
cated behaviors meeting emerging network training require-
ments, including multimodal integration, excitatory-inhibi-
tory interactions, multifunctionality, and dynamic threshold
modulation, thereby enabling enhanced model generaliza-
tion and algorithm-level strategies for neuromorphic hard-
ware, as illustrated in Fig. 2. Reflecting this conceptual tra-
jectory, the review first examines the material and device
engineering strategies that enable precise, stable, and high-
resolution synaptic weight modulation. It then considers
mechanisms of dynamic plasticity and threshold adaptation
that are essential for temporal learning within RC and SNN
architectures. Subsequent sections highlight higher-order
synaptic behaviors such as wavelength selectivity, excita-
tory and inhibitory synergy, and metaplasticity, all of which
play pivotal roles in enhancing algorithmic efficiency and
adaptive learning. Further discussion addresses the impact
of multifunctional and multimodal integration strategies in
realizing compact, energy-efficient, and resource-conscious
neuromorphic systems. The final section surveys recent
advances in array-level integration and intelligent system
demonstrations, underscoring the practical translation of
these innovations into scalable and robust neuromorphic
platforms.

2 Synaptic Engineering for Analog Weight
States

High-fidelity, multistate, and stable synaptic plasticity is
the cornerstone of weight-driven neural networks [58].
Realizing analog conductance tuning with linear and sym-
metric long-term potentiation (LTP) and long-term depres-
sion (LTD) enables precise parameter updates, which are
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essential for achieving high-accuracy and robust learning
performance [59]. In this context, expanding the resolution
and linearity of synaptic weights and ensuring long-term
weight stability and drift resistance have become parallel
priorities in the development of advanced artificial syn-
aptic devices. Together, these two facets underpin reliable
weight mapping, efficient training convergence, and the scal-
able deployment of neuromorphic hardware in large-scale,
parameter-driven networks.

2.1 Multistate and Symmetric Weights

The realization of high-resolution, multistate, and linearly/
symmetrically tunable weight modulation is fundamental
to advancing artificial synaptic devices for neuromorphic
computing [60]. In biological networks, the ability to finely
and continuously modulate synaptic strength underpins the
complex adaptive learning behavior of the brain, serving as
an essential blueprint for weight-driven neural architectures
such as convolutional and multilayer perceptrons [61]. In
hardware implementations, this translates into the need for
synaptic devices that can provide abundant, reproducible,
and evenly spaced conductance states with minimal nonlin-
earity and variation, thereby ensuring precise weight map-
ping and stable training convergence [62]. Consequently,
material and device engineering has been directed toward
strategies that enhance the density, linearity, and symmetry
of accessible conductance states, laying the foundation for
high-accuracy and reliable performance in large-scale neu-
romorphic networks.

Among the early breakthroughs, Tian et al. reported
an organic ferroelectric transistor synapse with a
poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)]/
MoS, structure, in which polarization-driven switching ena-
bled more than 1000 quasi-continuous conductance states,
providing a robust platform for precise and scalable weight
modulation [63]. Subsequent efforts explored organic heter-
ojunction synapses, for example, vertical p-n devices based
on p-type poly(2,5-bis(2-octyldodecyl)-3,4-dicyanothio-
phene) (PDPP4T) and naphthalene tetracarboxylic diimide
derivative (NTCDI-F15), which utilized enhanced exciton
dissociation and suppressed recombination to achieve sev-
eral hundred clearly separable potentiation-depression states
with low LTP nonlinearity [64, 65]. In parallel, ferroelec-
tric phototransistors based on a-In,Se; exploited dynamic
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interfacial polarization switching, enabling highly symmet-
ric, optically controlled bidirectional weight updates [66].
Along with innovations in quantum dot devices and charge
transfer modulation, these advances have greatly broadened
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the palette for analog weight expression and conductance
state engineering.

Nevertheless, persistent challenges, including residual
nonlinearity, device variability, and incomplete symme-
try, continue to hinder the widespread deployment of these
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systems in large-scale, high-accuracy neural networks. As a
result, recent research has increasingly focused on optimiz-
ing a diverse range of material platforms, including organic,
ferroelectric, two-dimensional, and heterostructure systems,
each offering unique opportunities for achieving robust,
high-density, and precisely controllable multistate weight
expression [67].

A compelling example of this progression is found in
the two-dimensional violet phosphorus (VP)-molybdenum
disulfide (MoS,) heterostructure synaptic device, which sets
a new benchmark for analog synaptic performance in neu-
romorphic computing [38]. The system-level significance
of these advances is directly demonstrated through neural
network simulations of image classification tasks: as shown
in Fig. 3a, the synaptic weights of the VP-MoS, device are
mapped into a multilayer network model comprising 40,000
Wiy and 1,000 Wy, synapses, with both the training and
inference stages faithfully emulating deep learning frame-
works. The evolution of weight distributions before and after
training (Fig. 3b) underscores the capacity of high-resolu-
tion analog weights to realize sharp and robust separation
within large-scale networks. Crucially, systematic variation
of dynamic range (DR) and state number (Fig. 3c) reveals
that both parameters exert a decisive influence on classifi-
cation accuracy: once DR drops below 20 dB, performance
degrades precipitously, illustrating the fundamental neces-
sity of high-fidelity, multistate synaptic mapping for com-
plex pattern recognition. At the device level, the VP-MoS,
heterostructure leverages the wide bandgap and pronounced
light—matter interactions of VP to achieve an ultrahigh dark-
to-light ratio (> 10°), a dynamic range exceeding 60 dB, and
128 (7-bit) clearly separated conductance states (Fig. 3d,
e). This exceptional state density is complemented by the
device’s ability to support optically driven LTP and elec-
trically driven LTD, both exhibiting highly reproducible
and linear transitions across repeated programming cycles.
The ultralow off-state current effectively minimizes weight
mapping errors, a critical consideration for high-accuracy
network applications.

To realize multistate, symmetric weights, evidence across
material platforms points to a clear progression. Symmet-
ric carrier injection barriers, shallow and narrowly distrib-
uted traps, and well-passivated interfaces produce mono-
tonic, nearly uniform, and mirror-symmetric conductance
updates. Ferroelectric channels then supply rapid and revers-
ible polarization that avoids slow ionic drift, while organic
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and two-dimensional heterojunctions use interfacial charge
transfer to suppress nonlinearity. Stability is reinforced by
ion-blocking interlayers and robust dielectrics, which curb
long-term drift and cycle-to-cycle variation. Wide bandgap
channel stacks with ultralow off-state current further enlarge
the dynamic range and raise the signal-to-noise ratio, reduc-
ing weight mapping error.

2.2 Stable and Drift-Resistant Weights

The pursuit of highly stable, drift-resistant synaptic weight
modulation stands as a foundational requirement for neu-
romorphic hardware targeting large-scale, weight-driven
neural network applications [69]. Biological synapses pos-
sess the remarkable capacity for reliable and long-lasting
information retention, a property underpinned by sophis-
ticated ionic dynamics and homeostatic regulatory mech-
anisms [70]. In contrast, many artificial synaptic devices
suffer from conductance drift, cycle-to-cycle variability,
and progressive degradation under repeated operation or
environmental fluctuations, which compromise weight pre-
cision, hinder training convergence, and limit system endur-
ance [71, 72]. Addressing these challenges has thus become
a central motif in synaptic device innovation, particularly as
next-generation Al architectures demand robust in-memory
computing platforms capable of both high-precision storage
and operational endurance.

To overcome the volatility and reproducibility bottlenecks
of conventional memristors, the community has developed
a rich diversity of material and interface strategies aimed
at suppressing drift and enhancing cycle stability [73]. For
example, electrochemical synaptic transistors, especially
those leveraging solid-state ionic conductors, have enabled
finely tunable and highly stable analog weights through
deterministic ion migration mechanisms. Among these,
devices based on lithium- and proton-conducting electro-
Iytes exhibit rapid switching and reasonable retention but
are often hampered by environmental sensitivity and limited
compatibility with standard CMOS processes [39, 68, 74].

Amidst these diverse approaches, a pivotal advance is
exemplified by the solid-state oxide-ion synaptic transis-
tor based on a Bi,V, oCug 0535 (BICUVOX) electrolyte
and La, sSr sFeO; s (LSF50) channel [39]. At the system
level, the impact of such stable weight modulation is viv-
idly illustrated by neural network simulations: when the

https://doi.org/10.1007/s40820-025-02028-0
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experimentally derived BICUVOX/LSF50 weight curves
are mapped into an 8 X 8 or larger-scale artificial neural net-
work, the resulting Modified National Institute of Standards
and Technology (MNIST) digit recognition accuracy reaches
96% (Fig. 3f). This not only approaches the ideal software
benchmark but also demonstrates that minimizing device
drift and ensuring long-term analog stability can markedly
reduce inference errors and support sustained high-accuracy
operation in large-scale, weight-driven neural networks.
The remarkable device-level performance of BICUVOX/
LSF50 underpins this system-level accuracy. Specifically,
the device leverages the high ionic conductivity and thermal/
environmental stability of the BICUVOX film to achieve
deterministic, reversible, and low-voltage modulation of syn-
aptic weights. Unlike earlier oxide-ion or protonic transistors
that suffered from high switching voltages and unreliable
ion migration, the BICUVOX/LSF50 system operates at
sub-1 V levels, ensuring stable oxide-ion motion and mini-
mal stochasticity in weight updates. This architecture yields
more than 100 discrete, linearly spaced conductance states
(7-bit precision), with a nonlinearity factor of 0.3—1.7 and
an asymmetric ratio as low as 0.03, metrics that directly
reflect its capacity for highly symmetrical and repeatable
LTP/LTD modulation (Fig. 3g, h). Notably, these features
are retained over 5000 programming cycles and persist even
under elevated temperatures, attesting to the robustness of
the device in edge computing and harsh environmental sce-
narios. Complementarily, Feng et al. introduced a ferroelec-
tric fin diode (FFD) that achieved an exceptional endurance
of over 10'° switching cycles together with stable analog
memory states, highlighting the critical role of ferroelectric
domain engineering in suppressing drift and ensuring long-
term reliability for in-memory computing [75].

In addition, Tian et al. reported a ferroelectric memcapaci-
tor network based on a P(VDF-TrFE)-integrated metal/ferro-
electric/metal/insulator/semiconductor (MFMIS) structure,
in which the stacked MFMIS configuration (Fig. 3i) enabled
reconfigurable multilevel capacitance states governed by
ferroelectric domain dynamics [76]. Benefiting from uni-
form polarization-induced fields, the device achieved stable
intermediate states with retention times exceeding 10* s and
endurance beyond 10° switching cycles, as confirmed by
both cycle-to-cycle stability tests (Fig. 3j, k). In compari-
son, other contemporary platforms have also made notable
strides in device stability and endurance [68, 73]. The novel
solid-state sodium alginate (NaAlg)/ polyacrylic acid (PAA)/

© The authors

indium gallium zinc oxide (IGZO) device introduces a poly-
acrylic acid interface to buffer Na* ion dynamics, achieving
64 stable conductance states over 12,000 cycles and support-
ing high-fidelity pattern recognition. Similarly, ultra-flexible
Si nanomembrane arrays integrated with hybrid polyimide-
Al, 05 dielectrics maintain high linearity, ultra-low conduct-
ance fluctuation (< 1.6%), and excellent endurance even after
10,000 bending cycles, achieving digit recognition rates up
t0 93.2%.

Across studies, consistent evidence indicates that drift-
resistant and reproducible analog weights arise when ionic
transport is deterministic in chemically and thermally robust
solids, operating voltages are kept in the subvolt regime to
confine dynamics to reversible ranges, polarization is tightly
controlled, and interfaces are buffered or passivated. Under
these conditions, devices deliver monotonic, nearly uniform,
and mirror-symmetric conductance states with low nonlin-
earity and low asymmetry, and they retain these character-
istics over thousands of programming cycles and at elevated
temperatures. Endurance extends from 10° to 10'” switch-
ing events, with intermediate-state retention on the order
of 10%s.

3 Synaptic Engineering for Temporal
Plasticity

The growing demand for neural networks that can process
complex temporal signals in real-world environments has
made dynamic synaptic plasticity central to the development
of next-generation RC and SNNs [77]. Unlike conventional
static architecture, temporal neural models require devices
capable not only of rapid and reversible information encod-
ing, but also of modulating memory retention and synap-
tic responsiveness on demand [78]. This shift presents two
parallel challenges: first, how to implement tunable STM
windows at the device level to enable real-time temporal
correlation, and second, how to realize precise threshold and
spike-timing-dependent plasticity for efficient event-driven
learning and adaptive sequence recognition [79, 80].

3.1 Tunable STM Windows
In the era of intelligent sensing and ubiquitous Internet of

Things, neuromorphic hardware capable of encoding and
manipulating dynamic temporal information has become

https://doi.org/10.1007/s40820-025-02028-0
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foundational for advancing time-dependent machine learn-
ing architectures such as RC and SNNs [81]. While tradi-
tional feedforward artificial neural networks are optimized
for static tasks, they lack the intrinsic STM necessary to
capture, store, and process the temporal correlations inher-
ent in real-world signals. This gap has driven the develop-
ment of synaptic device platforms that directly emulate the
transient, volatile, and highly tunable memory windows
exhibited by biological synapses, attributes that underpin
the temporal perception and adaptive response in natural
neural circuits [82]. Building on this foundation, physical
reservoir computing offers a promising route. It leverages
the intrinsic nonlinear response and fading memory (FM)
dynamics of devices. Through these properties, temporal
inputs are projected into a high-dimensional state space,
where simple linear readout layers can efficiently extract
spatiotemporal correlations. The optimization of STM
window depth and adaptability is therefore crucial, since
it determines the trade-off between memory retention and
nonlinear transformation, enhances the richness of reservoir
states, and ultimately improves temporal encoding capacity
and computational efficiency for edge Al applications [83].

A diverse array of material systems and device strate-
gies has emerged to address this challenge, each contribut-
ing unique mechanisms for STM modulation. Among these,
the fully quantum dot optoelectronic memristor (FQDOM),
constructed from a ZnO QDs/CdSe QDs/ZnO QDs hetero-
junction, exemplifies an integrated approach that unifies
broadband photodetection (ultraviolet—visible (UV) to red
spectrum), nonlinear STM decay, color selectivity, noise-
tolerant preprocessing, and reservoir computation within a
single two-terminal volatile device, as shown in Fig. 4a [40].
As a physical reservoir, the FQDOM achieves near-ideal per-
formance in dynamic tasks: in letter classification, nonlinear
temporal mapping of pulse-encoded images results in 100%
recognition accuracy within fewer than 30 training cycles
(Fig. 4b, c). Furthermore, the ability to tune memory decay
and synaptic response by varying pulse number, intensity,
and spectral content extends the diversity of accessible reser-
voir states, a critical enabler for high-dimensional temporal
information processing (Fig. 4d).

Parallel innovations in all-optical synaptic platforms, such
as photon-avalanche (PA) nanocrystals, leverage excited-
state absorption and energy looping within upconversion
nanoparticles to yield ultrasteep nonlinear luminescence
dynamics and robust STM behavior [84]. The PA system

| SHANGHAI JIAO TONG UNIVERSITY PRESS

demonstrates an exceptionally high PPF index that depends
sensitively on inter-pulse delay (Fig. 4e), faithfully replicat-
ing the FM enhancement observed in biological synapses.
Such all-optical synaptic models not only enable dynamic
feature extraction and temporal summation in pure photonic
domains but also facilitate hardware-embedded preprocess-
ing for sequence-based neuromorphic computing, eliminat-
ing the need for external network training.

Extending the STM paradigm to the near-infrared, Leng
et al. introduced a hybrid transistor architecture based on
core—shell upconversion nanoparticles (UCNPs@SiO,)
embedded in a poly(3-hexylthiophene) (P3HT) channel [41].
This device exploits photon-electron coupling and electrical
programming to achieve multilevel nonvolatile conductance
states (> 8), adjustable relaxation times, and rich nonlin-
ear and asymmetric memory dynamics under narrow-band
near-infrared (NIR) stimulation. The resulting reservoir ena-
bles in situ encoding and computation for both static and
dynamic pattern recognition, achieving, for instance, 91.13%
accuracy in static digit classification and a normalized mean
squared error as low as 1.06x 107 in predicting complex
nonlinear dynamic sequences (Fig. 4f—h). Crucially, the
expansion of reservoir states via variable programming
and optical input parameters translates directly to enhanced
prediction accuracy and adaptability in time-dependent
computational tasks, highlighting the value of tunable STM
windows and multimodal input fusion for temporal neuro-
morphic platforms.

Across neuromorphic platforms, the aim is to realize tun-
able temporal memory and coding that support reservoir
computing and spiking models operating on real-world time-
varying signals. When devices combine intrinsic nonlinear-
ity with fading memory dynamics and allow on-demand
modulation of retention and responsiveness, temporal inputs
are embedded into high-dimensional state trajectories that
preserve temporal correlations while remaining linearly
decodable. Heterojunction stacks, core—shell photonic archi-
tectures, and engineered energy-transfer pathways stabilize
excited-state kinetics and broaden spectral responsivity,
yielding controllable volatility with reduced environmen-
tal sensitivity. Controlling pulse number, amplitude, width,
inter-pulse interval, and spectral content tunes short-term
memory depth and relaxation times, enhances temporal sum-
mation, and expands the accessible reservoir state space.

@ Springer



196 Page 10 of 43

Nano-Micro Lett.

(2026) 18:196

Pulse input 1.0
OOEE - 108
........ Split D |:] D D Read out ——Loss 065
D |:| D l:l e —=— Accuracy °®
: - — 5
Loo—— 040
EOOO - <
EEEE ~ = {02
» @ 40.0
Memristor reservoir
0 20 40 60 80 100
Epoch
(© (d) . (e)
80 B 5
1M1 2 2% 1 S
1110 3240 3 = — 8 >
101 % £ z
£
< L1010 g =
= 40 1001 5 ig o
4o 1000 30 5 10 15 20 25 30 < A L/ JAMN
o 0111 Time (s) 20 40 60 80
5 g}g? K10° time [ms]
20+
O 0100 _ w0l | s -
0011 < 4 E]
0010 é Lo | — £
0 0001 B, £ \ k)
, , , /Moo § 18wt I\ z
0 1 2 3 4 i T . 5
Pulse number 10 . =
05 M0 15 0 25 A N0 5 60 70 £
AN Time (s) g
(f) (g) 1 0 50 100 150 200
£ i —— Target
£ yr‘ o ““M *M‘m ol S03 Train set T prediciion (h) time [ms]
3 [N ] z
Input u, " mzﬁe;‘:;ﬂr:ﬁym;n — E R LV du i) W“V\‘ i 2.0 'I:-)Ta ______
M E o \—31’5 2425100 S92 i i Al
S |Lightintensity (mW ci 0-24.25,100 h NMSE = 4.27 x 10| 1.8} .-
Physical reservoir zo [ep intarval (ma). ——0-24.25, 200 450 3 500 35 550 o~ i \N /\
w— .;1 Train 200 0 moston 500 Time step ‘3 16\t
/va st -> 2 x iDatasetd |
NIR pulse Y Programmed 8 s w 1
}})}» . Rl > Prediction < w ° Test set =Target g 14
su v, _J_L s2 / M 5 WW/“ M« V/W‘" M'M W] 203 ——Prediction| '
o > I oo b 2@ @ R0l ==l @02 TOSGSSeSSeaSk
-g—fgﬂ__ ,/\,\/\A“ / & 5 1.2
aov 3 [ vy wanturn] 3
e g F;ﬂw = So. 1.0
L S 2 4 6 8
SSAE »A/V/VL/\ %50 3 P::“'am'"“osm . 650 Programmed state number
Time step Time step

Fig. 4 Temporal dynamics for tunable STM in neuromorphic hardware. a Schematic of pulse-encoded letter/image classification using in-sensor
reservoir computing (RC). b Training accuracy and loss curves for the fully quantum dot optoelectronic memristor (FQDOM)-based system. ¢
Excitatory postsynaptic current (EPSC) responses of optoelectronic memristors under different pulse sequences. d Modulation of STM window
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3.2 Spike-Timing Plasticity

The pursuit of hardware-efficient SNNs has elevated
dynamic threshold modulation and STDP to the forefront
of neuromorphic device innovation [85]. Biological systems
leverage precisely timed spiking and adaptive membrane
thresholds to achieve energy-efficient encoding and rapid
learning of temporal patterns [86]. In this context, SNNs

© The authors

introduce the principle of event-driven computation, where
neurons accumulate inputs until a dynamic threshold is
reached and emit discrete spikes that encode information in
their timing and frequency [87]. Through STDP, the precise
correlation between pre- and postsynaptic spikes enables
local and unsupervised weight updates, which not only rep-
licate biological learning rules but also enhance the temporal
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precision, energy efficiency, and adaptability of hardware
SNNs [88].

Emulating these dynamics in hardware, however,
remains a formidable challenge, particularly in the com-
pact, low-power integration of leaky-integrate-and-fire
(LIF) neuron behavior, spike frequency adaptation, and
direction-selective learning. While early CMOS- and
MOSFET-based artificial neurons provided proof-of-
concept LIF operation, they were hindered by high power
consumption and bulky form factors [89]. To address
these limitations, recent research has focused on develop-
ing novel device architectures and material systems that
more closely emulate the rich temporal dynamics of bio-
logical neurons and synapses. Of particular interest are
steep-slope, energy-efficient devices and co-integrated
systems capable of precise temporal information process-
ing and unsupervised learning. Among these advances,
device-level innovations that directly implement both LIF
spiking and synaptic plasticity within scalable, low-power
hardware have demonstrated particularly promise for next-
generation SNNs [90].

Choi et al. proposed a significant breakthrough by dem-
onstrating fully two-dimensional material-based SNNs that
integrate WSe, impact-ionization ferroelectric FET (I’FET)
neurons with a-In,Se;/hexagonal boron nitride (h-BN)/
CulnP,S (CIPS) ferroelectric FET (FeFET) synapses in
Fig. 5a [42]. Notably, this platform achieved an impressive
87.5% accuracy in unsupervised face classification after only
20 training epochs, substantially outperforming typical low-
parameter SNNs (Fig. 5b). At the device level, the 2D (I’FET
neuron exploits a locally ungated, high-field region within
the tungsten diselenide (WSe,) channel to enable abrupt,
sub-microsecond avalanche spiking at ultralow energy con-
sumption (~2 pl/spike), a 20- to 5000-fold reduction com-
pared to conventional silicon neuron circuits (Fig. 5c). This
architecture ensures linear spike-frequency modulation with
input bias, conferring robust event-driven adaptability and
precise threshold dynamics, critical for real-time temporal
coding and event detection, as shown in Fig. 5d. System-
level integration with FeFET synapses allows each artificial
neuron to perform both spatial and spatiotemporal integra-
tion of distributed, asynchronously timed inputs, faithfully
recapitulating dendritic computation and gating in biological
systems (Fig. 5e). Experiments demonstrate that individual
subthreshold inputs may be insufficient to trigger a spike,
while coincident or temporally proximate inputs summate

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

efficiently to elicit firing, underscoring the network’s ability
to capture complex temporal features with high selectivity.

Equally remarkable, the MoS,-based ferroelectric syn-
aptic transistor associative spiking neural network (aSNN)
demonstrates state-of-the-art associative memory and
one-shot completion capabilities [43]. In digit completion
tasks, the aSNN can accurately reconstruct entire patterns
from partial cues, achieving a classification accuracy of
up to 91.13% in static digit tests, surpassing traditional
iterative associative networks (Fig. 5f). At the device level,
the ferroelectric synapse harnesses gate-controlled domain
wall dynamics to enable analog, symmetric, and linear
weight modulation with sub-femtojoule energy per event,
supporting a full suite of short-term repetitive depression/
potentiation (SRDP) and STDP learning rules (Fig. 5g),
where the relative timing of pre- and postsynaptic spikes
governs LTP or LTD. This permits on-device, unsuper-
vised Hebbian learning and LTM retention (Fig. 5h).

In neuromorphic hardware, an important direction is
hardware-efficient, event-driven computation achieved by
coupling adaptive thresholding with STDP. Deterministic
leaky-integrate-and-fire neurons with linear rate control,
paired with synapses that deliver analog, symmetric, and
linear weight updates from precise spike timing, enable
accurate temporal coding and local unsupervised learn-
ing. High field regions, ferroelectric or dielectric domain
control, and interface passivation stabilize thresholds and
plasticity kinetics while limiting leakage and variability.
Tuning threshold set points and adaptation, shaping spike
timing and intervals, and operating at latency and per spike
energy improve efficiency and selectivity. Co-integrating
steep-slope neuron devices with low energy, timing-sen-
sitive synapses, aligning STDP windows to task time con-
stants, and maintaining low voltage operation yield robust
coincidence detection, associative recall, and competitive
accuracy with few training epochs for edge-scale temporal
intelligence.

4 Synaptic Engineering for Context-Aware
Sensory Gating

The realization of robust, intelligent sensory perception in
neuromorphic systems increasingly depends on the ability
to selectively extract salient features, suppress interference,
and flexibly adapt to complex, dynamic environments [91,
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92]. Achieving these functions at the hardware level requires
artificial synaptic devices that go beyond simple signal
transduction, integrating a rich diversity of programmable
plasticity mechanisms for context-aware information pro-
cessing [93]. Rather than relying on fixed or single-modal
responses, state-of-the-art sensory synaptic architectures
must dynamically encode spectral, spatial, and contex-
tual cues to enable high-fidelity feature encoding, efficient
attention, and adaptive learning in the presence of noise and
uncertainty [94, 95].

© The authors

4.1 Wavelength-Selective Response

The capacity for wavelength-selective perception and encod-
ing is foundational for the advanced feature extraction and
robust information processing demanded by next-generation
neuromorphic vision systems [96, 97]. Biological retinas
achieve these functions through diversified photoreceptor
responses, most notably, the selective encoding of colors
by rod and cone cells, to filter redundant background sig-
nals and accentuate task-relevant spectral features [98, 99].
This architecture enables color discrimination and noise-
tolerant recognition even in challenging and complex envi-
ronments [28, 100]. Motivated by this natural paradigm,

https://doi.org/10.1007/s40820-025-02028-0
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artificial visual synapses are being engineered to exhibit
customized photoresponse windows and spectrum-spe-
cific memory retention, with innovations encompassing
ion-doped perovskite nanocrystals, molecular cocrystal
networks, n-n hybrid nanocomposites, and plasmonic 2D
heterostructures, thereby unlocking new directions for hard-
ware-level, context-aware spectral processing [44, 101-103].

Recent research highlights a flourishing diversity of
underlying mechanisms for wavelength-specific synaptic
plasticity, as exemplified by several representative works. In
the study by Dong et al., the perylene-7,7,8,8-tetracyanoqui-
nodimethane (TCNQ) molecular cocrystal nanowire (MCN)
synapse leverages highly ordered donor—acceptor charge
transfer to achieve both broadband UV—-Vis-NIR responsiv-
ity and efficient exciton dissociation [101]. As illustrated in
Fig. 6a, their MCN synaptic sensor array is tightly integrated
with a CNN, forming a complete workflow for blue-targeted
image preprocessing and high-precision feature recognition.
The quantitative advantage of this scheme is reflected in
Fig. 6b, where denoising red—green Gaussian-corrupted
MNIST images using the MCN array increases recognition
accuracy from only 12% (raw input) to 90%, close to the
performance on clean data. The material’s robust broadband
photoresponse across 365—-1050 nm is further demonstrated
in Fig. 6¢, while Fig. 6d underscores the device’s selective
and strong excitatory postsynaptic current (EPSC) response
under pulsed blue (455 nm) light, essential for targeted blue
feature isolation from complex backgrounds.

For dynamic and motion-rich environments, Huang et al.
advance the field with a plasmon-enhanced 2D MoS, neu-
ron array, drawing direct inspiration from the architecture
of eagle eyes [44]. Figure 6e depicts the schematic of the
eagle-inspired visual system, emphasizing the role of short
axons and dual-wavelength integration, key principles guid-
ing the design of their hybrid plasmonic/2D semiconductor
optoelectronic neuron arrays. Figure 6f contrasts the imag-
ing outcomes of conventional, visible-only, NIR-only, and
dual-band fusion sensors, revealing that dual-band fusion
yields the most information-rich spatiotemporal frames for
motion analysis. This systematic advantage is clearly quanti-
fied in Fig. 6g, where recognition of four different motion
types with the neural network reaches near-perfect accuracy
(= 99.8%) using fused visible-NIR inputs, dramatically sur-
passing all single-band and conventional approach and high-
lighting the practical impact of biomimetic, multispectral
sensing.

| SHANGHAI JIAO TONG UNIVERSITY PRESS

Addressing the challenge of sequence-dependent visual
information encoding, Liu et al. developed a n-m coupled
fullerene (Cgp)/graphene oxide (GO) heterosynaptic array,
implemented in a 5 X 5 configuration for real-time video-
based recognition [102]. Figure 6h presents the experimental
scheme, where sequential letter inputs generate distinctive
spatiotemporal current maps within the device array. The
array’s capacity to accumulate and store temporal informa-
tion is evidenced in Fig. 61, with the output for the final
frame (“E”) reflecting the memory of the full stimulus
sequence. Figure 6j further details the classification vectors,
where each word produces unique feature maps as a function
of prior input. Figure 6k demonstrates the device’s robust,
monotonic current variation with pulse number, supporting
precise and noise-resistant temporal mapping. Ultimately, as
summarized in Fig. 61, a lightweight CNN readout trained on
these temporal signatures delivers a dynamic video recogni-
tion accuracy of 97.3%, confirming both excellent generali-
zation and high noise robustness.

Across neuromorphic vision platforms, the objective is
wavelength-selective sensing and encoding that support
robust feature extraction. Spectrally tailored absorption,
efficient exciton dynamics, and photogating, combined with
plasmonic coupling or & stacking, produce spectrum-spe-
cific plasticity and retention that suppress background while
emphasizing salient cues. Donor acceptor cocrystals, plas-
monic and two-dimensional heterostructures, and n-stacked
composites define photoresponse windows, enhance local
fields, stabilize spectrum-specific memory, expand dynamic
range, and improve readout signal to noise; tuning pulse
number, amplitude, interval, and spectral content adjusts
short-term memory depth and spatiotemporal mapping.
Prioritizing stacks that couple spectrum-specific gain with
controllable retention, and matching device time constants
to task timescales, yields noise-tolerant color and motion
perception that lightweight readout networks can decode.

4.2 Excitatory and Inhibitory Synergy

The evolution of neuromorphic visual systems is funda-
mentally driven by the pursuit of artificial retinas capa-
ble of emulating the human eye’s sophisticated balance
of feature enhancement and noise suppression [104]. In
biological vision, the retina achieves high-fidelity percep-
tion through the orchestrated synergy of excitatory and
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Fig. 6 Wavelength-selective synaptic plasticity for spectral perception and feature encoding. a Schematic of molecular cocrystal nanowire
(MCN) synaptic sensor array and convolutional neural networks (CNN) for image denoising and color feature extraction. b Denoising with
MCN array in noisy MNIST images. ¢ MCN synapse exhibits broadband photoresponse under ultraviolet—visible (UV), visible, and NIR light. d
Selective EPSC response of MCN synapse to red, green, and blue light pulses. a-d Reproduced with permission [96]. Copyright 2025, Ameri-
can Chemical Society. e Schematics of eagle-inspired dual-band visual fusion and optoelectronic vision array for multiwavelength sensing. f
Image fusion sensor in motion recognition and spatiotemporal information capture. g Dual-band fusion sensors across various dynamic tasks.
e—g Reproduced with permission [41]. Copyright 2024, Wiley-VCH GmbH. h Sequential letter videos drive fullerene (Cg,) @ graphene oxide
(GO) array, with final frame current used for classification. i Output currents of C,@GO array during sequential letter input encode spatiotem-
poral dynamics. j Normalized feature vectors from the final frame enable sequence-specific classification. k Device demonstrates robust, mono-
tonic temporal mapping over repeated trials. 1 Lightweight CNN based on temporal readout of the device array. h-1 Reproduced with permis-
sion [97]. Copyright 2025, The Author(s). Advanced Science published by Wiley-VCH GmbH

inhibitory pathways in bipolar and ganglion cells, allow-
ing for the selective amplification of salient cues, real-time
dynamic background suppression, and spatially adaptive
attention [105, 106]. This architecture not only underpins
robust image preprocessing, such as edge detection, con-
trast enhancement, and motion sensitivity, but also facilitates
energy-efficient, context-aware decision-making at the sen-
sor level [107]. However, the majority of existing implemen-
tations still depend on hybrid electrical/optical control or

© The authors

unidirectional (predominantly excitatory) modulation, which
constrains their capacity for real-time, low-power, and con-
text-aware attention mechanisms, especially when precise
bidirectional (excitatory and inhibitory) spatial encoding is
required for tasks such as edge detection, motion discrimi-
nation, and dynamic background suppression [108, 109].
While artificial synaptic devices, especially optoelec-
tronic memristors, have enabled progress toward this bio-
mimetic goal, most conventional systems still rely on hybrid
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electrical/optical modulation or exhibit only unidirectional
(excitatory) response profiles, thereby limiting their capac-
ity to implement real-time, hardware-level attention and
bidirectional spatial encoding [36]. Addressing these chal-
lenges, the field is experiencing a paradigm shift toward
fully optical, symmetric bidirectional modulation of syn-
aptic weights [110]. Such advances are rapidly setting new
benchmarks for neuromorphic hardware by enabling spa-
tially resolved, energy-efficient in-sensor computation, and
providing direct analogs to biological processes of context-
sensitive information filtering and feature selection [111].
A landmark advance in this direction is exempli-
fied by the zinc oxide (ZnO)/zinc methyl 3-devinyl-
3-hydroxymethyl-pyropheophorbide-a (Chl-A)/methyl
13'-deoxo-13'-dicyanomethylene-pyropheophorbide-a
(Chl-D) heterojunction optoelectronic memristor, as pro-
posed by Jiang et al. [45]. By leveraging spectrally selec-
tive photoionization and deionization of oxygen vacancies
at the interface, this device enables precise, fully light-
driven potentiation and inhibition, mirroring the antagonis-
tic behavior of retinal bipolar cells. Figure 7a demonstrates
distinct EPSC and inhibitory postsynaptic current (IPSC)
responses under 430 and 730 nm light, respectively. The
reversibility and stability of this bidirectional modulation,
as evidenced in Fig. 7b, support robust LTP/LTD switching
and underline the device’s potential for long-term synaptic
encoding. Figure 7c extends these findings to array-level
image preprocessing: using a 5 X 5 memristor grid, image
regions are selectively amplified or suppressed according
to luminance, implementing spatial contrast enhancement
and dynamic noise reduction directly at the hardware level.
This center-surround antagonism, functionally analogous
to biological receptive fields, is further supported by the
hardware extraction of object edges (Fig. 7d), where the
device-based edge maps closely parallel those generated by
computational Canny operators. The Gaussian-like pixel dis-
tribution of processed images (Fig. 7e) and the high degree
of experimental-computational agreement (Fig. 7f) provide
quantitative validation of the biological plausibility and pre-
cision of this approach. For large-scale or high-resolution
edge extraction, Fig. 7g details the construction of a 300 x
300 positive—negative conductance matrix, establishing the
scalability and robustness of this optical strategy.
Crucially, this excitatory and inhibitory synergy is
not limited to static feature enhancement but also under-
pins advanced dynamic feature selection. For example, in
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reconfigurable WSe,/P(VDF-TrFE) neuromorphic vision
sensors proposed by Dang et al., symmetric, nonvolatile
bidirectional photocurrent states enable the encoding of
temporal frame differences [112]. As shown in Fig. 7h,
the subtraction of sequentially programmed positive and
negative conductance matrices cancels static backgrounds
and accentuates motion, directly mimicking ganglion cell
dynamics and yielding high-accuracy gesture and trajectory
recognition when integrated into neural networks.

Beyond basic edge and motion processing, the ability
to dynamically weight spatial regions at the device level
paves the way for high-level, hardware-based attention
mechanisms. Wang et al. proposed indium tin oxide (ITO)/
Nb:SrTiO; heterojunction synapses, where voltage-assisted
optical modulation enables real-time, region-specific tuning
of synaptic gain [113]. As depicted in Fig. 7i, a positive bias
enhances the response of target regions, while a reverse bias
suppresses irrelevant signals. Figure 7j illustrates this prin-
ciple using a 3 X 3 device array, with spatially programmed
voltages precisely focusing or defocusing attention. The
effectiveness of this biomimetic attention mechanism is
further confirmed in Fig. 7k, which uses a color confu-
sion matrix to visualize classification results; pixel dark-
ness directly maps to the accuracy of predicted categories,
demonstrating that the artificial synapse substantially boosts
recognition performance by extracting key information and
suppressing background interference.

Building on these foundational mechanisms, the integra-
tion of artificial synaptic arrays with neural network mod-
els enables intelligent and robust recognition in complex
environments. Figure 71 presents a system for high-preci-
sion facial recognition, where synaptic resistive states are
mapped to critical facial features, and class activation map-
ping (CAM) visually identifies regions of highest relevance.
The network’s learning curve, documented in Fig. 7m, shows
that the incorporation of device-level attention raises recog-
nition accuracy on the ORL dataset from 77 to 90% and
reduces data load by 35%—65%, even under noise and spatial
distortions. These results underscore not only the device’s
precise attention-guided recognition capability but also its
reliable cycle-to-cycle memory retention and adaptability to
real-world challenges.

Complementary progress is observed in all-optical cad-
mium sulfide (CdS)/graphene/Ge and tin selenide (SnSe)
thin-film synapses, which offer continuously tunable, sym-
metric persistent photoconductivity (PPC) and negative
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Fig. 7 Excitatory and inhibitory synergy and spatial attention in neuromorphic vision systems. a Light-driven, reversible EPSC/ inhibi-
tory postsynaptic current (IPSC) in zinc oxide (ZnO)/zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (Chl-A)/methyl
13'-deoxo-13'-dicyanomethylene-pyropheophorbide-a (Chl-D) heterojunction memristor. b Robust bidirectional LTP/LTD switching under
varying illumination. ¢ 5X5 memristor array enables real-time image contrast enhancement and denoising. d Receptive field models for hard-
ware edge detection. e Pixel distribution of 300x 300 input image for edge extraction. f Hardware versus Canny operator edge detection, vali-
dating biological plausibility. g Large-scale edge extraction via superposed conductance matrices. a-g Reproduced with permission. Copy-
right 2024, Wiley-VCH GmbH. h Motion detection by sequential conductance subtraction in WSe,/poly(vinylidene fluoride-trifluoroethylene)
(P(VDF-TrFE)) sensors. Reproduced with permission [105]. Copyright 2024, American Chemical Society. i Region-specific optical gain control
in indium tin oxide (ITO)/Nb:SrTiO; synapses. j Programmable spatial attention in a 3 X3 synapse array with memory retention. k Accuracy
curve shows improved accuracy with hardware attention. 1 Class activation mapping highlights key facial features. m Device-level attention
boosts ORL facial recognition. i-m Reproduced with permission [106]. Copyright 2025, American Chemical Society

photoconductivity (NPC) modulation and high-fidelity
weight updating [114, 115]. These devices support advanced
convolutional operations, real-time motion tracking, and
integrated in-sensor computations, including Gaussian blur-
ring, sharpening, and dynamic suppression, entirely within
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the photonic domain and without the need for complex dig-
ital conversion or additional circuitry. Collectively, these
advances delineate a clear pathway toward fully integrated,
scalable, and context-aware neuromorphic visual processors.
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Progress in neuromorphic vision hinges on retinal-
inspired, context-aware encoding that balances feature
enhancement and noise suppression. Spectrally selective
photoionization—deionization and photogating that realize
fully optical, symmetric potentiation and inhibition, together
with center-surround antagonism at the device or array level,
amplify task-relevant spectral and spatial cues while sup-
pressing background. Heterojunction stacks with engineered
interfacial vacancies and bias-assisted optical gating define
precise photoresponse windows, stabilize reversible LTP/
LTD, and sustain spectrum-specific retention. Prioritizing
fully light-driven symmetric weight control and receptive
field antagonism, matching device kinetics to frame rates,
and using region-specific gain raises recognition accuracy,
reduces data load, and enables integrated, energy-efficient,
context-aware vision.

4.3 Adaptive Threshold Modulation

The continuous evolution of neuromorphic computing is
fundamentally driven by the aspiration to emulate the brain’s
extraordinary capacity for adaptive learning, environmental
robustness, and context-aware response, capabilities intrin-
sically rooted in the dynamic modulation of neuronal acti-
vation thresholds and higher-order metaplasticity [116]. In
biological circuits, such threshold adaptation and metaplas-
ticity underpin not only stable memory formation but also
flexible, experience-driven learning in noisy or weak-signal
environments [117]. Hardware realization of these functions
has long been constrained by the static, first-order behavior
of conventional synaptic devices, which often fail to recon-
cile low power, tunable thresholds, and biologically realistic
learning dynamics [118]. Framed as a plasticity engineering
strategy rather than a biological analogy, adaptive threshold
control supports both neural precision and temporal learn-
ing [119]. For precision, programmable thresholds confine
activations to informative ranges, suppress spurious activa-
tions in low contrast scenes, allocate dynamic range to sali-
ent inputs, and help preserve linear and symmetric weight
updates; together, these effects improve separability, raise
readout signal-to-noise ratio, and stabilize convergence in
parameter-driven networks. These roles are consistent with
metaplastic control in biology and with recent device strate-
gies for threshold tuning in ferroelectric and related materi-
als [88, 120]. For temporal learning, threshold adaptation
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shapes short-term memory windows, regulates spike rate
and refractoriness, and sets the timing sensitivity required
for sequence encoding and spike timing-dependent plastic-
ity, thereby enhancing correlation capture and event selec-
tivity in reservoir and spiking models [121-123]. Recent
advances have yielded a diverse suite of material strategies
and device architectures that directly implement tunable
threshold and metaplastic behaviors, empowering artificial
neural networks to adjust their sensitivity and learning rate
in real time, a critical leap for handling low-contrast, noisy,
or dynamically varying inputs in both convolutional and
spiking models [124, 125].

A paradigm shift in adaptive hardware is exemplified by
Wang et al.’s dual-adaptive heterojunction synaptic tran-
sistor, where photoadaptive threshold sliding and voltage-
history-dependent metaplasticity are seamlessly integrated
in a single organic p-n heterojunction [119]. Unlike earlier
single-mode synaptic devices that implemented only pho-
toadaptation or only history-dependent plasticity, this co-
integration co-regulates input dynamic range and learning
rate baselines within one element, reducing external con-
trast handling and calibration overhead and demonstrating a
wider operating envelope across varying contrast and noise
conditions. This system exhibits bidirectional photocon-
ductivity: light-intensity-modulated photogating supports
in-sensor preprocessing such as automatic contrast enhance-
ment and edge sharpening, while dynamically lowering the
synaptic depression threshold for adaptive memory erasure
under strong illumination. Robust metaplasticity is achieved
via unipolar spike-voltage-dependent plasticity (U-SVDP),
allowing the LTP/LTD transition point to slide with stimu-
lus history and incorporating an enhanced depression effect
(EDE) that encodes experience-dependent inhibition. This
second-order plasticity accelerates network convergence
fivefold and increases CNN recognition accuracy from 91.2
to 93.8%, even under ultra-low contrast (down to 0.4%) and
high noise, underscoring the critical role of threshold modu-
lation in resilient neuromorphic learning.

In parallel, Zhang et al. address the rigidity of static
transfer functions by introducing self-sensitizable artificial
neurons based on perovskite nickelate (NdNiO;), where
adaptive hydrogen gradients enable dynamic modulation of
spiking thresholds [126]. Plasticity-engineered threshold and
gain control reshape the input acceptance range in real time,
enabling seamless adaptation between low-intensity and
high-intensity scenes and yielding an approximately 250%
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increase in processed structural information for complex
scene detection and classification. These neurons deliver
persistent, programmable excitability and selective noise
filtering, ensuring robust edge detection and object recog-
nition under substantial environmental drift.

Extending these concepts to multimodal sensing, Lv et al.
present a humidity-responsive neuron using cyclo(-Tyr-Tyr)
peptide nanowires, in which proton-coupled Ag* migration
supports humidity-dependent, ultra-low-voltage thresh-
old switching (<0.1 V) [127]. Mechanistically, ambient
humidity increases proton activity in the peptide network,
which lowers the activation barrier for Ag* hopping so that
each stimulus pulse drives reversible ionic accumulation
and release, yielding conductance transients that map pulse
amplitude or frequency into spike amplitude or rate. This
enables analog environmental signals to be converted into
strength-coded spike trains, closely mimicking biological
hygroreception and spike encoding. When implemented in
spiking networks, these humidity neurons achieve 92.68%
diagnostic accuracy for respiratory disease classification,
highlighting the expansion of adaptive thresholding to wear-
able health diagnostics.

At the ionic circuit level, Mei et al. advance transmem-
brane-potential-gated MXene ionic transistors that emulate
voltage-gated conductance changes of biological ion chan-
nels [128]. Here, a gate-induced transmembrane potential
across the lamellar MXene nanochannels sets the dynamic
threshold by creating ion depletion or accumulation zones,
while engineered structural asymmetry enables unipolar
or ambipolar switching that yields selective excitation and
inhibition. The resulting high on/off ratio (up to 2000) and
reduced subthreshold swing (560 mV decade™) facilitate
biomimetic spike processing, logic operations, and competi-
tive learning in ion-based neuromorphic arrays.

Building on the landscape of adaptive threshold modula-
tion and metaplasticity, Li et al. present a pioneering artifi-
cial neuron array that unites dynamic threshold tuning with
biologically inspired double-opponent receptive field cod-
ing at the hardware level [46]. By enabling in situ orienta-
tion selectivity and flexible color opponency, this system
achieves robust, spike-based feature extraction and preproc-
essing even under low-light or noisy conditions, directly
enhancing the performance and environmental adaptability
of downstream neuromorphic networks. Figure 8a frames
the real-world challenge by illustrating an autonomous driv-
ing scenario under low-light conditions, where traditional
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vision systems experience substantial recognition failures.
The introduction of the artificial neuron array, capable
of double-opponent receptive field (DO RF) preprocess-
ing, demonstrates a marked restoration of object detection
through the extraction of robust NIR and UV boundaries.
Moving to the core mechanism, Fig. 8b visualizes the bio-
mimetic, elliptical DO receptive field inspired by the visual
cortex, whose spatial and chromatic antagonism is math-
ematically described by a two-dimensional Gaussian deriva-
tive, providing the basis for enhanced edge selectivity.
Device-level innovation is captured in Fig. 8c, where
selective gate voltage tuning (Vggat2 V, 10 V, or =5 V)
configures the neuron array to respond maximally only to
edges that align with the preferred orientation, achieving
hardware-level context adaptation. This selectivity is sub-
stantiated in Fig. 8d, which quantifies the spiking output
across input angles and shows a distinct peak only when
the input matches the preset orientation, thus validating the
direction-dependent coding. Figure 8e further demonstrates
the practical impact of this hardware preprocessing: after
passing through the array, image edges are sharply deline-
ated across all brightness levels, as confirmed by inverted
pixel images and orientation-labeled raster plots. Comple-
menting this, Fig. 8f showcases the spike-encoded images
under varying illumination, highlighting the system’s abil-
ity to maintain feature clarity for downstream computation.
System-level advantages are then revealed in Fig. 8g, where
preprocessed datasets fed into a convolutional SNN main-
tain high (>90%) classification accuracy regardless of light-
ing, while non-preprocessed data see a drastic decline. This
robustness is echoed in Fig. 8h, which shows that the pre-
processed images consistently sustain around 80% accuracy
even under heavy noise, a stark contrast to the near-complete
degradation of unprocessed data. The underlying device
dynamics are elucidated in Fig. 81, mapping the evolution
of output current across three operational regimes as Vg is
varied. Figure 8j, k deepens the picture by illustrating how
UV and NIR inputs can be flexibly assigned as excitatory or
inhibitory through precise Vg modulation, thereby enabling
biologically inspired, hardware-level double-opponent color
processing. Figure 81 presents how the encoding range for
each stimulus shifts as Vg changes, and Fig. 8m under-
scores the extensive frequency tunability of the neuron’s
spiking response, spanning from sub-Hz to 2.6 MHz.
Adaptive threshold dynamics operate as a plasticity engi-
neering strategy that advances neural precision and temporal
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Fig. 8 Dynamically tunable threshold plasticity and metaplasticity in neuromorphic neuron arrays. a Low-light driving scenario demonstrating
enhanced object detection via double-opponent receptive field (DO RF) preprocessing. b Biomimetic DO RF structure with spatial-chromatic
antagonism. ¢ Gate-voltage-tunable neuron array for orientation-selective edge detection. d Direction-dependent spiking outputs under angular
color stimuli. e Hardware-processed edge images and raster plots under varied illumination. f Spike-encoded outputs preserve features at all
brightness levels. g Classification accuracy of SNNs for preprocessed data. h Preprocessing accuracy under high noise. i Output current evolu-
tion across operational regimes as gate voltage (Vgg) varies. j UV-induced spiking and NIR inhibition at low Vgg. k NIR-induced spiking and
UV inhibition at high Vg, enabling double-opponent color coding. 1 Gate-controlled encoding range for UV and NIR stimuli. m Spiking fre-
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learning. Devices with tunable thresholds and metaplastic ~ gradient sensitized neurons, transmembrane-potential-gated
baselines regulate sensitivity and effective learning rate in  ionic channels with designed asymmetry, and gate biased
real time, enabling symmetric weight updates, selective  neuron arrays, thresholds remain stable yet history depend-
noise suppression, and timing alignment for sequence encod-  ent at low voltage.
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S Synaptic Engineering for Resource-Efficient
Integration

Building truly adaptive and efficient neuromorphic systems
requires not only advanced synaptic plasticity, but also hard-
ware strategies that enable the fusion, compression, and
modular integration of multiple sensory and computational
functions [129, 130]. In contrast to conventional architec-
tures, where sensing, memory, and logic remain physically
separated, next-generation neuromorphic hardware must
achieve direct, in-device integration and reconfigurable
coupling of heterogeneous modalities, mirroring the cross-
modal connectivity and parallel processing of biological
neural systems [131]. This technological evolution prom-
ises to dramatically reduce hardware redundancy and energy
consumption, while enhancing environmental adaptability
and system-level intelligence [132].

5.1 Device-Level Multimodal Fusion

Device-level multimodal fusion jointly encodes optical,
mechanical, chemical, and environmental cues, including
gas composition, temperature, and humidity, within a single,
programmable synaptic pathway in the device front end. In
synaptic transistors, multimodal inputs modulate the shared
internal state of channel carrier density via spectral pho-
togating with vacancy photoionization, strain or pressure
induced modulation of contact or heterojunction barri-
ers, surface redox and chemisorption, proton migration in
hygroscopic dielectrics, and thermally assisted carrier or ion
transport [133—138]. Writing multiple cues into the same
synaptic state renders the update magnitude and polarity
context dependent, enabling on-device gating and weight-
ing that improves per-modality selectivity, extends effec-
tive dynamic range [50]. Signal compression at the device
front end reduces energy and area and improves resilience to
variations in illumination, temperature, and humidity [53].
Compared with single-modality synapses that sense one
stimulus, multimodal synaptic transistors co-register cues
within the channel and junction, enabling lighter readouts
and more stable performance across diverse scenes [50].
In response, the latest generation of multimodal synaptic
devices exemplifies a transformative strategy, compressing
sensory input channels, fusing heterogeneous stimuli at the
device level, and reducing the neural network parameter
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load at the system front end [139]. This allows not only a
drastic reduction in sensor count and network size but also
enhanced resilience and generalization in real-world com-
plex scenarios.

A suite of representative works demonstrates the breadth
and value of this approach. For instance, VP/MXene het-
erostructures combine photogating with adsorption-driven
surface-potential tuning to achieve synergistic UV-gas dual-
mode perception, enabling reconfigurable synaptic weights
and dynamic memory adaptation to ambient changes; this
balance between retention and selective forgetting supports
adaptive perception [140]. Pentacene/P(VDF-TrFE)/Cs,Ag-
BiBrg hybrid systems couple optical and humidity cues at
the device level, enabling real-time modulation of synaptic
plasticity and memory preservation, which is directly appli-
cable to emotion-state memory or adaptive environmental
encoding [141]. Monolayer vacancy-induced oxidized (VO)-
MXene-based synapses integrate visual and respiratory
(humidity) stimuli, using dual channels for state-dependent
weighting and emotional memory transitions, effectively
mimicking context-dependent behavioral switching [142].
Olfactory-inspired in-sensor organic electrochemical tran-
sistors (OI-OECTs) consolidate chemical sensing, logic
processing, and memory storage, dynamically switching
between short- and long-term plasticity under varying gas
concentrations, thus realizing ultra-low-power and robust
chemical event detection [143]. These strategies collectively
advance multimodal synaptic hardware toward generalized,
resilient, and highly efficient Al perception systems, break-
ing the constraints of traditional, single-modality designs
and pointing the way for real-world, edge-deployable intel-
ligent interfaces.

Within this technological landscape, the artificial olfac-
tory system (AOS) proposed by Song et al., which integrates
human olfactory receptor nanodisks (hOR NDs) with a
redox-active MoOj;-functionalized organic synaptic device
(MOSD), marks a distinctive advance in molecular specific-
ity and signal processing precision [47]. Drawing inspiration
from the glomerulus and mitral cell hierarchy in the bio-
logical olfactory bulb, the AOS translates short-chain fatty
acids (SCFAs)-induced conductance into high-dimensional
9% 3 arrays (Fig. 9a), which are mapped onto a custom arti-
ficial neural network (ANN) (27 input, 14 hidden, 4 out-
put neurons; Fig. 9b). This biomimetic refinement enables
the system to rapidly achieve 100% recognition accuracy
for single odorants (Fig. 9c), and accurately discriminate
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odorant mixtures via combinatorial conductance pattern-
ing and ANN inference (Fig. 9d, e). At the hardware level,
the MOSD exploits programmable lithium ions (Li*)/
bis(trifluoromethanesulfonyl)imide (TFSI™) redox interca-
lation for stable and linear weight updates (Fig. 9f), yield-
ing dramatically enhanced EPSC memory (~700 s versus
5 s for pristine OSD; Fig. 9g) and minimized LTP/D non-
linearity (Fig. Oh). The hybrid AOS platform demonstrates
hOR-specific conductance responses, remaining stable in the
absence of odor (Fig. 9i, j) and providing sensitive, type-
dependent readouts under SCFA exposure, with detection
limits as low as 0.07 ppm (Fig. 9k, 1). Principal component
and fluorescence analyses confirm the molecular selectivity
and reliability of odor recognition.

Device-level multimodal fusion co-encodes heterogene-
ous sensory cues in a single synaptic pathway to deliver
resource-efficient, noise-robust, context-aware perception.
Optical, mechanical, chemical, and environmental inputs
modulate a shared channel carrier density through photo-
gating, chemisorption-driven surface potential shifts, and
ionic transport, producing context-dependent thresholds
and weight updates that increase selectivity, widen dynamic
range, suppress cross-sensitivity, and compress data at the
source. Heterojunction stacks, MXene lamellae, peptide
nanowires, and redox-active electrolytes stabilize interfaces
and support reversible storage, enabling linear, low-variance
updates. Prioritizing front-end fusion improves accuracy
with fewer sensors and lighter readouts, advancing neuro-
morphic olfaction and vision at the edge.

5.2 Single-Device Functional Integration

The pursuit of low-power, dense, and adaptable neuromor-
phic hardware has shifted attention to single-device func-
tional integration, where sensing, memory, and elementary
computation are implemented within one physical element
operating under a single stimulus modality [144, 145]. This
focus is distinct from multimodal integration, which fuses
two or more physical modalities into a shared pathway. Here,
emphasis is placed on single-device multifunctionality real-
ized within one device. This direction targets the energy cost
of disaggregated sensing-memory-compute chains whose
split data flows inflate power at the edge, in wearables, and
in Internet of Things (IoT) devices [146]. Current design,
therefore, concentrates on compressing neural primitives
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into a single device through materials and architectural
engineering, together with bias-programmable operating
modes. By consolidating roles locally, these devices reduce
peripheral circuitry and data movement, improve energy
efficiency and area utilization, and do so while preserving
analog linearity, symmetry, and endurance required for reli-
able learning [147].

A particularly striking electrical approach is exemplified
by the ferroelectric tunnel junction (FTJ) synapse proposed
by Nie et al., whose true significance lies in its ability to
unify volatile and nonvolatile memory dynamics for robust,
hardware-level sensor fusion [148]. The FTJ architecture
(Fig. 10a) intricately combines ferroelectric polarization
with oxygen vacancy migration, producing a device simul-
taneously capable of high-density, nonvolatile storage and
fast, adaptive relaxation. This architecture enables dual-input
fusion, as spatially divided array regions (Fig. 10b) encode
image and speech modalities through positive and negative
pulses, respectively, a direct hardware analog to biological
multisensory convergence. Figure 10c details pixel-wise
voltage pulse encoding, and Fig. 10d presents the reservoir’s
experimentally resolved current outputs during digit recog-
nition, where clear multimodal state separation is observed.
The seamless fusion of logic and adaptive memory in this
design echoes the functional plasticity of neural circuits,
underscoring a decisive leap beyond conventional, unimodal
synaptic emulators.

The theme of integrated neural computation is further
advanced by the reconfigurable MoS,/hBN/graphene neu-
romorphic unit introduced by Hu et al. [48]. This platform
uniquely orchestrates synaptic, neuronal, and dendritic
behaviors within a compact 2D heterostructure, enabling
mode switching through selective biasing and multiterminal
configuration (Fig. 10e). The device’s optoelectronic syn-
aptic plasticity is elegantly demonstrated in Fig. 10f, while
Fig. 10g captures its neuron-like integrate-and-fire response,
essential for spiking neural network emulation. The capac-
ity for hardware-level dendritic filtering and nonlinear logic
is evidenced in Fig. 10h, where light-modulated currents
realize both passive and active dendritic computations. This
versatile architectural motif sets a new benchmark for the
emulation of higher-order brain functions in hardware, with
the potential to underpin densely reconfigurable, scalable
neuromorphic systems.

In the realm of optoelectronic multifunctionality, the
three-mode photosensitive synaptic LED (PSSL) platform
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odor recognition. ¢ Single-odorant recognition accuracy after training. d Conductance patterns and e recognition accuracy for odorant mixtures,

validating combinatorial coding and robust inference. f Structure and op

erating principle of the MoO;-organic synaptic device (MOSD) with

programmable redox modulation. g EPSC memory retention in MOSD versus pristine device. h Linearity and symmetry of LTP/D in MOSD

versus pristine device. i EPSC and j LTP/D in AOSs without short-chain
sure. a-1 Reproduced with permission [44]. Copyright 2024, The America

offers an integrated solution for sensing, preprocessing, and
logic-level information security [149]. Its device-level volt-
age programmability (Fig. 10i) permits seamless toggling
among broadband photodetection, dual-polarity logic, and
synaptic light emission, thus enabling both robust signal dis-
crimination and neuromorphic processing within a single
unit. The encoding of patterns into orthogonal red/UV opti-
cal channels is visualized in Fig. 10j, while the superposi-
tion and resultant cancelation of dual-wavelength signals
for logic operations are shown in Fig. 10k, 1. Most notably,
Fig. 10m highlights that under simultaneous red and UV
illumination, the bipolar photodetector outputs “0” to sup-
press interference, whereas a conventional device gives “1”

© The authors

fatty acids (SCFAs). k EPSC and 1 LTP/D responses under PA expo-
n Association for the Advancement of Science

and yields decoding errors (“111 111 110”). This highlights
the PSSL’s inherent superiority for secure, high-fidelity opti-
cal communication, where simple device-level operations
achieve reliable encryption without algorithmic overhead.
In addition, Wu et al. developed ferroelectric-defined recon-
figurable MoTe, homojunctions using a P(VDF-TrFE) split
gate dielectric to program local ferroelectric domains for
tunable p-n/n-p junctions and analog weight storage [150].
The devices exhibited 17 stable positive and negative pho-
toresponsivity states with long retention, and when assem-
bled into a 3 X 3 array, they enabled concurrent sensing,
memory, and computing, thereby realizing true single-device

https://doi.org/10.1007/s40820-025-02028-0
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functional integration for low-power neuromorphic vision
systems.

When it comes to in situ convolution computation, the
in situ convolutional transistor (In-SCT) represents a water-
shed moment by merging analog convolution and synaptic
memory within a single hardware node [151]. Its operational
mechanism, based on dynamic carrier trapping and opto-
electronic modulation, is outlined in Fig. 10n. More com-
pellingly, Fig. 100 visualizes the mathematical equivalence
between device conductance change and convolution area,
a striking correspondence between device physics and algo-
rithmic logic. Figure 10p extends this logic to demonstrate
hierarchical stacking of convolutional operations within

u\

| SHANGHAI JIAO TONG UNIVERSITY PRESS

a single device/circuit, hinting at a future where memory
and computation are inseparable at the hardware level. This
approach dramatically reduces network area and power con-
sumption, paving the way for ultra-compact, energy-efficient
CNN implementations.

Beyond these, environmentally adaptive and spectrum-
compressed synaptic devices contribute new dimensions of
flexibility and task specificity. The In,05-SnO,/Nb:SrTiO,
(ITO/NSTO) heterojunction optoelectronic synapse, for
example, exemplifies the integration of in-sensor multi-
modal perception and real-time computation in a mini-
malist two-terminal design, foundational for robust tem-
poral pattern recognition and low-latency Al in complex

@ Springer
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environments [152]. Organic memristors such as polymer
switching material with triphenylamine and azobenzene
(PFTPA-AZO) demonstrate the utility of molecularly engi-
neered dual-mode operation, bridging fast in-sensor feature
extraction and deep learning in memory, while Ag/ZnO,/
TiO/ITO environmental memristors reveal how physical
responsiveness to electrical, thermal, and humidity cues
can endow hardware with the context awareness and adapt-
ability reminiscent of biological systems [153, 154]. The
dual-mode silicon-on-insulator (SOI)/graphene photode-
tector, mimicking retinal cone-rod switching, achieves an
ultrawide dynamic range, providing a resilient solution for
vision under fluctuating illumination, a perennial challenge
in autonomous perception [155]. Finally, flexible PbS QDs/
polymethyl methacrylate (PMMA)-pentacene synaptic
transistors, with broadband photoresponse and gate-tunable
analog memory, provide in-sensor denoising and contrast
normalization that reduces front-end parameter overhead
and conversion/traffic burden, yielding more noise-robust
classification for wearable, conformable vision systems [29].

Single-device functional integration concentrates sensing,
memory, and elementary computation in one element under
a single modality, reducing peripheral circuitry and data
movement. By co-harvesting volatile and nonvolatile path-
ways in one stack, optoelectronic transduction with emissive
readout, and bias-programmed operating regimes, the chan-
nel or junction serves as a unified state variable reconfigur-
able for sensing, plasticity, neuron-like integration, and logic
with local preprocessing and storage. Ferroelectric domain
engineering, vacancy control, split gate dielectrics, laminar
two-dimensional heterostructures, and redox reservoirs sta-
bilize interfaces, enable low-voltage operation, and sustain
linear, low-variance updates. Functionally, selective spec-
tral gain, programmable persistence, conductance-mapped
analog convolution, and compact multiterminal layouts for
dendritic filtering and spiking move computation to the
source, lowering energy and area while preserving accuracy.

5.3 Multidevice Modular Integration

Multidevice modular integration refers to the co-design
of locally coupled, functionally distinct blocks, for exam-
ple, sensors, synaptic elements, neuron circuits, light-
weight readouts, and actuators, into a resource-efficient
module [156]. Emphasis is on co-location and interface

© The authors

alignment by matching bias ranges, conductance windows,
and time constants, so sensing and preprocessing occur in
the sensor, plasticity updates run near memory, and com-
puting occurs [6]. This approach reduces conversion and
interconnect overhead, improves task-level trade-offs among
accuracy, latency, and energy, and scales by replicating
standardized modules rather than enlarging monolithic sys-
tems [157]. This section, therefore, examines architectural
patterns and device choices that support robust coupling,
including sensors matched to synaptic dynamic range, syn-
apses and neurons with aligned time constants, and mem-
ory and readout paths that preserve analog fidelity while
remaining interoperable with digital controllers, enabling
resource compact neuromorphic subsystems that are ready
for deployment.

A key exemplar of heterogeneous integration is the
CulnP,S¢ (CIPS)/GaN ferroelectric high-electron mobility
transistor (FEHEMT)-based artificial neuromuscular junction
(NMJ) module, which physically unites synaptic plasticity,
high-power actuation, environmental sensing, and hardware
learning within a single closed loop [158]. As illustrated
in Fig. 11a, the architecture draws direct inspiration from
biological oculomotor systems, depicting the extraocular
muscles responsible for adduction and abduction of the eye-
ball. Figure 11b details the system-level integration, where a
microelectromechanical system (MEMS) mirror is directly
driven by the FeHEMT, establishing amplifier-free, milli-
amperes-level actuation. The laser beam displacement, as
mapped in Fig. 11c, visually confirms the precise, voltage-
controlled mechanical steering achieved by the integrated
module. Figure 11d quantitatively presents the relationship
between gate voltage and steering angle, demonstrating pro-
portional, analog control of the actuator via synaptic modu-
lation. Figure 11e provides a critical benchmark, contrasting
experimental steering angles with theoretical predictions and
affirming the fidelity of this direct synapse-actuator path-
way. Integration of real-time sensory feedback is achieved
in Fig. 11f, where an ultrasound sensor is interfaced to
the FeHEMT gate, enabling in situ distance measurement
and conversion of environmental position data into actua-
tion commands. Figure 11g documents the time-resolved
tracking of a moving object: the FEHEMT’s output current
dynamically modulates the MEMS mirror in response to
positional inputs, allowing the system to track the trajectory
of a mobile robot. Figure 11h analyzes tracking accuracy
by plotting the symmetric absolute percentage error (sAPE)
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over time, revealing a significant error reduction after syn-  output latency (from 297 to 152 ps), mirroring the acceler-
aptic enhancement, a result of plasticity-induced transcon-  ated reflexes observed in biological systems.

ductance gains. Figure 11i presents the phase relationship Moving to optoelectronic modules, Fig. 11m shows the
between input and output signals, showing that postenhance- ~ memory optocoupler’s structural design: a long afterglow

ment, the system achieves closer temporal and amplitude  organic light-emitting transistors (LAOLET), an organic
matching, indicative of hardware-level learning and adap-  field-effect transistor (OSOFET), and a photodiode ampli-
tive feedback. Figure 11j introduces the system’s ability to ~ fier (PDA), configured for threshold-gated, light-driven
interface with a CMOS-based integrate-and-fire unit (IFU), information transfer [49]. Figure 11n diagrams the neuro-
depicting the circuit architecture for temporal spike integra-  transmitter transfer memory mechanism, wherein synap-
tion and threshold-based firing. Figure 11k, 1 compares the  tic light emission from the LAOLET induces nonvolatile
output spike response before and after synaptic enhance-  photomemory in the OSOFET, establishing a photonic
ment; the programmed state yields a marked reduction in ~ bridge for inter-device signaling. Figure 110 records
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ment versus FeHEMT output. d Proportional control of steering angle by FeHEMT gate voltage. e Measured versus theoretical steering angles.
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P

< .
\.\ SHANGHAI JIAO TONG UNIVERSITY PRESS @ Springer




196 Page 26 of 43

Nano-Micro Lett. (2026) 18:196

real-time device behavior under subthreshold stimulation,
documenting the generation and rapid decay of volatile
postsynaptic currents. By contrast, Fig. 11p captures the
system response to suprathreshold input: the LAOLET’s
long afterglow triggers persistent photomemory in the
OSOFET, enabling the transition from transient to perma-
nent memory encoding. To support logic-level operation,
Fig. 11q presents the equivalent circuit of the memory
optocoupler integrated with tactile sensors for multimodal
training and reaction. Figure 11r describes a weak train-
ing scenario, wherein repeated low-voltage pressure input
fails to elicit a downstream response due to insufficient
postsynaptic current (PSC). Figure 11s details the outcome
of strong training, where elevated PSCs activate sustained
light emission and drive the PDA, resulting in a measura-
ble current response to tactile stimulus, thus demonstrating
device-level implementation of sensory learning, threshold
gating, and logic-controlled action.

Complementing closed-loop sensor-actuator and memory-
decision modules, other modes of heterointegration further
broaden the horizons of neuromorphic hardware. The hem-
ispherical Ag-TiO, nanocluster optoelectronic memristor
array embodies geometry-aware integration, leveraging a
curved substrate to achieve a wide field-of-view, in-sensor
visual processing, and real-time binocular depth percep-
tion [159]. This platform unites all-optical synaptic modu-
lation, spatial angle encoding, and event-driven computation
within a single, conformable array, effectively emulating
advanced retinal functions and supporting intelligent visual
tasks unattainable by planar or unimodal devices. In parallel,
van der Waals one-transistor—one-ferroelectric-memristor
(1TIM) hybrid architectures exemplify device-level mem-
ory-logic co-integration. By combining multilevel ferroelec-
tric switching with transistor gating, these structures over-
come sneak-path and crosstalk bottlenecks, enabling robust,
low-power in-memory computing and supporting hardware
arithmetic alongside synaptic modulation [160]. Extending
to macroscopic scales, fiber-based iontronic synapse net-
works enable distributed, programmable perception-actua-
tion in smart textiles, illustrating how spatially and function-
ally distinct modules can be orchestrated to deliver adaptive,
high-density neuromorphic systems [161]. Together, these
complementary strategies highlight the critical importance
of heterointegration as the foundation for resource-efficient,
robust, and scalable Al

© The authors

Across multidevice modular integration, the goal is to co-
design locally coupled heterogeneous blocks into resource-
efficient neuromorphic modules that improve task accuracy,
latency, and energy. Keeping sensing and preprocessing at
the source, placing plasticity and matrix operations near
memory, and using sparse event-driven links between mod-
ules reduces conversion and interconnect overhead while
preserving analog fidelity. At the hardware level, options
such as ferroelectric domains on wide bandgap channels,
redox-active interlayers for photonic memory coupling,
van der Waals 1T1M stacks with controlled contacts, hemi-
spherical substrates for wide field mapping, and fiber-based
ionic conduits stabilize interfaces, limit crosstalk and sneak
paths, and sustain linear, low-variance updates, providing a
practical route to deployable modular systems.

6 Synaptic Engineering for Scalable Arrays

Scaling from single synaptic devices to brain-inspired
arrays exposes challenges that differ fundamentally from
device-level studies. At the device statistics level, device-
to-device variability, cycle-to-cycle stochasticity, update
nonlinearity and asymmetry, limited state count, retention
drift, and endurance spread accumulate over thousands
to millions of cells and directly erode learning accuracy
and convergence [162]. At the array physics level, passive
crossbars suffer from sneak currents and half-select dis-
turb, while line resistance and capacitance introduce volt-
age drop and timing skew; moving to one transistor one
resistor (1T1R) mitigates sneak paths but imposes leakage,
and matching constraints [163—165]. At the process and
integration level, wafer-scale uniformity and back-end-of-
line (BEOL)-compatible thermal budgets govern yield for
ferroelectric and 2D stacks; interconnect resistance and 3D
stacking add further constraints, and postbonding stress
can degrade memory windows, making packaging and
encapsulation critical for optoelectronic or environment-
responsive and flexible arrays [166, 167].

Against this backdrop, the advance of intelligent and
energy-efficient edge computing relies on synaptic arrays
and integrated systems that offer scalable uniformity,
multifunctional adaptability, and seamless links between
sensing, computation, and action [168, 169]. Recent pro-
gress in high-uniformity single-device arrays, multifunc-
tional heterostructures, and context-adaptive in-sensor
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computation enables robust memory encoding, dynamic
plasticity, and efficient signal processing at both the pixel
and system level [170]. Integrating multimodal sensing,
memory, and logic within single devices and arrays now
supports real-time cross-modal recognition and adap-
tive decision-making, while heterogeneous integration of
memory, logic, and sensory modules enables closed-loop,
low-power operation essential for IoT and autonomous
applications. Together, these developments establish the
foundation for intelligent, flexible, and resource-efficient
neuromorphic hardware at the edge [171, 172].

6.1 High-Uniformity Arrays

Achieving high uniformity and scalability in synaptic
arrays is critical for translating synaptic plasticity to robust
neuromorphic systems [173]. At the array scale, uniform
device statistics yield predictable pulse-to-weight transfer
functions, consistent LTP/LTD kernels, and stable read
margins, which in turn enable direct weight mapping from
software models, reduce per-cell calibration, and improve
matrix—vector accuracy under line parasitics and tempera-
ture drift. Device-to-device variability, nonlinearity, and
fabrication defects hinder the mapping of plastic behav-
iors across large arrays. Emphasizing array-level uniform-
ity shifts the focus from isolated device figures to sys-
tem outcomes: higher mapping yield, consistent learning
rules across tiles, lower programming time and peripheral
energy, and improved reliability over long deployments.
Recent strategies across material platforms have tack-
led these challenges effectively. For instance, a 28 X 28
floating-gate transistor array based on monolayer MoS,
with Au nanoparticle charge-trap layers demonstrated
excellent uniformity: on—off ratios around 10° and mobil-

ity averaging ~8 cm* V! 57!

across 784 devices, permit-
ting a single global programming schedule and straight-
forward weight transfer, which enabled optoelectronic
handwriting encoding and achieving ~96.5% accuracy in
digit recognition [174]. Likewise, fully screen-printed,
paper-based ZnO synaptic transistor arrays fabricated via
low-temperature printing achieved large-area uniformity,
environmental stability, and biodegradability. The tight
row-to-row behavior supported uniform pulse schemes
and stable read margins, enabling photoelectric synaptic

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

behaviors such as paired-pulse facilitation and filtering,
and achieved 91.4% recognition accuracy with~3.7 pJ per
synaptic event [175].

On the organic front, while organic conductive polymers
such as poly(3,4-ethylenedioxythiophene) (PEDOT) offer
inherent advantages for low-cost, large-area integration,
conventional approaches remain constrained by multistep
patterning and variability. The one-shot integrable elec-
tropolymerization (OSIEP) method, built on alternating-
direct current (ADC) bipolar electrochemistry, fundamen-
tally resolves these issues by enabling remote, maskless,
and large-area growth of PEDOT/tetraborofluoroate (BF,)
channels on ultrathin substrates, yielding synaptic arrays
with exceptional uniformity and simplified fabrication work-
flows [176]. Figure 12a illustrates the architecture of a three-
terminal electrochemical synaptic transistor, specifically
engineered to emulate the dynamic plasticity of biological
synapses. Positive voltage pulses at the presynaptic termi-
nal induce EMIM™ cation injection and PEDOT™" backbone
de-doping within the channel, producing both short-term
depression (STD) and LTD depending on pulse protocol.
The transition from STD to LTD, manifested as persistent
conductance suppression exceeding 100 s, directly mirrors
the memory windows of biological synapses. Figure 12b
details the LTD/LTP characteristics extracted under various
pulse amplitudes, revealing how synaptic weight modulation
is stimulus dependent. The extracted nonlinearity and step
size parameters in Fig. 12¢ (depression) and 12d (potentia-
tion) confirm that higher pulse amplitudes yield more linear
and effective conductance modulation, which is critical for
hardware-compatible neural learning rules. Critically for
scalability, the array’s uniformity allowed the experimentally
extracted LTD/LTP curves to serve as a single look-up table
for weight updates across the network, avoiding per-cell fit-
ting and ensuring consistent learning rules at scale. Moving
from device to system, Fig. 12e depicts the neural network
simulation architecture, a MLP designed for MNIST digit
recognition, where the experimental LTD/LTP curves serve
directly as weight-update profiles. The learning trajectory,
as shown in Fig. 12f, demonstrates a rapid and robust ascent
in test accuracy, ultimately reaching 95.2%, illustrating how
array-level uniformity enables reliable weight mapping
and system-level reliability, comparable to software-only
training.
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6.2 Reconfigurable In-Sensor Arrays

The evolution of multifunctional and highly integrated
device arrays is rapidly transforming the landscape of neu-
romorphic sensory hardware, enabling edge systems to
break free from the energy and latency constraints inher-
ent to traditional von Neumann architectures [177]. Organic
photoelectronic devices, long celebrated for their flex-
ibility, tunable bandgap, and biocompatibility, have shown
unique potential for miniaturized, high-density vision
platforms [178]. However, in most conventional organic
synaptic devices, the input-to-output response is largely
fixed by the material stack and processing, which limits the
ability to reprogram gain, polarity, or persistence during
operation; as a result, pixel-level dynamic reconfigurabil-
ity, essential for intelligent sensory networks, is still diffi-
cult to achieve [179]. Here, reconfigurability is treated as
plasticity. At the pixel and array levels, programming the
responsivity sign and gain, the effective threshold, and the
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persistence window constitutes task-conditioned, higher-
order plasticity that enhances neural precision and enables
adaptive temporal learning. Recent efforts have focused on
organic heterostructures and multifunctional device arrays
that enable gate-tunable, bidirectional responses and pixel-
level reconfigurability.

For example, Xu et al. realized gate-tunable posi-
tive/negative NIR photoconductance in a photolithogra-
phy-compatible organic p-n heterostructure array (5 um
channel; ~ 520 devices cm™~2), enabling pixel-level filter-
ing and in-sensor classification with reported accuracy
up to~97% under NIR illumination [180]. Here, the gate
acts as a metaplastic control that selects the weight sign
and dynamic range per pixel, improving separability while
keeping a consistent programming schedule across the array,
which strengthens precision in weight mapping. Comple-
mentarily, Liu et al. demonstrated an all-photolithography
ion-gated flexible organic transistor (OIGT) array that can
be programmed between volatile and non-volatile modes,
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supporting multimodal neuromorphic computing at low
training cost, highlighting practical array-level reconfig-
urability [181]. Switching between volatile and persistent
states provides a tunable short- to long-term memory win-
dow, aligning device time constants with task dynamics and
enabling temporal learning at the sensor plane.

In particular, organic p-n heterostructure arrays have dem-
onstrated gate-tunable bidirectional photoresponses, provid-
ing a representative example of how pixel-level reconfigur-
ability can be realized in practice [180]. As demonstrated
in Fig. 12g, this approach yields a remarkable device inte-
gration density of 520 cm™ on a 4-inch wafer, with each
channel miniaturized to just 5 pm, showcasing not only
high areal density but also full compatibility with scalable
photolithography. The device’s vertical bilayer architecture
(Fig. 12h), comprising a partially overlapped p-type conju-
gated polymer and an n-type small molecule, is engineered
via orthogonal solvents to realize a robust, gate-controlled,
bidirectional NIR photoresponse, thereby encoding a pro-
grammable palette of synaptic weights and memory kernels
inside the array.

The practical impact of this architecture is vividly illus-
trated in Fig. 12i, where individual pixel responsivities are
mapped linearly to their respective gate voltages, allow-
ing direct hardware realization of core image processing
functions. Grayscale inversion, Gaussian smoothing, and
Laplacian edge enhancement are all performed in situ, with
experimental results that closely match the outcomes of ideal
digital filter kernels, demonstrating the system’s flexibility
and effectiveness for analog image preprocessing at the
sensor level. Relative to digital preprocessing, these analog
operations avoid early quantization, reduce conversion and
data movement overhead, and provide continuous-valued
kernels whose cutoff and gain can be tuned in real time. Fig-
ure 12j further shows that silicon’s NIR transparency ena-
bles noninvasive readout through packaged devices, which
extends analog preprocessing to secure or embedded settings
without disturbing the front end.

At the algorithmic and systems level, the versatility of
the heterostructure array is further exemplified by its abil-
ity to function as a real-time, noise-robust hardware classi-
fier. Here, each pixel acts as a dynamic, trainable synaptic
node, with Vg updated by error-gradient descent to encode
weights for letter image recognition tasks (“z”, “v”, “n”)
under varying Gaussian noise. The convergence and learn-
ing dynamics are further detailed in Fig. 12m, which shows
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that high-fidelity classification is achieved after only 3—4
epochs, even for significant noise levels. Quantitative bench-
marking in Fig. 12n highlights the platform’s robustness,
with classification accuracy peaking at 97.06% for 6 =0.2
and the VG distribution rapidly stabilizing through training;
Fig. 120 records a correspondingly rapid drop in the loss
function, underscoring the network’s efficiency and learning
stability. These results position reconfigurability as plastic-
ity engineering at scale. Programming the sign, gain, and
persistence of weights improves neural precision, while
tuning volatility provides task-matched temporal windows.
Together, these capabilities enable adaptive, low-overhead
preprocessing that conventional digital preprocessing chains
struggle to deliver.

6.3 Multimodal Perception Arrays

The quest for adaptive multimodal neuromorphic sensing
has driven the evolution of edge-intelligent hardware toward
systems capable of real-time, high-dimensional perception
and robust cross-modal learning [182, 183]. Traditional
architectures, which compartmentalize sensing, memory,
and computation, have proven inadequate for the demands of
dynamic environments such as IoT-enabled pollution moni-
toring and autonomous robotics, where complexity, signal
crosstalk, and nonlinearity prevail [184, 185].

Recent innovations have begun to bridge this gap. For
instance, Talanti et al. developed a CMOS-integrated
organic neuromorphic imager (640 x 512 pixels) capable
of both frame-based imaging and synaptic-mode temporal
sensing, with in-pixel memory retention over tens of min-
utes and hardware-level motion trajectory extraction using
charge recombination dynamics [186]. Complementarily,
He et al. demonstrated a multimodal electronic skin embed-
ding organic transistors for simultaneous visual and tactile
perception, achieving real-time fusion of light and pressure
signals within a compact neuromorphic array [187].

Building on this trajectory, Wu et al. pioneered a biomi-
metic olfactory neuron array, architected through the syner-
gistic integration of an organic field-effect transistor (OFET)
sensor array, in-sensor RC, and K-nearest neighbors (KNN)
classification [188]. The design, as illustrated in Fig. 13a,
depicts the hardware—software co-design, detailing the flow
from OFET sensor signal acquisition to temporal encoding
and RC-driven feature extraction, culminating in KNN-based
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gas classification. The experimental methodology for high-
resolution gas fingerprinting is clarified in Fig. 13b, which
presents the 32-point temporal response sampling protocol
for each analyte, forming the foundational feature set for all
subsequent classification.

The impact of sensor diversity on classification perfor-
mance is quantitatively demonstrated in Fig. 13c, where
accuracy is plotted as a function of sensor array size: while
single-sensor setups struggle (78.9%-98.1%), arrays com-
prising up to nine sensors achieve near-perfect discrimi-
nation (99.04%). The nuanced response behaviors, espe-
cially for gas mixtures, are further visualized in Fig. 13d,
where nonadditive, nonlinear mixture signals underscore
the necessity of multidimensional encoding and advanced
feature extraction. Central to real-world application, the
confusion matrix in Fig. 13e compellingly visualizes clas-
sification outcomes for the full 26-gas library, its domi-
nant diagonal evidencing minimal misclassification and
maximal specificity. The multidimensionality of the fea-
ture space and the robustness of boundary delineation are
captured in Fig. 13f, which shows KNN-derived decision
boundaries for 26 analytes on a pentacene-based sensor,
with isomers and homologs clearly resolved as distinct
clusters.

Transitioning to practical deployment, Fig. 13g sche-
matizes the integration of the olfactory sensor array onto
a robot dog platform for groundwater pollutant analysis,
highlighting the augmentation of environmental intelli-
gence through olfactory-visual sensor fusion. Experimen-
tal results, shown in Fig. 13h, provide a detailed break-
down of classification accuracy for individual pollutants
and their mixtures, nitrobenzene (NB), dimethyl meth-
ylphosphonate (DMMP), isopropylamine (IPAm), and
their binary combinations, where the KNN-based elimi-
nation voting model (KNN-EV) achieves 100% accuracy,
again confirmed by the diagonal strength of the confu-
sion matrix. This real-world demonstration validates the
efficacy of in-sensor computation and memory in autono-
mous, resource-constrained contexts.

Expanding the scope to multimodal fusion at the device
array level, Guo et al. engineer a 28 X 28-pixel mechano-opti-
cal synapse, whose fabrication and architecture are depicted
in Fig. 31 [189]. The device enables simultaneous encoding
of patterned light (visual) and mechanical (tactile) stimuli,
mapped into a photo-stimulated luminescence (PSL)-based
memory layer via mechanoluminescent (ML)-mediated
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luminescence transfer. The dynamical response to 30 consec-
utive pulses, mechanical, optical, and hybrid is chronologi-
cally charted in Fig. 13j, with early pulse data elucidating
the pronounced enhancement resulting from synchronized
force-light excitation. Integration with an ANN is visual-
ized in Fig. 13k, where datasets are partitioned by sensory
modality and the network structure (784 input neurons, 50
hidden, 5 output) is depicted, demonstrating the translation
from array-level physical signals to computationally accessi-
ble features. The ultimate system-level performance is quan-
tified in Fig. 131, which tracks recognition accuracy across
training epochs for tactile, visual, and visual-tactile modes,
revealing a significant multimodal synergy: joint perception
achieves a superior 92.5% accuracy, compared to 69.6% and
79.6% for unimodal inputs, respectively.

6.4 Heterogeneous Integration Arrays

The ongoing quest for edge-intelligent systems that seam-
lessly bridge perception, computation, and action has cata-
lyzed the emergence of heterogeneous integration arrays,
amalgamating diverse device functionalities to enable
closed-loop, adaptive decision-making in dynamic environ-
ments. Traditional von Neumann architectures, marked by
a physical separation between memory and logic units, have
long been hindered by the inefficiency of data shuttling, an
impediment exacerbated by the massive parallelism and high
precision required in advanced Al tasks such as dynamic
object tracking (DOT), tactile cognition, and real-time mul-
timodal recognition [190—-192]. In heterogeneous integration
arrays, sensors, synapses, and neurons are co-designed to
the target task, with dynamics chosen to match requirements
and to enable effective coupling of sensing, memory, and
computation. In response, computing-in-memory (CIM)
paradigms based on emerging nonvolatile memories, mem-
ristors, phase-change memories, and particularly, ferroelec-
tric field-effect transistors (FeFETSs), have transformed the
landscape by supporting in situ vector—matrix multiplication
(VMM) and robust Boolean logic, yet single-modality arrays
often fall short in meeting the multidimensional demands of
autonomous agents and robotic platforms [43, 193].
Recent efforts have begun to demonstrate how heterogene-
ous device integration can embed not just memory and logic,
but also perception—action coupling within a single hardware
fabric. For example, Shan et al. constructed a hemispherical
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Fig. 13 Multimodal single-device arrays for cross-modal perception and intelligent recognition. a Schematic of a nine-channel organic field-
effect transistor (OFET) sensor array integrated with reservoir computing and k-nearest neighbors (KNN). b Time-dependent response profiles
of all sensors to 26 gases. ¢ Classification accuracy versus sensor number. d Protocol and array response to 12 typical gas mixtures. e Confusion
matrix for 26-class gas recognition. f KNN decision boundaries among isomer/homolog gas pairs in feature space. g Mobile robot equipped with
the olfactory array for real-world groundwater pollutant detection. h Confusion matrix of pollutant recognition on 24 samples. a-h Reproduced
with permission [164]. Copyright 2025, Wiley—VCH GmbH. i Schematic of a visual-tactile mechano-optical synaptic array for in-sensor multi-
modal computing. j Array output under separate and combined light/mechanical stimulation. k Schematic of pattern recognition using an ANN
with unimodal and multimodal datasets. 1 Training curves of ANN accuracy. i-1 Reproduced with permission [165]. Copyright 2025, Wiley—
VCH GmbH

optoelectronic memristor array using Ag-titanium dioxide  tantalum-oxide (TaO,) memristor with IGZO photodetector
(TiO,) nanoclusters, emulating binocular stereo vision and  layers to create a spiking cone photoreceptor array (VISCP),
enabling in-pixel depth perception and motion detection via  achieving ultra-low power (<400 pW), color-selective spik-
optical modulation and plasmonic effects [159]. Here, per-  ing responses, and hardware-level depth perception via spik-
pixel optical gain and synaptic state jointly act as recon-  ing frequency differentials [194]. The spiking threshold and
figurable “meta-weights,” allowing depth cues and motion  adaptation within the VISCP provide a tunable temporal
salience to be encoded before digitization, which reduces  gate, aligning sensor dynamics with sequence learning and
downstream calibration and preserves precision at scale.  thereby serving as an explicit temporal plasticity at the array
More recently, Wang et al. reported a vertically integrated  level.
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In particularly, Lu et al. engineered a wafer-scale, 2D
MoS,-HfO, FeFET hybrid CIM system that monolithically
integrates digital logic and analog multistage cell (MSC)
arrays for analog VMM, achieving sub-femtojoule energy
efficiency and a wafer-scale yield exceeding 96% [195]. The
core hardware foundation is visually presented in Fig. 14a,
which shows the fabricated 4 X 4 MSC array and its cor-
responding programmable weight matrix after precise row-
by-row initialization, each cell supporting over 6-bit reso-
lution and exceptional symmetry/linearity in conductance
states. The platform’s device architecture and fabrication
flow, including the solution-processable, wafer-scale growth
of MoS, channels and high-k hafnium oxide interfaces,
are outlined in Fig. 14b, highlighting the system’s CMOS
compatibility and scalability. On the digital front, Fig. 14c
depicts optical images and the actual circuit implementation
of FeFET-based Boolean logic arrays and Schmitt triggers
(STs), forming the digital building blocks for in-memory
computation. The practical operation of these digital circuits
is detailed in Fig. 14d, which presents the output charac-
teristics for key logic gates (AND, OR, XOR, full adder),
as well as dynamic waveform transformations enabled by
the Schmitt trigger. Crucially, array-uniform FeFET weight
states provide consistent LTP/LTD kernels for direct weight
mapping, while the Schmitt trigger supplies a programma-
ble threshold with hysteresis that functions as module-level
metaplasticity, shaping spike timing and noise immunity for
temporal tasks.

Transitioning to system-level functionality, Fig. 14e pro-
vides an explicit demonstration of the Schmitt trigger’s role
in pulse shaping, showing the transformation of input trian-
gular and sine waves, and the resulting rail-to-rail logic state
transitions with ultrafast response and robust noise immu-
nity. Building on this hybrid platform, the digital computing
pipeline for dynamic object tracking is detailed in Fig. 14f,
where ferroelectric XNOR logic, convolutional filtering, and
Schmitt trigger arrays collaboratively enable real-time mov-
ing object detection and dynamic background suppression
within the array. In parallel, Fig. 14g visualizes the analog
computation conducted in the MSC-based CNN array,
showcasing the multilayered feature extraction and trajec-
tory prediction flow powered entirely by analog in-memory
operations. The platform’s energy and accuracy advantages
are compellingly summarized in Fig. 14h, which bench-
marks the hybrid system against traditional CPU (Intel i9)
and GPU (NVIDIA Tesla V100) architectures. The results
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reveal more than two orders of magnitude improvement in
energy efficiency, while maintaining high accuracy. The con-
fusion matrix in Fig. 14i further demonstrates the system’s
average DOT recognition accuracy of 99.8%, affirming the
feasibility of hardware-level, real-time visual intelligence.
Taken together, the hybrid array demonstrates plasticity
engineering by delivering precise, linear weight updates for
high fidelity mapping and by providing tunable thresholding
with persistence control for time-aligned learning.

To extend this paradigm to tactile cognition, Kim et al.
realized a bioinspired tactile neuromorphic system by inte-
grating a triboelectric Cu/ poly(dimethylsiloxane) (PDMS)
sensor and a MoS,/P(VDF-TrFE) FeFET synaptic
array [196]. Figure 14j provides a schematic of the full tac-
tile neuromorphic system, depicting the interaction between
the triboelectric sensor, preprocessing microcontroller, and
ferroelectric synaptic hardware, which together transduce
tactile stimuli into structured electrical signals and pro-
cess them in real time. For Morse code pattern recognition,
Fig. 14k presents the system’s process and representative
data, illustrating the conversion of tactile Morse code signals
(“A”, “B”, “C”) into time-sequenced voltage patterns and
their subsequent encoding as 20 x 20 visual maps for neural
network input. Data augmentation, a key strategy for over-
coming limited sample sets, is depicted in Fig. 141, where
randomized visualized Morse code images for the letter “K”
exemplify robust data expansion and highlight how even sig-
nificant noise does not obscure key pattern features. System-
level recognition performance is quantitatively charted in
Fig. 14m, which traces the evolution of single-layer per-
ceptron (SLP) accuracy for Morse code learning and MLP
accuracy for MNIST digit recognition, substantiating the
system’s robustness and hardware efficiency. Figure 14n fur-
ther summarizes the final recognition accuracy and confu-
sion matrix, demonstrating high classification fidelity across
all classes. Finally, Fig. 140 provides an additional bench-
mark by comparing the recognition accuracy of FeFET-
based synaptic arrays with other synaptic device platforms,
confirming their competitive advantage in both training
convergence and generalization. In this tactile module, the
synaptic array functions as a reconfigurable plastic substrate
in which device-level domain polarization establishes stable,
low-variance weights for precise mapping, and input rate-
dependent integration, together with threshold adaptation,
tunes the temporal window, thereby aligning plasticity with
the statistics of tactile stimuli (Fig. 15).
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Fig. 14 Heterogeneous integration arrays for neuromorphic sensing, computation, and action. a Optical image of 4 X 4 ferroelectric multistage
cell (MSC) array and weight matrix. b Wafer-scale fabrication schematic for 2D MoS,-HfO, ferroelectric field-effect transistors (FeFETs). ¢
Optical images and circuit diagrams of FeFET-based Boolean logic and Schmitt trigger (ST) arrays. d Output signals of FeFET logic gates and
STs. e Waveform transformation by Schmitt trigger: analog to digital logic. f Digital computation with ferroelectric XNOR, convolution, and
ST arrays for real-time object detection. g Analog CNN computation in MSC arrays for multilayer feature extraction and prediction. h Power
consumption comparison: ferroelectric hybrid system versus conventional CPUs/GPUs. i Confusion matrix showing 99.8% dynamic object
tracking (DOT) recognition accuracy. a-i Reproduced with permission [48]. Copyright 2024, The American Association for the Advancement
of Science. j Schematic of tactile neuromorphic system integrating triboelectric sensor, microcontroller, and FeFET array. k Tactile Morse code
recognition: signal generation, image encoding, and neural network classification. 1 Real-time voltage output for Morse code “A”, “B”, “C” and
visual patterns. m Training/test dataset generation by randomization. n single-layer perceptron (SLP) recognition accuracy on Morse code ver-

sus epoch. 0 MLP recognition accuracy on MNIST versus epochs. j-o Reproduced with permission [49]. Copyright 2023, American Chemical
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7 Conclusion and Outlook and advanced neural system performance. Through com-
parative analysis and representative examples, it becomes
This review systematically classifies and discusses artifi-
cial synaptic devices with a focus on the functional dif-

ferentiation of synaptic plasticity behaviors. By examin-

clear that the deliberate modulation of plasticity behaviors,
whether for analog weight stabilization, tunable memory
retention, or cross-modal fusion, forms the basis for con-

ing diverse synaptic behaviors such as high-resolution
and multilevel LTP and LTD, STM and FM processes,
excitatory and inhibitory synergy, wavelength selectivity,
dynamic threshold modulation, and multimodal sensory
adaptation, the review clarifies how each type of plastic-
ity enables key computational features in neuromorphic
networks. This functional perspective highlights the
essential connection between tailored synaptic behaviors
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structing efficient, flexible, and adaptive brain-inspired
computing systems. However, current modulation meth-
ods still exhibit limitations regarding flexibility, diversity,
and overall adaptability, and much of the related research
remains exploratory. Therefore, based on this systematic
analysis, the following three aspects are identified as criti-
cal future development directions in synaptic plasticity
modulation techniques.
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7.1 Exploration of Novel Synaptic Plasticity
Mechanisms

The exceptional intelligence of biological organisms primar-
ily arises from the diverse and sophisticated plasticity mech-
anisms that operate within their nervous systems [61]. Com-
pared with natural neural structures, artificial neuromorphic
devices currently possess relatively simplistic and limited
modulation mechanisms [2]. Specifically, existing synap-
tic plasticity research largely centers on basic transitions
between STM and LTM states, modulation between excita-
tory and inhibitory synaptic activities, and optimization of
linearity and symmetry in synaptic weight updating [15].
These relatively narrow modulation pathways significantly
restrict the full potential and functionality of neuromorphic

s s08om
; I omen
ot U

i —
readout

systems [197]. The limited scope of plasticity modulation
is mainly attributed to the current absence of sufficiently
rich and diverse physical mechanisms at the device level.
Thus, future research should prioritize exploring and dis-
covering new functional mechanisms, such as multithresh-
old dynamics, activity-dependent metaplasticity, selective
plasticity gating, and biologically inspired heterosynaptic
mechanisms, to expand the modulation versatility [198,
199]. Enriching the pool of available plasticity behaviors can
effectively enhance the operational speed, power efficiency,
computational flexibility, and adaptive learning capability
of neuromorphic chips.
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7.2 Multimodal Collaborative Plasticity Modulation
Techniques

Future advancements in neuromorphic hardware require
substantial progress in multimodal collaborative plasticity
modulation, shifting away from single-sensory, isolated pro-
cessing paradigms toward the seamless integration of diverse
physical signals and functionalities. Inspired by the multi-
sensory fusion and parallel processing capabilities of bio-
logical neural systems, novel device designs must effectively
merge multiple sensory inputs, adaptive memory states, and
computational functions at a device and module level [142].
Achieving this vision involves exploring advanced hetero-
structures, integrating sensing, logic, and memory into uni-
fied physical nodes, and developing reconfigurable modular
units that dynamically emulate closed-loop biological per-
ception—action pathways [152]. Such multimodal integra-
tion techniques will significantly enhance the adaptability,
robustness, and resource efficiency of neuromorphic sys-
tems, laying critical groundwork for intelligent sensing
and decision-making in real-world, resource-constrained
environments.

7.3 Enhanced Plasticity Modulation Techniques
for Large-Scale Neuromorphic Arrays

The practical deployment of neuromorphic computing relies
critically on synaptic plasticity modulation methods tailored
explicitly for scalable neural arrays. Although significant
advancements in individual synaptic devices have been
achieved, large-scale integration demands higher stand-
ards for uniformity, reproducibility, and stability of plastic-
ity behaviors. To meet these requirements, future research
should prioritize the development of advanced fabrication
technologies and array-level modulation techniques that
can reliably and uniformly regulate synaptic plasticity
across extensive device arrays [200]. Furthermore, explor-
ing gate-tunable and dynamically reconfigurable plasticity
mechanisms, exemplified by multifunctional organic hetero-
structure arrays, will allow adaptive synaptic modulation
essential for flexible, real-time neural computations [201].
Achieving these goals will significantly enhance the robust-
ness, efficiency, and adaptability of large-scale neuromor-
phic systems, laying the groundwork for their broader appli-
cation in intelligent edge computing.

SHANGHAI JIAO TONG UNIVERSITY PRESS

Despite notable progress, current modulation strategies
remain constrained in flexibility, diversity, and large-scale
coordination. In particularly, application-facing advances
should explicitly link device-level plasticity to task require-
ments-stable analog weights for high-accuracy learning,
tunable short-term dynamics for temporal processing, and
hardware attention for noise-resilient perception. Future
research should focus on enriching the behavioral repertoire
of plasticity, especially those supporting temporal learning,
adaptive attention, and metaplastic threshold tuning, advanc-
ing cross-modal convergence and device-algorithm co-
design to bridge device behaviors with network objectives,
and improving array-level uniformity and variation-aware
calibration for scalable integration and reliable operation
in edge and resource-constrained environments. In parallel,
standardized, task-linked benchmarks and device-to-network
mapping protocols (linearity, symmetry, drift/temperature
stability, STM windows, STDP, and threshold adaptabil-
ity) are needed to ensure fair comparison and reproducible
system-level gains. Together, these directions will pave
the way toward deployable, high-efficiency neuromorphic
intelligence. Priority application sandboxes—wearable
health monitoring, low-light/night-vision perception, and
extreme-environment sensing—can serve as near-term prov-
ing grounds for translating synaptic strategies into deploy-
able systems.
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