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HIGHLIGHTS

•	 This review provides an in-depth discussion of computing-unit optimization through synaptic plasticity engineering, enabling precise 
weight modulation in spatial models and effective temporal information processing in dynamic neural networks.

•	 It delves into algorithmic advancement through plasticity modulation, improving accuracy, stability, and convergence in neuromorphic 
computing models.

•	 It explores resource-efficient neuromorphic architectures, integrating multifunctional devices, multimodal fusion, and heterogeneous 
arrays for scalable, low-power, and generalizable intelligent systems.

ABSTRACT  Manipulating the expression of synaptic plasticity in neuromorphic devices pro-
vides essential foundations for developing intelligent, adaptive hardware systems. In recent years, 
advances have shifted from static emulation toward dynamic, network-oriented plasticity design, 
offering enhanced computational accuracy and functional relevance. This review highlights how 
diversified plasticity behaviors, including multilevel long-term potentiation and depression for 
spatial models, tunable short-term memory for temporal models, as well as wavelength-selective 
response, excitatory and inhibitory synergy, and adaptive threshold modulation, collectively sup-
port key tasks such as stable learning, temporal processing, and context-aware adaptation. Beyond 
behavioral innovations, strategies such as multifunctional single-device integration, multimodal 
fusion, and heterogeneous system assembly enable compact, energy-efficient, and versatile neu-
romorphic architectures. Recent developments at the array level further demonstrate high-perfor-
mance scalability and system-level applicability. Despite notable progress, current modulation strategies remain constrained in flexibility, 
diversity, and large-scale coordination. Future research should focus on enriching the behavioral repertoire of plasticity, advancing cross-
modal convergence, and improving array-level uniformity, paving the way toward deployable, high-efficiency neuromorphic intelligence.
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1  Introduction

Driven by the rapid evolution of brain-inspired intelligence 
and the proliferation of ubiquitous intelligent terminals, neu-
romorphic devices and networks are increasingly recognized 
as the foundational hardware underpinning next-generation 
artificial intelligence (AI) systems  [1]. Neuromorphic 
engineering, situated at the intersection of neuroscience, 
materials science, electronics, and AI, aims to emulate the 
multiscale information processing and adaptive learning 
capabilities intrinsic to biological neural systems [2–5]. By 
overcoming the fundamental limitations of traditional von 
Neumann architectures, such as high energy consumption, 
the separation of memory and computation, and data trans-
fer bottlenecks, neuromorphic hardware aspires to integrate 
sensing, memory, and computing within unified physical 
substrates [6–8]. This vision unlocks new possibilities for 
building AI systems that are energy-efficient and adaptive, 
as well as deployable in resource-constrained, edge, and 
extreme-environment scenarios [9–11].

Two functionally differentiated but equally critical 
research directions have emerged to meet the unique require-
ments of static and dynamic neural architectures [12, 13]. 
For spatial-domain, weight-driven networks such as con-
volutional neural networks (CNNs) and multilayer percep-
trons (MLPs), the emphasis is placed on achieving precise, 
stable, and symmetric modulation of synaptic weights [14]. 
To support accurate and scalable training and inference in 
neuromorphic networks, long-term memory (LTM) syn-
aptic devices must exhibit high-resolution analog weight 
states, minimal nonlinearity, excellent long-term retention, 
and strong environmental drift resistance [15]. Substantial 
progress has been made in this area, as demonstrated by 
advances in multilayer memristors, ferroelectric synapses, 
and two-dimensional heterostructure devices, which collec-
tively offer excellent linearity, multistate modulation, and 
symmetry [16–18]. In parallel, solid-state ionic systems have 
demonstrated outstanding endurance and drift resistance, 
further supporting the feasibility of deploying these devices 
in large-scale neuromorphic arrays [19, 20].

On the other hand, temporally dynamic architectures such 
as reservoir computing (RC) and spiking neural networks 
(SNNs) require devices capable of emulating transient 
synaptic behaviors that support time-domain information 
processing [21]. Short-term memory (STM), paired-pulse 

facilitation (PPF), and spike-timing-dependent plasticity 
(STDP) are critical for encoding spatiotemporal correla-
tions and enabling event-driven learning [15, 22, 23]. To 
address these requirements, researchers have developed 
neuromorphic devices that emulate such behaviors through 
a variety of mechanisms. Notable advances include fully 
quantum dot optoelectronic memristors, photon-avalanche 
nanocrystal-based synapses, and hybrid organic transistor 
systems [24–26]. These devices offer tunable memory win-
dows, nonlinear temporal dynamics, and dynamic thresh-
old modulation, features that render them highly suitable 
for real-time pattern recognition, sequence prediction, and 
low-power adaptive computing [27].

Earlier research mainly emphasized synaptic behav-
iors at the single-device level. However, the translation of 
these advances into network- and system-level benefits has 
been comparatively underexplored. In contrast, this review 
emphasizes how diverse synaptic plasticity mechanisms 
can directly enhance neural network algorithm optimiza-
tion, resource efficiency, and generalization (Fig. 1). Recent 
advances in wavelength-selective plasticity, excitatory and 
inhibitory synergy, and dynamically tunable metaplasticity 
demonstrate significant algorithmic implications [28–34]. 
Wavelength-selective synapses facilitate targeted spectral 
perception and intrinsic noise filtering, streamlining neural 
network algorithms by reducing preprocessing complexity 
and enhancing robustness under noisy, real-world condi-
tions [35]. Excitatory and inhibitory cooperative synapses, 
mirroring biological receptive fields, realize spatial attention 
mechanisms at the hardware level, prioritizing critical inputs 
and suppressing irrelevant signals, thus reducing computa-
tional overhead and improving recognition accuracy even 
under constrained computational budgets [36]. Additionally, 
dynamically adjustable threshold plasticity and metaplastic-
ity enable neural networks to modulate learning sensitivity 
and response thresholds based on environmental variabil-
ity and historical activity, accelerating model convergence, 
reducing required training epochs, and enhancing adaptabil-
ity to uncertain conditions [37].

In parallel with the advancement of higher-order syn-
aptic plasticity mechanisms, recent developments in mul-
timodal integration, single-device multifunctionality, and 
heterogeneous component co-design have established pow-
erful strategies for constructing energy-efficient, resource-
compact neuromorphic systems  [50–52]. Multimodal 
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synaptic devices capable of responding to diverse stimuli 
such as light, pressure, gas, or humidity facilitate device-
level information fusion and reduce data transfer overhead, 
supporting robust and low-latency perception in dynamic 

environments [53]. Multifunctional synapses emphasize 
internal behavioral richness, allowing single devices to 
concurrently exhibit various plasticity modes, significantly 
enhancing learning flexibility, reducing peripheral circuitry, 

Fig. 1   Overview of this review. Neuromorphic Units. Reproduced with permission  [35].  Copyright 2023, The Authors. Advanced Science 
published by Wiley‐VCH GmbH. Reproduced with permission [36]. Copyright 2024, Wiley–VCH GmbH. Reproduced with permission [37]. 
Copyright 2025, Wiley‐VCH GmbH. Reproduced with permission  [38]. Copyright 2024, The Author(s). Advanced Materials published by 
Wiley‐VCH GmbH. Reproduced with permission [39]. Copyright 2024, Wiley‐VCH GmbH. Reproduced with permission [40]. Copyright 2021, 
Wiley‐VCH GmbH. Model Optimization. Reproduced with permission  [41]. Copyright 2024, Wiley‐VCH GmbH. Reproduced with permis-
sion [42]. Copyright 2024, Wiley‐VCH GmbH. Reproduced with permission [43]. Copyright 2025, The American Association for the Advance-
ment of Science. Resource Strategies. Reproduced with permission [44]. Copyright 2024, The American Association for the Advancement of 
Science. Reproduced with permission [45]. Copyright 2024, American Chemical Society. Reproduced with permission [46]. Copyright 2024, 
The Authors. Advanced Materials published by Wiley‐VCH GmbH. System Integration. Reproduced with permission [47]. Copyright 2024, The 
Author(s). Advanced Materials Technologies published by Wiley–VCH GmbH. Reproduced with permission [48]. Copyright 2024, The Ameri-
can Association for the Advancement of Science. Reproduced with permission [49]. Copyright 2023, American Chemical Society
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and enabling task-adaptive learning under tight hardware 
constraints [54]. Complementing these approaches, het-
erogeneous integration architectures amalgamate sensory 
transducers, memory units, logic elements, and actuators 
into unified neuromorphic modules, supporting real-time 
closed-loop operations. Compared to monolithic systems, 
these heterogeneous platforms offer enhanced versatility, 
scalability, and task-specific configurability, essential for 
intelligent operation in power-constrained and bandwidth-
limited environments [55].

The evolution of synaptic plasticity has shifted from early 
demonstrations emphasizing STM and LTM for precise 
weight updates in artificial synapses toward more sophisti-
cated behaviors meeting emerging network training require-
ments, including multimodal integration, excitatory-inhibi-
tory interactions, multifunctionality, and dynamic threshold 
modulation, thereby enabling enhanced model generaliza-
tion and algorithm-level strategies for neuromorphic hard-
ware, as illustrated in Fig. 2. Reflecting this conceptual tra-
jectory, the review first examines the material and device 
engineering strategies that enable precise, stable, and high-
resolution synaptic weight modulation. It then considers 
mechanisms of dynamic plasticity and threshold adaptation 
that are essential for temporal learning within RC and SNN 
architectures. Subsequent sections highlight higher-order 
synaptic behaviors such as wavelength selectivity, excita-
tory and inhibitory synergy, and metaplasticity, all of which 
play pivotal roles in enhancing algorithmic efficiency and 
adaptive learning. Further discussion addresses the impact 
of multifunctional and multimodal integration strategies in 
realizing compact, energy-efficient, and resource-conscious 
neuromorphic systems. The final section surveys recent 
advances in array-level integration and intelligent system 
demonstrations, underscoring the practical translation of 
these innovations into scalable and robust neuromorphic 
platforms.

2 � Synaptic Engineering for Analog Weight 
States

High-fidelity, multistate, and stable synaptic plasticity is 
the cornerstone of weight-driven neural networks  [58]. 
Realizing analog conductance tuning with linear and sym-
metric long-term potentiation (LTP) and long-term depres-
sion (LTD) enables precise parameter updates, which are 

essential for achieving high-accuracy and robust learning 
performance [59]. In this context, expanding the resolution 
and linearity of synaptic weights and ensuring long-term 
weight stability and drift resistance have become parallel 
priorities in the development of advanced artificial syn-
aptic devices. Together, these two facets underpin reliable 
weight mapping, efficient training convergence, and the scal-
able deployment of neuromorphic hardware in large-scale, 
parameter-driven networks.

2.1 � Multistate and Symmetric Weights

The realization of high-resolution, multistate, and linearly/
symmetrically tunable weight modulation is fundamental 
to advancing artificial synaptic devices for neuromorphic 
computing [60]. In biological networks, the ability to finely 
and continuously modulate synaptic strength underpins the 
complex adaptive learning behavior of the brain, serving as 
an essential blueprint for weight-driven neural architectures 
such as convolutional and multilayer perceptrons [61]. In 
hardware implementations, this translates into the need for 
synaptic devices that can provide abundant, reproducible, 
and evenly spaced conductance states with minimal nonlin-
earity and variation, thereby ensuring precise weight map-
ping and stable training convergence [62]. Consequently, 
material and device engineering has been directed toward 
strategies that enhance the density, linearity, and symmetry 
of accessible conductance states, laying the foundation for 
high-accuracy and reliable performance in large-scale neu-
romorphic networks.

Among the early breakthroughs, Tian et  al. reported 
an organic ferroelectric transistor synapse with a 
poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)]/
MoS2 structure, in which polarization-driven switching ena-
bled more than 1000 quasi-continuous conductance states, 
providing a robust platform for precise and scalable weight 
modulation [63]. Subsequent efforts explored organic heter-
ojunction synapses, for example, vertical p-n devices based 
on p-type poly(2,5-bis(2-octyldodecyl)-3,4-dicyanothio-
phene) (PDPP4T) and naphthalene tetracarboxylic diimide 
derivative (NTCDI-F15), which utilized enhanced exciton 
dissociation and suppressed recombination to achieve sev-
eral hundred clearly separable potentiation-depression states 
with low LTP nonlinearity [64, 65]. In parallel, ferroelec-
tric phototransistors based on α-In2Se3 exploited dynamic 
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interfacial polarization switching, enabling highly symmet-
ric, optically controlled bidirectional weight updates [66]. 
Along with innovations in quantum dot devices and charge 
transfer modulation, these advances have greatly broadened 

the palette for analog weight expression and conductance 
state engineering.

Nevertheless, persistent challenges, including residual 
nonlinearity, device variability, and incomplete symme-
try, continue to hinder the widespread deployment of these 

Fig. 2   Roadmap of synaptic plasticity engineering. Weight Plasticity. Reproduced with permission [53].  Copyright 2010, American Chemical 
Society. Short-term memory (STM) and long-term memory (LTM) Plasticity. Reproduced with permission [54]. Copyright 2017, WILEY‐VCH 
Verlag GmbH & Co. KGaA, Weinheim. Multifunctional Plasticity. Reproduced with permission  [55]. Copyright 2019, American Chemical 
Society. Multimodal Plasticity. Reproduced with permission [56]. Copyright 2021, The Authors. InfoMat published by UESTC and John Wiley 
& Sons Australia, Ltd. Heterogeneous Plasticity. Reproduced with permission [57]. Copyright 2022, The Authors. Advanced Optical Materials 
published by Wiley‐VCH GmbH. Dynamic Plasticity. Reproduced with permission  [43]. Copyright 2025, The American Association for the 
Advancement of Science
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systems in large-scale, high-accuracy neural networks. As a 
result, recent research has increasingly focused on optimiz-
ing a diverse range of material platforms, including organic, 
ferroelectric, two-dimensional, and heterostructure systems, 
each offering unique opportunities for achieving robust, 
high-density, and precisely controllable multistate weight 
expression [67].

A compelling example of this progression is found in 
the two-dimensional violet phosphorus (VP)–molybdenum 
disulfide (MoS2) heterostructure synaptic device, which sets 
a new benchmark for analog synaptic performance in neu-
romorphic computing [38]. The system-level significance 
of these advances is directly demonstrated through neural 
network simulations of image classification tasks: as shown 
in Fig. 3a, the synaptic weights of the VP-MoS2 device are 
mapped into a multilayer network model comprising 40,000 
WIH and 1,000 WHO synapses, with both the training and 
inference stages faithfully emulating deep learning frame-
works. The evolution of weight distributions before and after 
training (Fig. 3b) underscores the capacity of high-resolu-
tion analog weights to realize sharp and robust separation 
within large-scale networks. Crucially, systematic variation 
of dynamic range (DR) and state number (Fig. 3c) reveals 
that both parameters exert a decisive influence on classifi-
cation accuracy: once DR drops below 20 dB, performance 
degrades precipitously, illustrating the fundamental neces-
sity of high-fidelity, multistate synaptic mapping for com-
plex pattern recognition. At the device level, the VP-MoS2 
heterostructure leverages the wide bandgap and pronounced 
light–matter interactions of VP to achieve an ultrahigh dark-
to-light ratio (> 106), a dynamic range exceeding 60 dB, and 
128 (7-bit) clearly separated conductance states (Fig. 3d, 
e). This exceptional state density is complemented by the 
device’s ability to support optically driven LTP and elec-
trically driven LTD, both exhibiting highly reproducible 
and linear transitions across repeated programming cycles. 
The ultralow off-state current effectively minimizes weight 
mapping errors, a critical consideration for high-accuracy 
network applications.

To realize multistate, symmetric weights, evidence across 
material platforms points to a clear progression. Symmet-
ric carrier injection barriers, shallow and narrowly distrib-
uted traps, and well-passivated interfaces produce mono-
tonic, nearly uniform, and mirror-symmetric conductance 
updates. Ferroelectric channels then supply rapid and revers-
ible polarization that avoids slow ionic drift, while organic 

and two-dimensional heterojunctions use interfacial charge 
transfer to suppress nonlinearity. Stability is reinforced by 
ion-blocking interlayers and robust dielectrics, which curb 
long-term drift and cycle-to-cycle variation. Wide bandgap 
channel stacks with ultralow off-state current further enlarge 
the dynamic range and raise the signal-to-noise ratio, reduc-
ing weight mapping error.

2.2 � Stable and Drift‑Resistant Weights

The pursuit of highly stable, drift-resistant synaptic weight 
modulation stands as a foundational requirement for neu-
romorphic hardware targeting large-scale, weight-driven 
neural network applications [69]. Biological synapses pos-
sess the remarkable capacity for reliable and long-lasting 
information retention, a property underpinned by sophis-
ticated ionic dynamics and homeostatic regulatory mech-
anisms [70]. In contrast, many artificial synaptic devices 
suffer from conductance drift, cycle-to-cycle variability, 
and progressive degradation under repeated operation or 
environmental fluctuations, which compromise weight pre-
cision, hinder training convergence, and limit system endur-
ance [71, 72]. Addressing these challenges has thus become 
a central motif in synaptic device innovation, particularly as 
next-generation AI architectures demand robust in-memory 
computing platforms capable of both high-precision storage 
and operational endurance.

To overcome the volatility and reproducibility bottlenecks 
of conventional memristors, the community has developed 
a rich diversity of material and interface strategies aimed 
at suppressing drift and enhancing cycle stability [73]. For 
example, electrochemical synaptic transistors, especially 
those leveraging solid-state ionic conductors, have enabled 
finely tunable and highly stable analog weights through 
deterministic ion migration mechanisms. Among these, 
devices based on lithium- and proton-conducting electro-
lytes exhibit rapid switching and reasonable retention but 
are often hampered by environmental sensitivity and limited 
compatibility with standard CMOS processes [39, 68, 74].

Amidst these diverse approaches, a pivotal advance is 
exemplified by the solid-state oxide-ion synaptic transis-
tor based on a Bi2V0.9Cu0.1O5.35 (BICUVOX) electrolyte 
and La0.5Sr0.5FeO3-δ (LSF50) channel [39]. At the system 
level, the impact of such stable weight modulation is viv-
idly illustrated by neural network simulations: when the 
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Fig. 3   Multistate weight modulation and stability in neuromorphic synaptic devices. a Schematic of the multilayer neural network mapped 
from violet phosphorus (VP)-molybdenum disulfide (MoS2) synaptic devices. b Simulated weight distributions before and after training. c Clas-
sification accuracy versus dynamic range (DR) and state number. d Normalized long-term potentiation and depression (LTP/LTD) curves for 
VP-MoS2. e Representative waveforms for individual conductance states. a-e Reproduced with permission [35].  Copyright 2023 The Authors. 
Advanced Science published by Wiley‐VCH GmbH. f Neural network simulation using Bi2V0.9Cu0.1O5.35 (BICUVOX)/La0.5Sr0.5FeO3-δ (LSF50) 
device weights for Modified National Institute of Standards and Technology (MNIST) digit recognition. g Linearity and symmetry of 50 poten-
tiation/depression pulses. h Linearity and symmetry over all cycles. f–h Reproduced with permission [36]. Copyright 2024, Wiley–VCH GmbH. 
i Sketch of metal/ferroelectric/metal/insulator/semiconductor (MFMIS) memcapacitor array. j Robust retention of 3-bit capacitance states. k 
Cycle-to-cycle variation of high/low capacitance states. j-k Reproduced with permission [68]. Copyright 2023, The Authors. Exploration pub-
lished by Henan University and John Wiley & Sons Australia, Ltd
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experimentally derived BICUVOX/LSF50 weight curves 
are mapped into an 8 × 8 or larger-scale artificial neural net-
work, the resulting Modified National Institute of Standards 
and Technology (MNIST) digit recognition accuracy reaches 
96% (Fig. 3f). This not only approaches the ideal software 
benchmark but also demonstrates that minimizing device 
drift and ensuring long-term analog stability can markedly 
reduce inference errors and support sustained high-accuracy 
operation in large-scale, weight-driven neural networks. 
The remarkable device-level performance of BICUVOX/
LSF50 underpins this system-level accuracy. Specifically, 
the device leverages the high ionic conductivity and thermal/
environmental stability of the BICUVOX film to achieve 
deterministic, reversible, and low-voltage modulation of syn-
aptic weights. Unlike earlier oxide-ion or protonic transistors 
that suffered from high switching voltages and unreliable 
ion migration, the BICUVOX/LSF50 system operates at 
sub-1 V levels, ensuring stable oxide-ion motion and mini-
mal stochasticity in weight updates. This architecture yields 
more than 100 discrete, linearly spaced conductance states 
(7-bit precision), with a nonlinearity factor of 0.3–1.7 and 
an asymmetric ratio as low as 0.03, metrics that directly 
reflect its capacity for highly symmetrical and repeatable 
LTP/LTD modulation (Fig. 3g, h). Notably, these features 
are retained over 5000 programming cycles and persist even 
under elevated temperatures, attesting to the robustness of 
the device in edge computing and harsh environmental sce-
narios. Complementarily, Feng et al. introduced a ferroelec-
tric fin diode (FFD) that achieved an exceptional endurance 
of over 1010 switching cycles together with stable analog 
memory states, highlighting the critical role of ferroelectric 
domain engineering in suppressing drift and ensuring long-
term reliability for in-memory computing [75].

In addition, Tian et al. reported a ferroelectric memcapaci-
tor network based on a P(VDF-TrFE)-integrated metal/ferro-
electric/metal/insulator/semiconductor (MFMIS) structure, 
in which the stacked MFMIS configuration (Fig. 3i) enabled 
reconfigurable multilevel capacitance states governed by 
ferroelectric domain dynamics [76]. Benefiting from uni-
form polarization-induced fields, the device achieved stable 
intermediate states with retention times exceeding 104 s and 
endurance beyond 109 switching cycles, as confirmed by 
both cycle-to-cycle stability tests (Fig. 3j, k). In compari-
son, other contemporary platforms have also made notable 
strides in device stability and endurance [68, 73]. The novel 
solid-state sodium alginate (NaAlg)/ polyacrylic acid (PAA)/

indium gallium zinc oxide (IGZO) device introduces a poly-
acrylic acid interface to buffer Na+ ion dynamics, achieving 
64 stable conductance states over 12,000 cycles and support-
ing high-fidelity pattern recognition. Similarly, ultra-flexible 
Si nanomembrane arrays integrated with hybrid polyimide-
Al2O3 dielectrics maintain high linearity, ultra-low conduct-
ance fluctuation (< 1.6%), and excellent endurance even after 
10,000 bending cycles, achieving digit recognition rates up 
to 93.2%.

Across studies, consistent evidence indicates that drift-
resistant and reproducible analog weights arise when ionic 
transport is deterministic in chemically and thermally robust 
solids, operating voltages are kept in the subvolt regime to 
confine dynamics to reversible ranges, polarization is tightly 
controlled, and interfaces are buffered or passivated. Under 
these conditions, devices deliver monotonic, nearly uniform, 
and mirror-symmetric conductance states with low nonlin-
earity and low asymmetry, and they retain these character-
istics over thousands of programming cycles and at elevated 
temperatures. Endurance extends from 109 to 1010 switch-
ing events, with intermediate-state retention on the order 
of 104 s.

3 � Synaptic Engineering for Temporal 
Plasticity

The growing demand for neural networks that can process 
complex temporal signals in real-world environments has 
made dynamic synaptic plasticity central to the development 
of next-generation RC and SNNs [77]. Unlike conventional 
static architecture, temporal neural models require devices 
capable not only of rapid and reversible information encod-
ing, but also of modulating memory retention and synap-
tic responsiveness on demand [78]. This shift presents two 
parallel challenges: first, how to implement tunable STM 
windows at the device level to enable real-time temporal 
correlation, and second, how to realize precise threshold and 
spike-timing-dependent plasticity for efficient event-driven 
learning and adaptive sequence recognition [79, 80].

3.1 � Tunable STM Windows

In the era of intelligent sensing and ubiquitous Internet of 
Things, neuromorphic hardware capable of encoding and 
manipulating dynamic temporal information has become 
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foundational for advancing time-dependent machine learn-
ing architectures such as RC and SNNs [81]. While tradi-
tional feedforward artificial neural networks are optimized 
for static tasks, they lack the intrinsic STM necessary to 
capture, store, and process the temporal correlations inher-
ent in real-world signals. This gap has driven the develop-
ment of synaptic device platforms that directly emulate the 
transient, volatile, and highly tunable memory windows 
exhibited by biological synapses, attributes that underpin 
the temporal perception and adaptive response in natural 
neural circuits [82]. Building on this foundation, physical 
reservoir computing offers a promising route. It leverages 
the intrinsic nonlinear response and fading memory (FM) 
dynamics of devices. Through these properties, temporal 
inputs are projected into a high-dimensional state space, 
where simple linear readout layers can efficiently extract 
spatiotemporal correlations. The optimization of STM 
window depth and adaptability is therefore crucial, since 
it determines the trade-off between memory retention and 
nonlinear transformation, enhances the richness of reservoir 
states, and ultimately improves temporal encoding capacity 
and computational efficiency for edge AI applications [83].

A diverse array of material systems and device strate-
gies has emerged to address this challenge, each contribut-
ing unique mechanisms for STM modulation. Among these, 
the fully quantum dot optoelectronic memristor (FQDOM), 
constructed from a ZnO QDs/CdSe QDs/ZnO QDs hetero-
junction, exemplifies an integrated approach that unifies 
broadband photodetection (ultraviolet–visible (UV) to red 
spectrum), nonlinear STM decay, color selectivity, noise-
tolerant preprocessing, and reservoir computation within a 
single two-terminal volatile device, as shown in Fig. 4a [40]. 
As a physical reservoir, the FQDOM achieves near-ideal per-
formance in dynamic tasks: in letter classification, nonlinear 
temporal mapping of pulse-encoded images results in 100% 
recognition accuracy within fewer than 30 training cycles 
(Fig. 4b, c). Furthermore, the ability to tune memory decay 
and synaptic response by varying pulse number, intensity, 
and spectral content extends the diversity of accessible reser-
voir states, a critical enabler for high-dimensional temporal 
information processing (Fig. 4d).

Parallel innovations in all-optical synaptic platforms, such 
as photon-avalanche (PA) nanocrystals, leverage excited-
state absorption and energy looping within upconversion 
nanoparticles to yield ultrasteep nonlinear luminescence 
dynamics and robust STM behavior [84]. The PA system 

demonstrates an exceptionally high PPF index that depends 
sensitively on inter-pulse delay (Fig. 4e), faithfully replicat-
ing the FM enhancement observed in biological synapses. 
Such all-optical synaptic models not only enable dynamic 
feature extraction and temporal summation in pure photonic 
domains but also facilitate hardware-embedded preprocess-
ing for sequence-based neuromorphic computing, eliminat-
ing the need for external network training.

Extending the STM paradigm to the near-infrared, Leng 
et al. introduced a hybrid transistor architecture based on 
core–shell upconversion nanoparticles (UCNPs@SiO2) 
embedded in a poly(3-hexylthiophene) (P3HT) channel [41]. 
This device exploits photon-electron coupling and electrical 
programming to achieve multilevel nonvolatile conductance 
states (≥ 8), adjustable relaxation times, and rich nonlin-
ear and asymmetric memory dynamics under narrow-band 
near-infrared (NIR) stimulation. The resulting reservoir ena-
bles in situ encoding and computation for both static and 
dynamic pattern recognition, achieving, for instance, 91.13% 
accuracy in static digit classification and a normalized mean 
squared error as low as 1.06 × 10–3 in predicting complex 
nonlinear dynamic sequences (Fig. 4f–h). Crucially, the 
expansion of reservoir states via variable programming 
and optical input parameters translates directly to enhanced 
prediction accuracy and adaptability in time-dependent 
computational tasks, highlighting the value of tunable STM 
windows and multimodal input fusion for temporal neuro-
morphic platforms.

Across neuromorphic platforms, the aim is to realize tun-
able temporal memory and coding that support reservoir 
computing and spiking models operating on real-world time-
varying signals. When devices combine intrinsic nonlinear-
ity with fading memory dynamics and allow on-demand 
modulation of retention and responsiveness, temporal inputs 
are embedded into high-dimensional state trajectories that 
preserve temporal correlations while remaining linearly 
decodable. Heterojunction stacks, core–shell photonic archi-
tectures, and engineered energy-transfer pathways stabilize 
excited-state kinetics and broaden spectral responsivity, 
yielding controllable volatility with reduced environmen-
tal sensitivity. Controlling pulse number, amplitude, width, 
inter-pulse interval, and spectral content tunes short-term 
memory depth and relaxation times, enhances temporal sum-
mation, and expands the accessible reservoir state space.
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3.2 � Spike‑Timing Plasticity

The pursuit of hardware-efficient SNNs has elevated 
dynamic threshold modulation and STDP to the forefront 
of neuromorphic device innovation [85]. Biological systems 
leverage precisely timed spiking and adaptive membrane 
thresholds to achieve energy-efficient encoding and rapid 
learning of temporal patterns [86]. In this context, SNNs 

introduce the principle of event-driven computation, where 
neurons accumulate inputs until a dynamic threshold is 
reached and emit discrete spikes that encode information in 
their timing and frequency [87]. Through STDP, the precise 
correlation between pre- and postsynaptic spikes enables 
local and unsupervised weight updates, which not only rep-
licate biological learning rules but also enhance the temporal 

Fig. 4   Temporal dynamics for tunable STM in neuromorphic hardware. a Schematic of pulse-encoded letter/image classification using in-sensor 
reservoir computing (RC). b Training accuracy and loss curves for the fully quantum dot optoelectronic memristor (FQDOM)-based system. c 
Excitatory postsynaptic current (EPSC) responses of optoelectronic memristors under different pulse sequences. d Modulation of STM window 
in FQDOMs by varying light/electrical pulse parameters. a-d Reproduced with permission [37].  Copyright 2025, Wiley‐VCH GmbH. e Paired-
pulse facilitation (PPF) and transient photon-avalanche (PA) luminescence in nanocrystal-based all-optical synapses. Reproduced with permis-
sion [82]. Copyright 2023, The Authors. Advanced Materials published by Wiley‐VCH GmbH. f Schematic and current outputs of nonlinear 
dynamic task solving with core–shell upconversion nanoparticles (UCNP@SiO2)/ poly(3-hexylthiophene) (P3HT) reservoir. g Dynamic reser-
voir responses under different near-infrared (NIR) input and programmed states. h Prediction accuracy with increasing reservoir state diversity. 
f–h Reproduced with permission [38]. Copyright 2024, The Author(s). Advanced Materials published by Wiley‐VCH GmbH
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precision, energy efficiency, and adaptability of hardware 
SNNs [88].

Emulating these dynamics in hardware, however, 
remains a formidable challenge, particularly in the com-
pact, low-power integration of leaky-integrate-and-fire 
(LIF) neuron behavior, spike frequency adaptation, and 
direction-selective learning. While early CMOS- and 
MOSFET-based artificial neurons provided proof-of-
concept LIF operation, they were hindered by high power 
consumption and bulky form factors  [89]. To address 
these limitations, recent research has focused on develop-
ing novel device architectures and material systems that 
more closely emulate the rich temporal dynamics of bio-
logical neurons and synapses. Of particular interest are 
steep-slope, energy-efficient devices and co-integrated 
systems capable of precise temporal information process-
ing and unsupervised learning. Among these advances, 
device-level innovations that directly implement both LIF 
spiking and synaptic plasticity within scalable, low-power 
hardware have demonstrated particularly promise for next-
generation SNNs [90].

Choi et al. proposed a significant breakthrough by dem-
onstrating fully two-dimensional material-based SNNs that 
integrate WSe₂ impact-ionization ferroelectric FET (I2FET) 
neurons with α-In2Se3/hexagonal boron nitride (h-BN)/
CuInP2S6 (CIPS) ferroelectric FET (FeFET) synapses in 
Fig. 5a [42]. Notably, this platform achieved an impressive 
87.5% accuracy in unsupervised face classification after only 
20 training epochs, substantially outperforming typical low-
parameter SNNs (Fig. 5b). At the device level, the 2D (I2FET 
neuron exploits a locally ungated, high-field region within 
the tungsten diselenide (WSe2) channel to enable abrupt, 
sub-microsecond avalanche spiking at ultralow energy con-
sumption (~ 2 pJ/spike), a 20- to 5000-fold reduction com-
pared to conventional silicon neuron circuits (Fig. 5c). This 
architecture ensures linear spike-frequency modulation with 
input bias, conferring robust event-driven adaptability and 
precise threshold dynamics, critical for real-time temporal 
coding and event detection, as shown in Fig. 5d. System-
level integration with FeFET synapses allows each artificial 
neuron to perform both spatial and spatiotemporal integra-
tion of distributed, asynchronously timed inputs, faithfully 
recapitulating dendritic computation and gating in biological 
systems (Fig. 5e). Experiments demonstrate that individual 
subthreshold inputs may be insufficient to trigger a spike, 
while coincident or temporally proximate inputs summate 

efficiently to elicit firing, underscoring the network’s ability 
to capture complex temporal features with high selectivity.

Equally remarkable, the MoS2-based ferroelectric syn-
aptic transistor associative spiking neural network (aSNN) 
demonstrates state-of-the-art associative memory and 
one-shot completion capabilities [43]. In digit completion 
tasks, the aSNN can accurately reconstruct entire patterns 
from partial cues, achieving a classification accuracy of 
up to 91.13% in static digit tests, surpassing traditional 
iterative associative networks (Fig. 5f). At the device level, 
the ferroelectric synapse harnesses gate-controlled domain 
wall dynamics to enable analog, symmetric, and linear 
weight modulation with sub-femtojoule energy per event, 
supporting a full suite of short-term repetitive depression/
potentiation (SRDP) and STDP learning rules (Fig. 5g), 
where the relative timing of pre- and postsynaptic spikes 
governs LTP or LTD. This permits on-device, unsuper-
vised Hebbian learning and LTM retention (Fig. 5h).

In neuromorphic hardware, an important direction is 
hardware-efficient, event-driven computation achieved by 
coupling adaptive thresholding with STDP. Deterministic 
leaky-integrate-and-fire neurons with linear rate control, 
paired with synapses that deliver analog, symmetric, and 
linear weight updates from precise spike timing, enable 
accurate temporal coding and local unsupervised learn-
ing. High field regions, ferroelectric or dielectric domain 
control, and interface passivation stabilize thresholds and 
plasticity kinetics while limiting leakage and variability. 
Tuning threshold set points and adaptation, shaping spike 
timing and intervals, and operating at latency and per spike 
energy improve efficiency and selectivity. Co-integrating 
steep-slope neuron devices with low energy, timing-sen-
sitive synapses, aligning STDP windows to task time con-
stants, and maintaining low voltage operation yield robust 
coincidence detection, associative recall, and competitive 
accuracy with few training epochs for edge-scale temporal 
intelligence.

4 � Synaptic Engineering for Context‑Aware 
Sensory Gating

The realization of robust, intelligent sensory perception in 
neuromorphic systems increasingly depends on the ability 
to selectively extract salient features, suppress interference, 
and flexibly adapt to complex, dynamic environments [91, 
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92]. Achieving these functions at the hardware level requires 
artificial synaptic devices that go beyond simple signal 
transduction, integrating a rich diversity of programmable 
plasticity mechanisms for context-aware information pro-
cessing [93]. Rather than relying on fixed or single-modal 
responses, state-of-the-art sensory synaptic architectures 
must dynamically encode spectral, spatial, and contex-
tual cues to enable high-fidelity feature encoding, efficient 
attention, and adaptive learning in the presence of noise and 
uncertainty [94, 95].

4.1 � Wavelength‑Selective Response

The capacity for wavelength-selective perception and encod-
ing is foundational for the advanced feature extraction and 
robust information processing demanded by next-generation 
neuromorphic vision systems [96, 97]. Biological retinas 
achieve these functions through diversified photoreceptor 
responses, most notably, the selective encoding of colors 
by rod and cone cells, to filter redundant background sig-
nals and accentuate task-relevant spectral features [98, 99]. 
This architecture enables color discrimination and noise-
tolerant recognition even in challenging and complex envi-
ronments [28, 100]. Motivated by this natural paradigm, 

Fig. 5   Spiking neural networks (SNN) implementation and device mechanisms for dynamic threshold modulation and spike-timing-dependent 
plasticity (STDP). a Simulation of face classification with a 2D SNN: spiking neural network scheme for 32 × 32 grayscale image recogni-
tion, including crossbar layouts (unsupervised and supervised layers) and device-based pseudo-crossbar array design with α-In2Se3 ferroelectric 
transistor (FeFET) synapses and tungsten diselenide (WSe2) impact-ionization transistor (I2FET) neurons. b Recognition rate of the SNN as a 
function of the number of training epochs. c Leaky-integrate-and-fire (LIF) operation of I2FET neuron. d Spiking characteristics and frequency 
modulation of the I2FE neuron. a-e Reproduced with permission [39].  Copyright 2024, Wiley‐VCH GmbH. e Spatiotemporal summation and 
circuit integration in the SNN. f FeFET network for associative memory and one-shot pattern completion. g Demonstration of Hebbian plastic-
ity: SRDP and STDP in FeFET synapses. h Associative learning realized by the FeFET synaptic network. f–h Reproduced with permission [40]. 
Copyright 2021, Wiley‐VCH GmbH
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artificial visual synapses are being engineered to exhibit 
customized photoresponse windows and spectrum-spe-
cific memory retention, with innovations encompassing 
ion-doped perovskite nanocrystals, molecular cocrystal 
networks, π-π hybrid nanocomposites, and plasmonic 2D 
heterostructures, thereby unlocking new directions for hard-
ware-level, context-aware spectral processing [44, 101–103].

Recent research highlights a flourishing diversity of 
underlying mechanisms for wavelength-specific synaptic 
plasticity, as exemplified by several representative works. In 
the study by Dong et al., the perylene-7,7,8,8-tetracyanoqui-
nodimethane (TCNQ) molecular cocrystal nanowire (MCN) 
synapse leverages highly ordered donor–acceptor charge 
transfer to achieve both broadband UV–Vis-NIR responsiv-
ity and efficient exciton dissociation [101]. As illustrated in 
Fig. 6a, their MCN synaptic sensor array is tightly integrated 
with a CNN, forming a complete workflow for blue-targeted 
image preprocessing and high-precision feature recognition. 
The quantitative advantage of this scheme is reflected in 
Fig. 6b, where denoising red–green Gaussian-corrupted 
MNIST images using the MCN array increases recognition 
accuracy from only 12% (raw input) to 90%, close to the 
performance on clean data. The material’s robust broadband 
photoresponse across 365–1050 nm is further demonstrated 
in Fig. 6c, while Fig. 6d underscores the device’s selective 
and strong excitatory postsynaptic current (EPSC) response 
under pulsed blue (455 nm) light, essential for targeted blue 
feature isolation from complex backgrounds.

For dynamic and motion-rich environments, Huang et al. 
advance the field with a plasmon-enhanced 2D MoS2 neu-
ron array, drawing direct inspiration from the architecture 
of eagle eyes [44]. Figure 6e depicts the schematic of the 
eagle-inspired visual system, emphasizing the role of short 
axons and dual-wavelength integration, key principles guid-
ing the design of their hybrid plasmonic/2D semiconductor 
optoelectronic neuron arrays. Figure 6f contrasts the imag-
ing outcomes of conventional, visible-only, NIR-only, and 
dual-band fusion sensors, revealing that dual-band fusion 
yields the most information-rich spatiotemporal frames for 
motion analysis. This systematic advantage is clearly quanti-
fied in Fig. 6g, where recognition of four different motion 
types with the neural network reaches near-perfect accuracy 
(≈ 99.8%) using fused visible-NIR inputs, dramatically sur-
passing all single-band and conventional approach and high-
lighting the practical impact of biomimetic, multispectral 
sensing.

Addressing the challenge of sequence-dependent visual 
information encoding, Liu et al. developed a π-π coupled 
fullerene (C60)/graphene oxide (GO) heterosynaptic array, 
implemented in a 5 × 5 configuration for real-time video-
based recognition [102]. Figure 6h presents the experimental 
scheme, where sequential letter inputs generate distinctive 
spatiotemporal current maps within the device array. The 
array’s capacity to accumulate and store temporal informa-
tion is evidenced in Fig. 6i, with the output for the final 
frame (“E”) reflecting the memory of the full stimulus 
sequence. Figure 6j further details the classification vectors, 
where each word produces unique feature maps as a function 
of prior input. Figure 6k demonstrates the device’s robust, 
monotonic current variation with pulse number, supporting 
precise and noise-resistant temporal mapping. Ultimately, as 
summarized in Fig. 6l, a lightweight CNN readout trained on 
these temporal signatures delivers a dynamic video recogni-
tion accuracy of 97.3%, confirming both excellent generali-
zation and high noise robustness.

Across neuromorphic vision platforms, the objective is 
wavelength-selective sensing and encoding that support 
robust feature extraction. Spectrally tailored absorption, 
efficient exciton dynamics, and photogating, combined with 
plasmonic coupling or π stacking, produce spectrum-spe-
cific plasticity and retention that suppress background while 
emphasizing salient cues. Donor acceptor cocrystals, plas-
monic and two-dimensional heterostructures, and π-stacked 
composites define photoresponse windows, enhance local 
fields, stabilize spectrum-specific memory, expand dynamic 
range, and improve readout signal to noise; tuning pulse 
number, amplitude, interval, and spectral content adjusts 
short-term memory depth and spatiotemporal mapping. 
Prioritizing stacks that couple spectrum-specific gain with 
controllable retention, and matching device time constants 
to task timescales, yields noise-tolerant color and motion 
perception that lightweight readout networks can decode.

4.2 � Excitatory and Inhibitory Synergy

The evolution of neuromorphic visual systems is funda-
mentally driven by the pursuit of artificial retinas capa-
ble of emulating the human eye’s sophisticated balance 
of feature enhancement and noise suppression [104]. In 
biological vision, the retina achieves high-fidelity percep-
tion through the orchestrated synergy of excitatory and 
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inhibitory pathways in bipolar and ganglion cells, allow-
ing for the selective amplification of salient cues, real-time 
dynamic background suppression, and spatially adaptive 
attention [105, 106]. This architecture not only underpins 
robust image preprocessing, such as edge detection, con-
trast enhancement, and motion sensitivity, but also facilitates 
energy-efficient, context-aware decision-making at the sen-
sor level [107]. However, the majority of existing implemen-
tations still depend on hybrid electrical/optical control or 

unidirectional (predominantly excitatory) modulation, which 
constrains their capacity for real-time, low-power, and con-
text-aware attention mechanisms, especially when precise 
bidirectional (excitatory and inhibitory) spatial encoding is 
required for tasks such as edge detection, motion discrimi-
nation, and dynamic background suppression [108, 109].

While artificial synaptic devices, especially optoelec-
tronic memristors, have enabled progress toward this bio-
mimetic goal, most conventional systems still rely on hybrid 

Fig. 6   Wavelength-selective synaptic plasticity for spectral perception and feature encoding. a Schematic of molecular cocrystal nanowire 
(MCN) synaptic sensor array and convolutional neural networks (CNN) for image denoising and color feature extraction. b Denoising with 
MCN array in noisy MNIST images. c MCN synapse exhibits broadband photoresponse under ultraviolet–visible (UV), visible, and NIR light. d 
Selective EPSC response of MCN synapse to red, green, and blue light pulses. a-d Reproduced with permission [96].  Copyright 2025, Ameri-
can Chemical Society. e Schematics of eagle-inspired dual-band visual fusion and optoelectronic vision array for multiwavelength sensing. f 
Image fusion sensor in motion recognition and spatiotemporal information capture. g Dual-band fusion sensors across various dynamic tasks. 
e–g Reproduced with permission  [41]. Copyright 2024, Wiley‐VCH GmbH. h Sequential letter videos drive fullerene (C60)@graphene oxide 
(GO) array, with final frame current used for classification. i Output currents of C60@GO array during sequential letter input encode spatiotem-
poral dynamics. j Normalized feature vectors from the final frame enable sequence-specific classification. k Device demonstrates robust, mono-
tonic temporal mapping over repeated trials. l Lightweight CNN based on temporal readout of the device array. h–l Reproduced with permis-
sion [97]. Copyright 2025, The Author(s). Advanced Science published by Wiley‐VCH GmbH
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electrical/optical modulation or exhibit only unidirectional 
(excitatory) response profiles, thereby limiting their capac-
ity to implement real-time, hardware-level attention and 
bidirectional spatial encoding [36]. Addressing these chal-
lenges, the field is experiencing a paradigm shift toward 
fully optical, symmetric bidirectional modulation of syn-
aptic weights [110]. Such advances are rapidly setting new 
benchmarks for neuromorphic hardware by enabling spa-
tially resolved, energy-efficient in-sensor computation, and 
providing direct analogs to biological processes of context-
sensitive information filtering and feature selection [111].

A landmark advance in this direction is exempli-
fied by the zinc oxide  (ZnO)/zinc methyl 3-devinyl-
3-hydroxymethyl-pyropheophorbide-a (Chl-A)/methyl 
131-deoxo-131-dicyanomethylene-pyropheophorbide-a 
(Chl-D) heterojunction optoelectronic memristor, as pro-
posed by Jiang et al. [45]. By leveraging spectrally selec-
tive photoionization and deionization of oxygen vacancies 
at the interface, this device enables precise, fully light-
driven potentiation and inhibition, mirroring the antagonis-
tic behavior of retinal bipolar cells. Figure 7a demonstrates 
distinct EPSC and inhibitory postsynaptic current (IPSC) 
responses under 430 and 730 nm light, respectively. The 
reversibility and stability of this bidirectional modulation, 
as evidenced in Fig. 7b, support robust LTP/LTD switching 
and underline the device’s potential for long-term synaptic 
encoding. Figure 7c extends these findings to array-level 
image preprocessing: using a 5 × 5 memristor grid, image 
regions are selectively amplified or suppressed according 
to luminance, implementing spatial contrast enhancement 
and dynamic noise reduction directly at the hardware level. 
This center-surround antagonism, functionally analogous 
to biological receptive fields, is further supported by the 
hardware extraction of object edges (Fig. 7d), where the 
device-based edge maps closely parallel those generated by 
computational Canny operators. The Gaussian-like pixel dis-
tribution of processed images (Fig. 7e) and the high degree 
of experimental-computational agreement (Fig. 7f) provide 
quantitative validation of the biological plausibility and pre-
cision of this approach. For large-scale or high-resolution 
edge extraction, Fig. 7g details the construction of a 300 × 
300 positive–negative conductance matrix, establishing the 
scalability and robustness of this optical strategy.

Crucially, this excitatory and inhibitory synergy is 
not limited to static feature enhancement but also under-
pins advanced dynamic feature selection. For example, in 

reconfigurable WSe2/P(VDF-TrFE) neuromorphic vision 
sensors proposed by Dang et al., symmetric, nonvolatile 
bidirectional photocurrent states enable the encoding of 
temporal frame differences  [112]. As shown in Fig. 7h, 
the subtraction of sequentially programmed positive and 
negative conductance matrices cancels static backgrounds 
and accentuates motion, directly mimicking ganglion cell 
dynamics and yielding high-accuracy gesture and trajectory 
recognition when integrated into neural networks.

Beyond basic edge and motion processing, the ability 
to dynamically weight spatial regions at the device level 
paves the way for high-level, hardware-based attention 
mechanisms. Wang et al. proposed indium tin oxide (ITO)/
Nb:SrTiO3 heterojunction synapses, where voltage-assisted 
optical modulation enables real-time, region-specific tuning 
of synaptic gain [113]. As depicted in Fig. 7i, a positive bias 
enhances the response of target regions, while a reverse bias 
suppresses irrelevant signals. Figure 7j illustrates this prin-
ciple using a 3 × 3 device array, with spatially programmed 
voltages precisely focusing or defocusing attention. The 
effectiveness of this biomimetic attention mechanism is 
further confirmed in Fig. 7k, which uses a color confu-
sion matrix to visualize classification results; pixel dark-
ness directly maps to the accuracy of predicted categories, 
demonstrating that the artificial synapse substantially boosts 
recognition performance by extracting key information and 
suppressing background interference.

Building on these foundational mechanisms, the integra-
tion of artificial synaptic arrays with neural network mod-
els enables intelligent and robust recognition in complex 
environments. Figure 7l presents a system for high-preci-
sion facial recognition, where synaptic resistive states are 
mapped to critical facial features, and class activation map-
ping (CAM) visually identifies regions of highest relevance. 
The network’s learning curve, documented in Fig. 7m, shows 
that the incorporation of device-level attention raises recog-
nition accuracy on the ORL dataset from 77 to 90% and 
reduces data load by 35%–65%, even under noise and spatial 
distortions. These results underscore not only the device’s 
precise attention-guided recognition capability but also its 
reliable cycle-to-cycle memory retention and adaptability to 
real-world challenges.

Complementary progress is observed in all-optical cad-
mium sulfide (CdS)/graphene/Ge and tin selenide (SnSe) 
thin-film synapses, which offer continuously tunable, sym-
metric persistent photoconductivity (PPC) and negative 
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photoconductivity (NPC) modulation and high-fidelity 
weight updating [114, 115]. These devices support advanced 
convolutional operations, real-time motion tracking, and 
integrated in-sensor computations, including Gaussian blur-
ring, sharpening, and dynamic suppression, entirely within 

the photonic domain and without the need for complex dig-
ital conversion or additional circuitry. Collectively, these 
advances delineate a clear pathway toward fully integrated, 
scalable, and context-aware neuromorphic visual processors.

Fig. 7   Excitatory and inhibitory synergy and spatial attention in neuromorphic vision systems. a Light-driven, reversible EPSC/ inhibi-
tory postsynaptic current (IPSC) in zinc oxide  (ZnO)/zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-a (Chl-A)/methyl 
131-deoxo-131-dicyanomethylene-pyropheophorbide-a (Chl-D) heterojunction memristor. b Robust bidirectional LTP/LTD switching under 
varying illumination. c 5 × 5 memristor array enables real-time image contrast enhancement and denoising. d Receptive field models for hard-
ware edge detection. e Pixel distribution of 300 × 300 input image for edge extraction. f Hardware versus Canny operator edge detection, vali-
dating biological plausibility. g Large-scale edge extraction via superposed conductance matrices. a-g Reproduced with permission.  Copy-
right 2024, Wiley‐VCH GmbH. h Motion detection by sequential conductance subtraction in WSe2/poly(vinylidene fluoride-trifluoroethylene) 
(P(VDF-TrFE)) sensors. Reproduced with permission [105]. Copyright 2024, American Chemical Society. i Region-specific optical gain control 
in indium tin oxide (ITO)/Nb:SrTiO3 synapses. j Programmable spatial attention in a 3 × 3 synapse array with memory retention. k Accuracy 
curve shows improved accuracy with hardware attention. l Class activation mapping highlights key facial features. m Device-level attention 
boosts ORL facial recognition. i-m Reproduced with permission [106]. Copyright 2025, American Chemical Society
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Progress in neuromorphic vision hinges on retinal-
inspired, context-aware encoding that balances feature 
enhancement and noise suppression. Spectrally selective 
photoionization–deionization and photogating that realize 
fully optical, symmetric potentiation and inhibition, together 
with center-surround antagonism at the device or array level, 
amplify task-relevant spectral and spatial cues while sup-
pressing background. Heterojunction stacks with engineered 
interfacial vacancies and bias-assisted optical gating define 
precise photoresponse windows, stabilize reversible LTP/
LTD, and sustain spectrum-specific retention. Prioritizing 
fully light-driven symmetric weight control and receptive 
field antagonism, matching device kinetics to frame rates, 
and using region-specific gain raises recognition accuracy, 
reduces data load, and enables integrated, energy-efficient, 
context-aware vision.

4.3 � Adaptive Threshold Modulation

The continuous evolution of neuromorphic computing is 
fundamentally driven by the aspiration to emulate the brain’s 
extraordinary capacity for adaptive learning, environmental 
robustness, and context-aware response, capabilities intrin-
sically rooted in the dynamic modulation of neuronal acti-
vation thresholds and higher-order metaplasticity [116]. In 
biological circuits, such threshold adaptation and metaplas-
ticity underpin not only stable memory formation but also 
flexible, experience-driven learning in noisy or weak-signal 
environments [117]. Hardware realization of these functions 
has long been constrained by the static, first-order behavior 
of conventional synaptic devices, which often fail to recon-
cile low power, tunable thresholds, and biologically realistic 
learning dynamics [118]. Framed as a plasticity engineering 
strategy rather than a biological analogy, adaptive threshold 
control supports both neural precision and temporal learn-
ing [119]. For precision, programmable thresholds confine 
activations to informative ranges, suppress spurious activa-
tions in low contrast scenes, allocate dynamic range to sali-
ent inputs, and help preserve linear and symmetric weight 
updates; together, these effects improve separability, raise 
readout signal-to-noise ratio, and stabilize convergence in 
parameter-driven networks. These roles are consistent with 
metaplastic control in biology and with recent device strate-
gies for threshold tuning in ferroelectric and related materi-
als [88, 120]. For temporal learning, threshold adaptation 

shapes short-term memory windows, regulates spike rate 
and refractoriness, and sets the timing sensitivity required 
for sequence encoding and spike timing-dependent plastic-
ity, thereby enhancing correlation capture and event selec-
tivity in reservoir and spiking models [121–123]. Recent 
advances have yielded a diverse suite of material strategies 
and device architectures that directly implement tunable 
threshold and metaplastic behaviors, empowering artificial 
neural networks to adjust their sensitivity and learning rate 
in real time, a critical leap for handling low-contrast, noisy, 
or dynamically varying inputs in both convolutional and 
spiking models [124, 125].

A paradigm shift in adaptive hardware is exemplified by 
Wang et al.’s dual-adaptive heterojunction synaptic tran-
sistor, where photoadaptive threshold sliding and voltage-
history-dependent metaplasticity are seamlessly integrated 
in a single organic p-n heterojunction [119]. Unlike earlier 
single-mode synaptic devices that implemented only pho-
toadaptation or only history-dependent plasticity, this co-
integration co-regulates input dynamic range and learning 
rate baselines within one element, reducing external con-
trast handling and calibration overhead and demonstrating a 
wider operating envelope across varying contrast and noise 
conditions. This system exhibits bidirectional photocon-
ductivity: light-intensity-modulated photogating supports 
in-sensor preprocessing such as automatic contrast enhance-
ment and edge sharpening, while dynamically lowering the 
synaptic depression threshold for adaptive memory erasure 
under strong illumination. Robust metaplasticity is achieved 
via unipolar spike-voltage-dependent plasticity (U-SVDP), 
allowing the LTP/LTD transition point to slide with stimu-
lus history and incorporating an enhanced depression effect 
(EDE) that encodes experience-dependent inhibition. This 
second-order plasticity accelerates network convergence 
fivefold and increases CNN recognition accuracy from 91.2 
to 93.8%, even under ultra-low contrast (down to 0.4%) and 
high noise, underscoring the critical role of threshold modu-
lation in resilient neuromorphic learning.

In parallel, Zhang et al. address the rigidity of static 
transfer functions by introducing self-sensitizable artificial 
neurons based on perovskite nickelate (NdNiO3), where 
adaptive hydrogen gradients enable dynamic modulation of 
spiking thresholds [126]. Plasticity-engineered threshold and 
gain control reshape the input acceptance range in real time, 
enabling seamless adaptation between low-intensity and 
high-intensity scenes and yielding an approximately 250% 
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increase in processed structural information for complex 
scene detection and classification. These neurons deliver 
persistent, programmable excitability and selective noise 
filtering, ensuring robust edge detection and object recog-
nition under substantial environmental drift.

Extending these concepts to multimodal sensing, Lv et al. 
present a humidity-responsive neuron using cyclo(-Tyr-Tyr) 
peptide nanowires, in which proton-coupled Ag+ migration 
supports humidity-dependent, ultra-low-voltage thresh-
old switching (≤ 0.1 V) [127]. Mechanistically, ambient 
humidity increases proton activity in the peptide network, 
which lowers the activation barrier for Ag+ hopping so that 
each stimulus pulse drives reversible ionic accumulation 
and release, yielding conductance transients that map pulse 
amplitude or frequency into spike amplitude or rate. This 
enables analog environmental signals to be converted into 
strength-coded spike trains, closely mimicking biological 
hygroreception and spike encoding. When implemented in 
spiking networks, these humidity neurons achieve 92.68% 
diagnostic accuracy for respiratory disease classification, 
highlighting the expansion of adaptive thresholding to wear-
able health diagnostics.

At the ionic circuit level, Mei et al. advance transmem-
brane-potential-gated MXene ionic transistors that emulate 
voltage-gated conductance changes of biological ion chan-
nels [128]. Here, a gate-induced transmembrane potential 
across the lamellar MXene nanochannels sets the dynamic 
threshold by creating ion depletion or accumulation zones, 
while engineered structural asymmetry enables unipolar 
or ambipolar switching that yields selective excitation and 
inhibition. The resulting high on/off ratio (up to 2000) and 
reduced subthreshold swing (560 mV decade−1) facilitate 
biomimetic spike processing, logic operations, and competi-
tive learning in ion-based neuromorphic arrays.

Building on the landscape of adaptive threshold modula-
tion and metaplasticity, Li et al. present a pioneering artifi-
cial neuron array that unites dynamic threshold tuning with 
biologically inspired double-opponent receptive field cod-
ing at the hardware level [46]. By enabling in situ orienta-
tion selectivity and flexible color opponency, this system 
achieves robust, spike-based feature extraction and preproc-
essing even under low-light or noisy conditions, directly 
enhancing the performance and environmental adaptability 
of downstream neuromorphic networks. Figure 8a frames 
the real-world challenge by illustrating an autonomous driv-
ing scenario under low-light conditions, where traditional 

vision systems experience substantial recognition failures. 
The introduction of the artificial neuron array, capable 
of double-opponent receptive field (DO RF) preprocess-
ing, demonstrates a marked restoration of object detection 
through the extraction of robust NIR and UV boundaries. 
Moving to the core mechanism, Fig. 8b visualizes the bio-
mimetic, elliptical DO receptive field inspired by the visual 
cortex, whose spatial and chromatic antagonism is math-
ematically described by a two-dimensional Gaussian deriva-
tive, providing the basis for enhanced edge selectivity.

Device-level innovation is captured in Fig. 8c, where 
selective gate voltage tuning (VGS at 2 V, 10 V, or − 5 V) 
configures the neuron array to respond maximally only to 
edges that align with the preferred orientation, achieving 
hardware-level context adaptation. This selectivity is sub-
stantiated in Fig. 8d, which quantifies the spiking output 
across input angles and shows a distinct peak only when 
the input matches the preset orientation, thus validating the 
direction-dependent coding. Figure 8e further demonstrates 
the practical impact of this hardware preprocessing: after 
passing through the array, image edges are sharply deline-
ated across all brightness levels, as confirmed by inverted 
pixel images and orientation-labeled raster plots. Comple-
menting this, Fig. 8f showcases the spike-encoded images 
under varying illumination, highlighting the system’s abil-
ity to maintain feature clarity for downstream computation. 
System-level advantages are then revealed in Fig. 8g, where 
preprocessed datasets fed into a convolutional SNN main-
tain high (> 90%) classification accuracy regardless of light-
ing, while non-preprocessed data see a drastic decline. This 
robustness is echoed in Fig. 8h, which shows that the pre-
processed images consistently sustain around 80% accuracy 
even under heavy noise, a stark contrast to the near-complete 
degradation of unprocessed data. The underlying device 
dynamics are elucidated in Fig. 8i, mapping the evolution 
of output current across three operational regimes as VGS is 
varied. Figure 8j, k deepens the picture by illustrating how 
UV and NIR inputs can be flexibly assigned as excitatory or 
inhibitory through precise VGS modulation, thereby enabling 
biologically inspired, hardware-level double-opponent color 
processing. Figure 8l presents how the encoding range for 
each stimulus shifts as VGS changes, and Fig. 8m under-
scores the extensive frequency tunability of the neuron’s 
spiking response, spanning from sub-Hz to 2.6 MHz.

Adaptive threshold dynamics operate as a plasticity engi-
neering strategy that advances neural precision and temporal 
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learning. Devices with tunable thresholds and metaplastic 
baselines regulate sensitivity and effective learning rate in 
real time, enabling symmetric weight updates, selective 
noise suppression, and timing alignment for sequence encod-
ing. Across vacancy engineered heterojunctions, hydrogen 

gradient sensitized neurons, transmembrane-potential-gated 
ionic channels with designed asymmetry, and gate biased 
neuron arrays, thresholds remain stable yet history depend-
ent at low voltage.

Fig. 8   Dynamically tunable threshold plasticity and metaplasticity in neuromorphic neuron arrays. a Low-light driving scenario demonstrating 
enhanced object detection via double-opponent receptive field (DO RF) preprocessing. b Biomimetic DO RF structure with spatial-chromatic 
antagonism. c Gate-voltage-tunable neuron array for orientation-selective edge detection. d Direction-dependent spiking outputs under angular 
color stimuli. e Hardware-processed edge images and raster plots under varied illumination. f Spike-encoded outputs preserve features at all 
brightness levels. g Classification accuracy of SNNs for preprocessed data. h Preprocessing accuracy under high noise. i Output current evolu-
tion across operational regimes as gate voltage (VGS) varies. j UV-induced spiking and NIR inhibition at low VGS. k NIR-induced spiking and 
UV inhibition at high VGS, enabling double-opponent color coding. l Gate-controlled encoding range for UV and NIR stimuli. m Spiking fre-
quency tunable range. a-m Reproduced with permission [43].  Copyright 2025, The American Association for the Advancement of Science
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5 � Synaptic Engineering for Resource‑Efficient 
Integration

Building truly adaptive and efficient neuromorphic systems 
requires not only advanced synaptic plasticity, but also hard-
ware strategies that enable the fusion, compression, and 
modular integration of multiple sensory and computational 
functions [129, 130]. In contrast to conventional architec-
tures, where sensing, memory, and logic remain physically 
separated, next-generation neuromorphic hardware must 
achieve direct, in-device integration and reconfigurable 
coupling of heterogeneous modalities, mirroring the cross-
modal connectivity and parallel processing of biological 
neural systems [131]. This technological evolution prom-
ises to dramatically reduce hardware redundancy and energy 
consumption, while enhancing environmental adaptability 
and system-level intelligence [132].

5.1 � Device‑Level Multimodal Fusion

Device-level multimodal fusion jointly encodes optical, 
mechanical, chemical, and environmental cues, including 
gas composition, temperature, and humidity, within a single, 
programmable synaptic pathway in the device front end. In 
synaptic transistors, multimodal inputs modulate the shared 
internal state of channel carrier density via spectral pho-
togating with vacancy photoionization, strain or pressure 
induced modulation of contact or heterojunction barri-
ers, surface redox and chemisorption, proton migration in 
hygroscopic dielectrics, and thermally assisted carrier or ion 
transport [133–138]. Writing multiple cues into the same 
synaptic state renders the update magnitude and polarity 
context dependent, enabling on-device gating and weight-
ing that improves per-modality selectivity, extends effec-
tive dynamic range [50]. Signal compression at the device 
front end reduces energy and area and improves resilience to 
variations in illumination, temperature, and humidity [53]. 
Compared with single-modality synapses that sense one 
stimulus, multimodal synaptic transistors co-register cues 
within the channel and junction, enabling lighter readouts 
and more stable performance across diverse scenes [50]. 
In response, the latest generation of multimodal synaptic 
devices exemplifies a transformative strategy, compressing 
sensory input channels, fusing heterogeneous stimuli at the 
device level, and reducing the neural network parameter 

load at the system front end [139]. This allows not only a 
drastic reduction in sensor count and network size but also 
enhanced resilience and generalization in real-world com-
plex scenarios.

A suite of representative works demonstrates the breadth 
and value of this approach. For instance, VP/MXene het-
erostructures combine photogating with adsorption-driven 
surface-potential tuning to achieve synergistic UV-gas dual-
mode perception, enabling reconfigurable synaptic weights 
and dynamic memory adaptation to ambient changes; this 
balance between retention and selective forgetting supports 
adaptive perception [140]. Pentacene/P(VDF-TrFE)/Cs2Ag-
BiBr6 hybrid systems couple optical and humidity cues at 
the device level, enabling real-time modulation of synaptic 
plasticity and memory preservation, which is directly appli-
cable to emotion-state memory or adaptive environmental 
encoding [141]. Monolayer vacancy-induced oxidized (VO)-
MXene-based synapses integrate visual and respiratory 
(humidity) stimuli, using dual channels for state-dependent 
weighting and emotional memory transitions, effectively 
mimicking context-dependent behavioral switching [142]. 
Olfactory-inspired in-sensor organic electrochemical tran-
sistors  (OI-OECTs) consolidate chemical sensing, logic 
processing, and memory storage, dynamically switching 
between short- and long-term plasticity under varying gas 
concentrations, thus realizing ultra-low-power and robust 
chemical event detection [143]. These strategies collectively 
advance multimodal synaptic hardware toward generalized, 
resilient, and highly efficient AI perception systems, break-
ing the constraints of traditional, single-modality designs 
and pointing the way for real-world, edge-deployable intel-
ligent interfaces.

Within this technological landscape, the artificial olfac-
tory system (AOS) proposed by Song et al., which integrates 
human olfactory receptor nanodisks (hOR NDs) with a 
redox-active MoO3-functionalized organic synaptic device 
(MOSD), marks a distinctive advance in molecular specific-
ity and signal processing precision [47]. Drawing inspiration 
from the glomerulus and mitral cell hierarchy in the bio-
logical olfactory bulb, the AOS translates short-chain fatty 
acids (SCFAs)-induced conductance into high-dimensional 
9 × 3 arrays (Fig. 9a), which are mapped onto a custom arti-
ficial neural network (ANN) (27 input, 14 hidden, 4 out-
put neurons; Fig. 9b). This biomimetic refinement enables 
the system to rapidly achieve 100% recognition accuracy 
for single odorants (Fig. 9c), and accurately discriminate 



Nano-Micro Lett.          (2026) 18:196 	 Page 21 of 43    196 

odorant mixtures via combinatorial conductance pattern-
ing and ANN inference (Fig. 9d, e). At the hardware level, 
the MOSD exploits programmable lithium ions (Li+)/ 
bis(trifluoromethanesulfonyl)imide (TFSI−) redox interca-
lation for stable and linear weight updates (Fig. 9f), yield-
ing dramatically enhanced EPSC memory (∼700 s versus 
5 s for pristine OSD; Fig. 9g) and minimized LTP/D non-
linearity (Fig. 9h). The hybrid AOS platform demonstrates 
hOR-specific conductance responses, remaining stable in the 
absence of odor (Fig. 9i, j) and providing sensitive, type-
dependent readouts under SCFA exposure, with detection 
limits as low as 0.07 ppm (Fig. 9k, l). Principal component 
and fluorescence analyses confirm the molecular selectivity 
and reliability of odor recognition.

Device-level multimodal fusion co-encodes heterogene-
ous sensory cues in a single synaptic pathway to deliver 
resource-efficient, noise-robust, context-aware perception. 
Optical, mechanical, chemical, and environmental inputs 
modulate a shared channel carrier density through photo-
gating, chemisorption-driven surface potential shifts, and 
ionic transport, producing context-dependent thresholds 
and weight updates that increase selectivity, widen dynamic 
range, suppress cross-sensitivity, and compress data at the 
source. Heterojunction stacks, MXene lamellae, peptide 
nanowires, and redox-active electrolytes stabilize interfaces 
and support reversible storage, enabling linear, low-variance 
updates. Prioritizing front-end fusion improves accuracy 
with fewer sensors and lighter readouts, advancing neuro-
morphic olfaction and vision at the edge.

5.2 � Single‑Device Functional Integration

The pursuit of low-power, dense, and adaptable neuromor-
phic hardware has shifted attention to single-device func-
tional integration, where sensing, memory, and elementary 
computation are implemented within one physical element 
operating under a single stimulus modality [144, 145]. This 
focus is distinct from multimodal integration, which fuses 
two or more physical modalities into a shared pathway. Here, 
emphasis is placed on single-device multifunctionality real-
ized within one device. This direction targets the energy cost 
of disaggregated sensing-memory-compute chains whose 
split data flows inflate power at the edge, in wearables, and 
in Internet of Things (IoT) devices [146]. Current design, 
therefore, concentrates on compressing neural primitives 

into a single device through materials and architectural 
engineering, together with bias-programmable operating 
modes. By consolidating roles locally, these devices reduce 
peripheral circuitry and data movement, improve energy 
efficiency and area utilization, and do so while preserving 
analog linearity, symmetry, and endurance required for reli-
able learning [147].

A particularly striking electrical approach is exemplified 
by the ferroelectric tunnel junction (FTJ) synapse proposed 
by Nie et al., whose true significance lies in its ability to 
unify volatile and nonvolatile memory dynamics for robust, 
hardware-level sensor fusion [148]. The FTJ architecture 
(Fig. 10a) intricately combines ferroelectric polarization 
with oxygen vacancy migration, producing a device simul-
taneously capable of high-density, nonvolatile storage and 
fast, adaptive relaxation. This architecture enables dual-input 
fusion, as spatially divided array regions (Fig. 10b) encode 
image and speech modalities through positive and negative 
pulses, respectively, a direct hardware analog to biological 
multisensory convergence. Figure 10c details pixel-wise 
voltage pulse encoding, and Fig. 10d presents the reservoir’s 
experimentally resolved current outputs during digit recog-
nition, where clear multimodal state separation is observed. 
The seamless fusion of logic and adaptive memory in this 
design echoes the functional plasticity of neural circuits, 
underscoring a decisive leap beyond conventional, unimodal 
synaptic emulators.

The theme of integrated neural computation is further 
advanced by the reconfigurable MoS2/hBN/graphene neu-
romorphic unit introduced by Hu et al. [48]. This platform 
uniquely orchestrates synaptic, neuronal, and dendritic 
behaviors within a compact 2D heterostructure, enabling 
mode switching through selective biasing and multiterminal 
configuration (Fig. 10e). The device’s optoelectronic syn-
aptic plasticity is elegantly demonstrated in Fig. 10f, while 
Fig. 10g captures its neuron-like integrate-and-fire response, 
essential for spiking neural network emulation. The capac-
ity for hardware-level dendritic filtering and nonlinear logic 
is evidenced in Fig. 10h, where light-modulated currents 
realize both passive and active dendritic computations. This 
versatile architectural motif sets a new benchmark for the 
emulation of higher-order brain functions in hardware, with 
the potential to underpin densely reconfigurable, scalable 
neuromorphic systems.

In the realm of optoelectronic multifunctionality, the 
three-mode photosensitive synaptic LED (PSSL) platform 
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offers an integrated solution for sensing, preprocessing, and 
logic-level information security [149]. Its device-level volt-
age programmability (Fig. 10i) permits seamless toggling 
among broadband photodetection, dual-polarity logic, and 
synaptic light emission, thus enabling both robust signal dis-
crimination and neuromorphic processing within a single 
unit. The encoding of patterns into orthogonal red/UV opti-
cal channels is visualized in Fig. 10j, while the superposi-
tion and resultant cancelation of dual-wavelength signals 
for logic operations are shown in Fig. 10k, l. Most notably, 
Fig. 10m highlights that under simultaneous red and UV 
illumination, the bipolar photodetector outputs “0” to sup-
press interference, whereas a conventional device gives “1” 

and yields decoding errors (“111 111 110”). This highlights 
the PSSL’s inherent superiority for secure, high-fidelity opti-
cal communication, where simple device-level operations 
achieve reliable encryption without algorithmic overhead. 
In addition, Wu et al. developed ferroelectric-defined recon-
figurable MoTe2 homojunctions using a P(VDF-TrFE) split 
gate dielectric to program local ferroelectric domains for 
tunable p-n/n-p junctions and analog weight storage [150]. 
The devices exhibited 17 stable positive and negative pho-
toresponsivity states with long retention, and when assem-
bled into a 3 × 3 array, they enabled concurrent sensing, 
memory, and computing, thereby realizing true single-device 

Fig. 9   Biomimetic multimodal synaptic olfactory system and device-level characterization. a Schematic of data encoding in the artificial glo-
merulus-mitral cell network, mapping odorant stimuli into distinct conductance patterns. b Artificial neural network (ANN) for high-accuracy 
odor recognition. c Single-odorant recognition accuracy after training. d Conductance patterns and e recognition accuracy for odorant mixtures, 
validating combinatorial coding and robust inference. f Structure and operating principle of the MoO3-organic synaptic device (MOSD) with 
programmable redox modulation. g EPSC memory retention in MOSD versus pristine device. h Linearity and symmetry of LTP/D in MOSD 
versus pristine device. i EPSC and j LTP/D in AOSs without short-chain fatty acids (SCFAs). k EPSC and l LTP/D responses under PA expo-
sure. a-l Reproduced with permission [44].  Copyright 2024, The American Association for the Advancement of Science
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functional integration for low-power neuromorphic vision 
systems.

When it comes to in situ convolution computation, the 
in situ convolutional transistor (In-SCT) represents a water-
shed moment by merging analog convolution and synaptic 
memory within a single hardware node [151]. Its operational 
mechanism, based on dynamic carrier trapping and opto-
electronic modulation, is outlined in Fig. 10n. More com-
pellingly, Fig. 10o visualizes the mathematical equivalence 
between device conductance change and convolution area, 
a striking correspondence between device physics and algo-
rithmic logic. Figure 10p extends this logic to demonstrate 
hierarchical stacking of convolutional operations within 

a single device/circuit, hinting at a future where memory 
and computation are inseparable at the hardware level. This 
approach dramatically reduces network area and power con-
sumption, paving the way for ultra-compact, energy-efficient 
CNN implementations.

Beyond these, environmentally adaptive and spectrum-
compressed synaptic devices contribute new dimensions of 
flexibility and task specificity. The In2O3·SnO2/Nb:SrTiO3 
(ITO/NSTO) heterojunction optoelectronic synapse, for 
example, exemplifies the integration of in-sensor multi-
modal perception and real-time computation in a mini-
malist two-terminal design, foundational for robust tem-
poral pattern recognition and low-latency AI in complex 

Fig. 10   Multifunctional and multimodal single-device neuromorphic platforms. a Schematic of unidirectional and bidirectional ferroelectric 
tunnel junction (FTJ) synapses for single- and dual-mode signal coding. b Multimodal digit recognition system: positive pulses encode images, 
negative pulses encode speech, with the cochlea-gram illustrating audio processing. c Input negative voltage sequence for voice encoding. d 
Experimental current response of the FTJ array during multimodal digit recognition. a-d Reproduced with permission [130].  Copyright 2025, 
Wiley–VCH GmbH. e Structure of reconfigurable MoS2/hBN/graphene neuromorphic units integrating synaptic, neuronal, and dendritic func-
tions. f EPSC triggered by optical pulse. g Integrate-and-fire response of the artificial neuron under voltage pulses. h Dendritic current response 
filtered by light. e–h Reproduced with permission  [45]. Copyright 2024, American Chemical Society. i Three-mode photosensitive synaptic 
LED (PSSL) enabling programmable photodetection, logic, and synaptic light emission. j-l Encrypted light pulse information for different let-
ters received by the bipolar photodetector mode. m Error pulse information received by the conventional unipolar light detector. i-m Reproduced 
with permission [131]. Copyright 2024, American Chemical Society. n Schematic of in situ convolutional transistor (In-SCT), showing input 
stimuli and conductance changes. o Device-level correspondence between conductance area and convolution result. p In-SCT array with stacked 
convolution layers for hierarchical in-memory computing. n-p Reproduced with permission [133]. Copyright 2024, Wiley–VCH GmbH
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environments [152]. Organic memristors such as polymer 
switching material with triphenylamine and azobenzene 
(PFTPA-AZO) demonstrate the utility of molecularly engi-
neered dual-mode operation, bridging fast in-sensor feature 
extraction and deep learning in memory, while Ag/ZnOx/
TiOy/ITO environmental memristors reveal how physical 
responsiveness to electrical, thermal, and humidity cues 
can endow hardware with the context awareness and adapt-
ability reminiscent of biological systems [153, 154]. The 
dual-mode silicon-on-insulator (SOI)/graphene photode-
tector, mimicking retinal cone-rod switching, achieves an 
ultrawide dynamic range, providing a resilient solution for 
vision under fluctuating illumination, a perennial challenge 
in autonomous perception [155]. Finally, flexible PbS QDs/
polymethyl methacrylate (PMMA)-pentacene synaptic 
transistors, with broadband photoresponse and gate-tunable 
analog memory, provide in-sensor denoising and contrast 
normalization that reduces front-end parameter overhead 
and conversion/traffic burden, yielding more noise-robust 
classification for wearable, conformable vision systems [29].

Single-device functional integration concentrates sensing, 
memory, and elementary computation in one element under 
a single modality, reducing peripheral circuitry and data 
movement. By co-harvesting volatile and nonvolatile path-
ways in one stack, optoelectronic transduction with emissive 
readout, and bias-programmed operating regimes, the chan-
nel or junction serves as a unified state variable reconfigur-
able for sensing, plasticity, neuron-like integration, and logic 
with local preprocessing and storage. Ferroelectric domain 
engineering, vacancy control, split gate dielectrics, laminar 
two-dimensional heterostructures, and redox reservoirs sta-
bilize interfaces, enable low-voltage operation, and sustain 
linear, low-variance updates. Functionally, selective spec-
tral gain, programmable persistence, conductance-mapped 
analog convolution, and compact multiterminal layouts for 
dendritic filtering and spiking move computation to the 
source, lowering energy and area while preserving accuracy.

5.3 � Multidevice Modular Integration

Multidevice modular integration refers to the co-design 
of locally coupled, functionally distinct blocks, for exam-
ple, sensors, synaptic elements, neuron circuits, light-
weight readouts, and actuators, into a resource-efficient 
module [156]. Emphasis is on co-location and interface 

alignment by matching bias ranges, conductance windows, 
and time constants, so sensing and preprocessing occur in 
the sensor, plasticity updates run near memory, and com-
puting occurs [6]. This approach reduces conversion and 
interconnect overhead, improves task-level trade-offs among 
accuracy, latency, and energy, and scales by replicating 
standardized modules rather than enlarging monolithic sys-
tems [157]. This section, therefore, examines architectural 
patterns and device choices that support robust coupling, 
including sensors matched to synaptic dynamic range, syn-
apses and neurons with aligned time constants, and mem-
ory and readout paths that preserve analog fidelity while 
remaining interoperable with digital controllers, enabling 
resource compact neuromorphic subsystems that are ready 
for deployment.

A key exemplar of heterogeneous integration is the 
CuInP2S6 (CIPS)/GaN ferroelectric high-electron mobility 
transistor (FeHEMT)-based artificial neuromuscular junction 
(NMJ) module, which physically unites synaptic plasticity, 
high-power actuation, environmental sensing, and hardware 
learning within a single closed loop [158]. As illustrated 
in Fig. 11a, the architecture draws direct inspiration from 
biological oculomotor systems, depicting the extraocular 
muscles responsible for adduction and abduction of the eye-
ball. Figure 11b details the system-level integration, where a 
microelectromechanical system (MEMS) mirror is directly 
driven by the FeHEMT, establishing amplifier-free, milli-
amperes-level actuation. The laser beam displacement, as 
mapped in Fig. 11c, visually confirms the precise, voltage-
controlled mechanical steering achieved by the integrated 
module. Figure 11d quantitatively presents the relationship 
between gate voltage and steering angle, demonstrating pro-
portional, analog control of the actuator via synaptic modu-
lation. Figure 11e provides a critical benchmark, contrasting 
experimental steering angles with theoretical predictions and 
affirming the fidelity of this direct synapse-actuator path-
way. Integration of real-time sensory feedback is achieved 
in Fig. 11f, where an ultrasound sensor is interfaced to 
the FeHEMT gate, enabling in situ distance measurement 
and conversion of environmental position data into actua-
tion commands. Figure 11g documents the time-resolved 
tracking of a moving object: the FeHEMT’s output current 
dynamically modulates the MEMS mirror in response to 
positional inputs, allowing the system to track the trajectory 
of a mobile robot. Figure 11h analyzes tracking accuracy 
by plotting the symmetric absolute percentage error (sAPE) 
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over time, revealing a significant error reduction after syn-
aptic enhancement, a result of plasticity-induced transcon-
ductance gains. Figure 11i presents the phase relationship 
between input and output signals, showing that postenhance-
ment, the system achieves closer temporal and amplitude 
matching, indicative of hardware-level learning and adap-
tive feedback. Figure 11j introduces the system’s ability to 
interface with a CMOS-based integrate-and-fire unit (IFU), 
depicting the circuit architecture for temporal spike integra-
tion and threshold-based firing. Figure 11k, l compares the 
output spike response before and after synaptic enhance-
ment; the programmed state yields a marked reduction in 

output latency (from 297 to 152 μs), mirroring the acceler-
ated reflexes observed in biological systems.

Moving to optoelectronic modules, Fig. 11m shows the 
memory optocoupler’s structural design: a long afterglow 
organic light-emitting transistors (LAOLET), an organic 
field-effect transistor (OSOFET), and a photodiode ampli-
fier (PDA), configured for threshold-gated, light-driven 
information transfer [49]. Figure 11n diagrams the neuro-
transmitter transfer memory mechanism, wherein synap-
tic light emission from the LAOLET induces nonvolatile 
photomemory in the OSOFET, establishing a photonic 
bridge for inter-device signaling. Figure  11o records 

Fig. 11   Modular multidevice units for physical functional integration. a Schematic of the biological oculomotor system. b Microelectrome-
chanical system (MEMS) mirror actuation by CuInP2S6 (CIPS)/GaN ferroelectric high-electron mobility transistor (FeHEMT). c Laser displace-
ment versus FeHEMT output. d Proportional control of steering angle by FeHEMT gate voltage. e Measured versus theoretical steering angles. 
f Ultrasound distance sensor enables object tracking. g Time-resolved tracking output. h Tracking absolute error (sAPE) analysis before and 
after synaptic enhancement. i Phase plot of motion input and output. j Schematic of FeHEMT-integrate-fire unit (IFU) integration for spike-
based computation. Output spike latency k before and l after synaptic programming; enhancement halves response time. Reproduced with per-
mission [140].  Copyright 2023, The American Association for the Advancement of Science. m Structure of memory optocoupler module for 
threshold-driven, light-mediated signal transfer. n Circuit diagram of neurotransmitter transfer memory optocoupler. Real-time optocoupler out-
put under o subthreshold and p suprathreshold input. q Schematic of PSC-triggered action memory optocoupler integrated with tactile sensors. 
Device responses under r weak and s strong training. Reproduced with permission [46]. Copyright 2024, The Authors. Advanced Materials pub-
lished by Wiley‐VCH GmbH
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real-time device behavior under subthreshold stimulation, 
documenting the generation and rapid decay of volatile 
postsynaptic currents. By contrast, Fig. 11p captures the 
system response to suprathreshold input: the LAOLET’s 
long afterglow triggers persistent photomemory in the 
OSOFET, enabling the transition from transient to perma-
nent memory encoding. To support logic-level operation, 
Fig. 11q presents the equivalent circuit of the memory 
optocoupler integrated with tactile sensors for multimodal 
training and reaction. Figure 11r describes a weak train-
ing scenario, wherein repeated low-voltage pressure input 
fails to elicit a downstream response due to insufficient 
postsynaptic current (PSC). Figure 11s details the outcome 
of strong training, where elevated PSCs activate sustained 
light emission and drive the PDA, resulting in a measura-
ble current response to tactile stimulus, thus demonstrating 
device-level implementation of sensory learning, threshold 
gating, and logic-controlled action.

Complementing closed-loop sensor-actuator and memory-
decision modules, other modes of heterointegration further 
broaden the horizons of neuromorphic hardware. The hem-
ispherical Ag-TiO2 nanocluster optoelectronic memristor 
array embodies geometry-aware integration, leveraging a 
curved substrate to achieve a wide field-of-view, in-sensor 
visual processing, and real-time binocular depth percep-
tion [159]. This platform unites all-optical synaptic modu-
lation, spatial angle encoding, and event-driven computation 
within a single, conformable array, effectively emulating 
advanced retinal functions and supporting intelligent visual 
tasks unattainable by planar or unimodal devices. In parallel, 
van der Waals one-transistor–one-ferroelectric-memristor 
(1T1M) hybrid architectures exemplify device-level mem-
ory-logic co-integration. By combining multilevel ferroelec-
tric switching with transistor gating, these structures over-
come sneak-path and crosstalk bottlenecks, enabling robust, 
low-power in-memory computing and supporting hardware 
arithmetic alongside synaptic modulation [160]. Extending 
to macroscopic scales, fiber-based iontronic synapse net-
works enable distributed, programmable perception-actua-
tion in smart textiles, illustrating how spatially and function-
ally distinct modules can be orchestrated to deliver adaptive, 
high-density neuromorphic systems [161]. Together, these 
complementary strategies highlight the critical importance 
of heterointegration as the foundation for resource-efficient, 
robust, and scalable AI.

Across multidevice modular integration, the goal is to co-
design locally coupled heterogeneous blocks into resource-
efficient neuromorphic modules that improve task accuracy, 
latency, and energy. Keeping sensing and preprocessing at 
the source, placing plasticity and matrix operations near 
memory, and using sparse event-driven links between mod-
ules reduces conversion and interconnect overhead while 
preserving analog fidelity. At the hardware level, options 
such as ferroelectric domains on wide bandgap channels, 
redox-active interlayers for photonic memory coupling, 
van der Waals 1T1M stacks with controlled contacts, hemi-
spherical substrates for wide field mapping, and fiber-based 
ionic conduits stabilize interfaces, limit crosstalk and sneak 
paths, and sustain linear, low-variance updates, providing a 
practical route to deployable modular systems.

6 � Synaptic Engineering for Scalable Arrays

Scaling from single synaptic devices to brain-inspired 
arrays exposes challenges that differ fundamentally from 
device-level studies. At the device statistics level, device-
to-device variability, cycle-to-cycle stochasticity, update 
nonlinearity and asymmetry, limited state count, retention 
drift, and endurance spread accumulate over thousands 
to millions of cells and directly erode learning accuracy 
and convergence [162]. At the array physics level, passive 
crossbars suffer from sneak currents and half-select dis-
turb, while line resistance and capacitance introduce volt-
age drop and timing skew; moving to one transistor one 
resistor (1T1R) mitigates sneak paths but imposes leakage, 
and matching constraints [163–165]. At the process and 
integration level, wafer-scale uniformity and back-end-of-
line (BEOL)-compatible thermal budgets govern yield for 
ferroelectric and 2D stacks; interconnect resistance and 3D 
stacking add further constraints, and postbonding stress 
can degrade memory windows, making packaging and 
encapsulation critical for optoelectronic or environment-
responsive and flexible arrays [166, 167].

Against this backdrop, the advance of intelligent and 
energy-efficient edge computing relies on synaptic arrays 
and integrated systems that offer scalable uniformity, 
multifunctional adaptability, and seamless links between 
sensing, computation, and action [168, 169]. Recent pro-
gress in high-uniformity single-device arrays, multifunc-
tional heterostructures, and context-adaptive in-sensor 
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computation enables robust memory encoding, dynamic 
plasticity, and efficient signal processing at both the pixel 
and system level [170]. Integrating multimodal sensing, 
memory, and logic within single devices and arrays now 
supports real-time cross-modal recognition and adap-
tive decision-making, while heterogeneous integration of 
memory, logic, and sensory modules enables closed-loop, 
low-power operation essential for IoT and autonomous 
applications. Together, these developments establish the 
foundation for intelligent, flexible, and resource-efficient 
neuromorphic hardware at the edge [171, 172].

6.1 � High‑Uniformity Arrays

Achieving high uniformity and scalability in synaptic 
arrays is critical for translating synaptic plasticity to robust 
neuromorphic systems [173]. At the array scale, uniform 
device statistics yield predictable pulse-to-weight transfer 
functions, consistent LTP/LTD kernels, and stable read 
margins, which in turn enable direct weight mapping from 
software models, reduce per-cell calibration, and improve 
matrix–vector accuracy under line parasitics and tempera-
ture drift. Device-to-device variability, nonlinearity, and 
fabrication defects hinder the mapping of plastic behav-
iors across large arrays. Emphasizing array-level uniform-
ity shifts the focus from isolated device figures to sys-
tem outcomes: higher mapping yield, consistent learning 
rules across tiles, lower programming time and peripheral 
energy, and improved reliability over long deployments. 
Recent strategies across material platforms have tack-
led these challenges effectively. For instance, a 28 × 28 
floating-gate transistor array based on monolayer MoS2 
with Au nanoparticle charge-trap layers demonstrated 
excellent uniformity: on–off ratios around 106 and mobil-
ity averaging ~ 8 cm2 V−1 s−1 across 784 devices, permit-
ting a single global programming schedule and straight-
forward weight transfer, which enabled optoelectronic 
handwriting encoding and achieving ~ 96.5% accuracy in 
digit recognition [174]. Likewise, fully screen‑printed, 
paper-based ZnO synaptic transistor arrays fabricated via 
low-temperature printing achieved large-area uniformity, 
environmental stability, and biodegradability. The tight 
row-to-row behavior supported uniform pulse schemes 
and stable read margins, enabling photoelectric synaptic 

behaviors such as paired-pulse facilitation and filtering, 
and achieved 91.4% recognition accuracy with ~ 3.7 pJ per 
synaptic event [175].

On the organic front, while organic conductive polymers 
such as poly(3,4-ethylenedioxythiophene) (PEDOT) offer 
inherent advantages for low-cost, large-area integration, 
conventional approaches remain constrained by multistep 
patterning and variability. The one-shot integrable elec-
tropolymerization (OSIEP) method, built on alternating-
direct current (ADC) bipolar electrochemistry, fundamen-
tally resolves these issues by enabling remote, maskless, 
and large-area growth of PEDOT/tetraborofluoroate (BF4) 
channels on ultrathin substrates, yielding synaptic arrays 
with exceptional uniformity and simplified fabrication work-
flows [176]. Figure 12a illustrates the architecture of a three-
terminal electrochemical synaptic transistor, specifically 
engineered to emulate the dynamic plasticity of biological 
synapses. Positive voltage pulses at the presynaptic termi-
nal induce EMIM+ cation injection and PEDOT+ backbone 
de-doping within the channel, producing both short-term 
depression (STD) and LTD depending on pulse protocol. 
The transition from STD to LTD, manifested as persistent 
conductance suppression exceeding 100 s, directly mirrors 
the memory windows of biological synapses. Figure 12b 
details the LTD/LTP characteristics extracted under various 
pulse amplitudes, revealing how synaptic weight modulation 
is stimulus dependent. The extracted nonlinearity and step 
size parameters in Fig. 12c (depression) and 12d (potentia-
tion) confirm that higher pulse amplitudes yield more linear 
and effective conductance modulation, which is critical for 
hardware-compatible neural learning rules. Critically for 
scalability, the array’s uniformity allowed the experimentally 
extracted LTD/LTP curves to serve as a single look-up table 
for weight updates across the network, avoiding per-cell fit-
ting and ensuring consistent learning rules at scale. Moving 
from device to system, Fig. 12e depicts the neural network 
simulation architecture, a MLP designed for MNIST digit 
recognition, where the experimental LTD/LTP curves serve 
directly as weight-update profiles. The learning trajectory, 
as shown in Fig. 12f, demonstrates a rapid and robust ascent 
in test accuracy, ultimately reaching 95.2%, illustrating how 
array-level uniformity enables reliable weight mapping 
and system-level reliability, comparable to software-only 
training.
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6.2 � Reconfigurable In‑Sensor Arrays

The evolution of multifunctional and highly integrated 
device arrays is rapidly transforming the landscape of neu-
romorphic sensory hardware, enabling edge systems to 
break free from the energy and latency constraints inher-
ent to traditional von Neumann architectures [177]. Organic 
photoelectronic devices, long celebrated for their flex-
ibility, tunable bandgap, and biocompatibility, have shown 
unique potential for miniaturized, high-density vision 
platforms [178]. However, in most conventional organic 
synaptic devices, the input-to-output response is largely 
fixed by the material stack and processing, which limits the 
ability to reprogram gain, polarity, or persistence during 
operation; as a result, pixel-level dynamic reconfigurabil-
ity, essential for intelligent sensory networks, is still diffi-
cult to achieve [179]. Here, reconfigurability is treated as 
plasticity. At the pixel and array levels, programming the 
responsivity sign and gain, the effective threshold, and the 

persistence window constitutes task-conditioned, higher-
order plasticity that enhances neural precision and enables 
adaptive temporal learning. Recent efforts have focused on 
organic heterostructures and multifunctional device arrays 
that enable gate-tunable, bidirectional responses and pixel-
level reconfigurability.

For example, Xu et al. realized gate‑tunable posi-
tive/negative NIR photoconductance in a photolithogra-
phy‑compatible organic p-n heterostructure array (5 µm 
channel; ~ 520 devices cm−2), enabling pixel‑level filter-
ing and in‑sensor classification with reported accuracy 
up to ~ 97% under NIR illumination [180]. Here, the gate 
acts as a metaplastic control that selects the weight sign 
and dynamic range per pixel, improving separability while 
keeping a consistent programming schedule across the array, 
which strengthens precision in weight mapping. Comple-
mentarily, Liu et al. demonstrated an all‑photolithography 
ion‑gated flexible organic transistor (OIGT) array that can 
be programmed between volatile and non‑volatile modes, 

Fig. 12   Scalable single-device synaptic arrays and multifunctional organic heterostructure arrays for neuromorphic hardware. a Schematic and 
operation mechanism of poly(3,4-ethylenedioxythiophene) (PEDOT):tetraborofluoroate (BF4) synaptic transistor. b LTD/P modulation under 
varying pulse amplitudes. c Nonlinearity of depression. d Step size of potentiation. e Multilayer perceptrons (MLP) architecture for MNIST 
using hardware synapses. f Training accuracy curve. a-f Reproduced with permission [47].  Copyright 2024, The Author. Advanced Materials 
Technologies published by Wiley‐VCH GmbH. g 4-inch wafer with 520 devices/cm2 organic heterostructure arrays. h Device structure and NIR 
semiconductor chemical structures. i Pixel-level grayscale inversion, smoothing, and edge enhancement. j NIR readout of letters through silicon 
wafers. k Noisy letter image dataset for classification. l Hardware classifier: pixel mapping and training. m Photocurrent outputs for letters. n 
Accuracy versus noise level. o Loss curve during training at different noise levels. g-o Reproduced with permission [157]. Copyright 2024, The 
Authors. Advanced Materials published by Wiley–VCH GmbH



Nano-Micro Lett.          (2026) 18:196 	 Page 29 of 43    196 

supporting multimodal neuromorphic computing at low 
training cost, highlighting practical array‑level reconfig-
urability [181]. Switching between volatile and persistent 
states provides a tunable short- to long-term memory win-
dow, aligning device time constants with task dynamics and 
enabling temporal learning at the sensor plane.

In particular, organic p-n heterostructure arrays have dem-
onstrated gate-tunable bidirectional photoresponses, provid-
ing a representative example of how pixel-level reconfigur-
ability can be realized in practice [180]. As demonstrated 
in Fig. 12g, this approach yields a remarkable device inte-
gration density of 520 cm−2 on a 4-inch wafer, with each 
channel miniaturized to just 5 μm, showcasing not only 
high areal density but also full compatibility with scalable 
photolithography. The device’s vertical bilayer architecture 
(Fig. 12h), comprising a partially overlapped p-type conju-
gated polymer and an n-type small molecule, is engineered 
via orthogonal solvents to realize a robust, gate-controlled, 
bidirectional NIR photoresponse, thereby encoding a pro-
grammable palette of synaptic weights and memory kernels 
inside the array.

The practical impact of this architecture is vividly illus-
trated in Fig. 12i, where individual pixel responsivities are 
mapped linearly to their respective gate voltages, allow-
ing direct hardware realization of core image processing 
functions. Grayscale inversion, Gaussian smoothing, and 
Laplacian edge enhancement are all performed in situ, with 
experimental results that closely match the outcomes of ideal 
digital filter kernels, demonstrating the system’s flexibility 
and effectiveness for analog image preprocessing at the 
sensor level. Relative to digital preprocessing, these analog 
operations avoid early quantization, reduce conversion and 
data movement overhead, and provide continuous-valued 
kernels whose cutoff and gain can be tuned in real time. Fig-
ure 12j further shows that silicon’s NIR transparency ena-
bles noninvasive readout through packaged devices, which 
extends analog preprocessing to secure or embedded settings 
without disturbing the front end.

At the algorithmic and systems level, the versatility of 
the heterostructure array is further exemplified by its abil-
ity to function as a real-time, noise-robust hardware classi-
fier. Here, each pixel acts as a dynamic, trainable synaptic 
node, with VG updated by error-gradient descent to encode 
weights for letter image recognition tasks (“z”, “v”, “n”) 
under varying Gaussian noise. The convergence and learn-
ing dynamics are further detailed in Fig. 12m, which shows 

that high-fidelity classification is achieved after only 3–4 
epochs, even for significant noise levels. Quantitative bench-
marking in Fig. 12n highlights the platform’s robustness, 
with classification accuracy peaking at 97.06% for σ = 0.2 
and the VG distribution rapidly stabilizing through training; 
Fig. 12o records a correspondingly rapid drop in the loss 
function, underscoring the network’s efficiency and learning 
stability. These results position reconfigurability as plastic-
ity engineering at scale. Programming the sign, gain, and 
persistence of weights improves neural precision, while 
tuning volatility provides task-matched temporal windows. 
Together, these capabilities enable adaptive, low-overhead 
preprocessing that conventional digital preprocessing chains 
struggle to deliver.

6.3 � Multimodal Perception Arrays

The quest for adaptive multimodal neuromorphic sensing 
has driven the evolution of edge-intelligent hardware toward 
systems capable of real-time, high-dimensional perception 
and robust cross-modal learning [182, 183]. Traditional 
architectures, which compartmentalize sensing, memory, 
and computation, have proven inadequate for the demands of 
dynamic environments such as IoT-enabled pollution moni-
toring and autonomous robotics, where complexity, signal 
crosstalk, and nonlinearity prevail [184, 185].

Recent innovations have begun to bridge this gap. For 
instance, Talanti et al. developed a CMOS-integrated 
organic neuromorphic imager (640 × 512 pixels) capable 
of both frame-based imaging and synaptic-mode temporal 
sensing, with in-pixel memory retention over tens of min-
utes and hardware-level motion trajectory extraction using 
charge recombination dynamics [186]. Complementarily, 
He et al. demonstrated a multimodal electronic skin embed-
ding organic transistors for simultaneous visual and tactile 
perception, achieving real‑time fusion of light and pressure 
signals within a compact neuromorphic array [187].

Building on this trajectory, Wu et al. pioneered a biomi-
metic olfactory neuron array, architected through the syner-
gistic integration of an organic field-effect transistor (OFET) 
sensor array, in-sensor RC, and K-nearest neighbors (KNN) 
classification [188]. The design, as illustrated in Fig. 13a, 
depicts the hardware–software co-design, detailing the flow 
from OFET sensor signal acquisition to temporal encoding 
and RC-driven feature extraction, culminating in KNN-based 
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gas classification. The experimental methodology for high-
resolution gas fingerprinting is clarified in Fig. 13b, which 
presents the 32-point temporal response sampling protocol 
for each analyte, forming the foundational feature set for all 
subsequent classification.

The impact of sensor diversity on classification perfor-
mance is quantitatively demonstrated in Fig. 13c, where 
accuracy is plotted as a function of sensor array size: while 
single-sensor setups struggle (78.9%–98.1%), arrays com-
prising up to nine sensors achieve near-perfect discrimi-
nation (99.04%). The nuanced response behaviors, espe-
cially for gas mixtures, are further visualized in Fig. 13d, 
where nonadditive, nonlinear mixture signals underscore 
the necessity of multidimensional encoding and advanced 
feature extraction. Central to real-world application, the 
confusion matrix in Fig. 13e compellingly visualizes clas-
sification outcomes for the full 26-gas library, its domi-
nant diagonal evidencing minimal misclassification and 
maximal specificity. The multidimensionality of the fea-
ture space and the robustness of boundary delineation are 
captured in Fig. 13f, which shows KNN-derived decision 
boundaries for 26 analytes on a pentacene-based sensor, 
with isomers and homologs clearly resolved as distinct 
clusters.

Transitioning to practical deployment, Fig. 13g sche-
matizes the integration of the olfactory sensor array onto 
a robot dog platform for groundwater pollutant analysis, 
highlighting the augmentation of environmental intelli-
gence through olfactory-visual sensor fusion. Experimen-
tal results, shown in Fig. 13h, provide a detailed break-
down of classification accuracy for individual pollutants 
and their mixtures, nitrobenzene (NB), dimethyl meth-
ylphosphonate (DMMP), isopropylamine (IPAm), and 
their binary combinations, where the KNN-based elimi-
nation voting model (KNN-EV) achieves 100% accuracy, 
again confirmed by the diagonal strength of the confu-
sion matrix. This real-world demonstration validates the 
efficacy of in-sensor computation and memory in autono-
mous, resource-constrained contexts.

Expanding the scope to multimodal fusion at the device 
array level, Guo et al. engineer a 28 × 28-pixel mechano-opti-
cal synapse, whose fabrication and architecture are depicted 
in Fig. 3i [189]. The device enables simultaneous encoding 
of patterned light (visual) and mechanical (tactile) stimuli, 
mapped into a photo-stimulated luminescence (PSL)-based 
memory layer via mechanoluminescent  (ML)-mediated 

luminescence transfer. The dynamical response to 30 consec-
utive pulses, mechanical, optical, and hybrid is chronologi-
cally charted in Fig. 13j, with early pulse data elucidating 
the pronounced enhancement resulting from synchronized 
force-light excitation. Integration with an ANN is visual-
ized in Fig. 13k, where datasets are partitioned by sensory 
modality and the network structure (784 input neurons, 50 
hidden, 5 output) is depicted, demonstrating the translation 
from array-level physical signals to computationally accessi-
ble features. The ultimate system-level performance is quan-
tified in Fig. 13l, which tracks recognition accuracy across 
training epochs for tactile, visual, and visual–tactile modes, 
revealing a significant multimodal synergy: joint perception 
achieves a superior 92.5% accuracy, compared to 69.6% and 
79.6% for unimodal inputs, respectively.

6.4 � Heterogeneous Integration Arrays

The ongoing quest for edge-intelligent systems that seam-
lessly bridge perception, computation, and action has cata-
lyzed the emergence of heterogeneous integration arrays, 
amalgamating diverse device functionalities to enable 
closed-loop, adaptive decision-making in dynamic environ-
ments. Traditional von Neumann architectures, marked by 
a physical separation between memory and logic units, have 
long been hindered by the inefficiency of data shuttling, an 
impediment exacerbated by the massive parallelism and high 
precision required in advanced AI tasks such as dynamic 
object tracking (DOT), tactile cognition, and real-time mul-
timodal recognition [190–192]. In heterogeneous integration 
arrays, sensors, synapses, and neurons are co-designed to 
the target task, with dynamics chosen to match requirements 
and to enable effective coupling of sensing, memory, and 
computation. In response, computing-in-memory (CIM) 
paradigms based on emerging nonvolatile memories, mem-
ristors, phase-change memories, and particularly, ferroelec-
tric field-effect transistors (FeFETs), have transformed the 
landscape by supporting in situ vector–matrix multiplication 
(VMM) and robust Boolean logic, yet single-modality arrays 
often fall short in meeting the multidimensional demands of 
autonomous agents and robotic platforms [43, 193].

Recent efforts have begun to demonstrate how heterogene-
ous device integration can embed not just memory and logic, 
but also perception–action coupling within a single hardware 
fabric. For example, Shan et al. constructed a hemispherical 
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optoelectronic memristor array using Ag-titanium dioxide 
(TiO2) nanoclusters, emulating binocular stereo vision and 
enabling in-pixel depth perception and motion detection via 
optical modulation and plasmonic effects [159]. Here, per-
pixel optical gain and synaptic state jointly act as recon-
figurable “meta-weights,” allowing depth cues and motion 
salience to be encoded before digitization, which reduces 
downstream calibration and preserves precision at scale. 
More recently, Wang et al. reported a vertically integrated 

tantalum-oxide (TaOx) memristor with IGZO photodetector 
layers to create a spiking cone photoreceptor array (VISCP), 
achieving ultra-low power ( ≤ 400 pW), color-selective spik-
ing responses, and hardware-level depth perception via spik-
ing frequency differentials [194]. The spiking threshold and 
adaptation within the VISCP provide a tunable temporal 
gate, aligning sensor dynamics with sequence learning and 
thereby serving as an explicit temporal plasticity at the array 
level.

Fig. 13   Multimodal single-device arrays for cross-modal perception and intelligent recognition. a Schematic of a nine-channel organic field-
effect transistor (OFET) sensor array integrated with reservoir computing and k-nearest neighbors (KNN). b Time-dependent response profiles 
of all sensors to 26 gases. c Classification accuracy versus sensor number. d Protocol and array response to 12 typical gas mixtures. e Confusion 
matrix for 26-class gas recognition. f KNN decision boundaries among isomer/homolog gas pairs in feature space. g Mobile robot equipped with 
the olfactory array for real-world groundwater pollutant detection. h Confusion matrix of pollutant recognition on 24 samples. a-h Reproduced 
with permission [164].  Copyright 2025, Wiley–VCH GmbH. i Schematic of a visual–tactile mechano-optical synaptic array for in-sensor multi-
modal computing. j Array output under separate and combined light/mechanical stimulation. k Schematic of pattern recognition using an ANN 
with unimodal and multimodal datasets. l Training curves of ANN accuracy. i-l Reproduced with permission  [165]. Copyright 2025, Wiley–
VCH GmbH



	 Nano-Micro Lett.          (2026) 18:196   196   Page 32 of 43

https://doi.org/10.1007/s40820-025-02028-0© The authors

In particularly, Lu et al. engineered a wafer-scale, 2D 
MoS2-HfOx FeFET hybrid CIM system that monolithically 
integrates digital logic and analog multistage cell (MSC) 
arrays for analog VMM, achieving sub-femtojoule energy 
efficiency and a wafer-scale yield exceeding 96% [195]. The 
core hardware foundation is visually presented in Fig. 14a, 
which shows the fabricated 4 × 4 MSC array and its cor-
responding programmable weight matrix after precise row-
by-row initialization, each cell supporting over 6-bit reso-
lution and exceptional symmetry/linearity in conductance 
states. The platform’s device architecture and fabrication 
flow, including the solution-processable, wafer-scale growth 
of MoS2 channels and high-k hafnium oxide interfaces, 
are outlined in Fig. 14b, highlighting the system’s CMOS 
compatibility and scalability. On the digital front, Fig. 14c 
depicts optical images and the actual circuit implementation 
of FeFET-based Boolean logic arrays and Schmitt triggers 
(STs), forming the digital building blocks for in-memory 
computation. The practical operation of these digital circuits 
is detailed in Fig. 14d, which presents the output charac-
teristics for key logic gates (AND, OR, XOR, full adder), 
as well as dynamic waveform transformations enabled by 
the Schmitt trigger. Crucially, array-uniform FeFET weight 
states provide consistent LTP/LTD kernels for direct weight 
mapping, while the Schmitt trigger supplies a programma-
ble threshold with hysteresis that functions as module-level 
metaplasticity, shaping spike timing and noise immunity for 
temporal tasks.

Transitioning to system-level functionality, Fig. 14e pro-
vides an explicit demonstration of the Schmitt trigger’s role 
in pulse shaping, showing the transformation of input trian-
gular and sine waves, and the resulting rail-to-rail logic state 
transitions with ultrafast response and robust noise immu-
nity. Building on this hybrid platform, the digital computing 
pipeline for dynamic object tracking is detailed in Fig. 14f, 
where ferroelectric XNOR logic, convolutional filtering, and 
Schmitt trigger arrays collaboratively enable real-time mov-
ing object detection and dynamic background suppression 
within the array. In parallel, Fig. 14g visualizes the analog 
computation conducted in the MSC-based CNN array, 
showcasing the multilayered feature extraction and trajec-
tory prediction flow powered entirely by analog in-memory 
operations. The platform’s energy and accuracy advantages 
are compellingly summarized in Fig. 14h, which bench-
marks the hybrid system against traditional CPU (Intel i9) 
and GPU (NVIDIA Tesla V100) architectures. The results 

reveal more than two orders of magnitude improvement in 
energy efficiency, while maintaining high accuracy. The con-
fusion matrix in Fig. 14i further demonstrates the system’s 
average DOT recognition accuracy of 99.8%, affirming the 
feasibility of hardware-level, real-time visual intelligence. 
Taken together, the hybrid array demonstrates plasticity 
engineering by delivering precise, linear weight updates for 
high fidelity mapping and by providing tunable thresholding 
with persistence control for time-aligned learning.

To extend this paradigm to tactile cognition, Kim et al. 
realized a bioinspired tactile neuromorphic system by inte-
grating a triboelectric Cu/ poly(dimethylsiloxane) (PDMS) 
sensor and a MoS2/P(VDF-TrFE) FeFET synaptic 
array [196]. Figure 14j provides a schematic of the full tac-
tile neuromorphic system, depicting the interaction between 
the triboelectric sensor, preprocessing microcontroller, and 
ferroelectric synaptic hardware, which together transduce 
tactile stimuli into structured electrical signals and pro-
cess them in real time. For Morse code pattern recognition, 
Fig. 14k presents the system’s process and representative 
data, illustrating the conversion of tactile Morse code signals 
(“A”, “B”, “C”) into time-sequenced voltage patterns and 
their subsequent encoding as 20 × 20 visual maps for neural 
network input. Data augmentation, a key strategy for over-
coming limited sample sets, is depicted in Fig. 14l, where 
randomized visualized Morse code images for the letter “K” 
exemplify robust data expansion and highlight how even sig-
nificant noise does not obscure key pattern features. System-
level recognition performance is quantitatively charted in 
Fig. 14m, which traces the evolution of single-layer per-
ceptron (SLP) accuracy for Morse code learning and MLP 
accuracy for MNIST digit recognition, substantiating the 
system’s robustness and hardware efficiency. Figure 14n fur-
ther summarizes the final recognition accuracy and confu-
sion matrix, demonstrating high classification fidelity across 
all classes. Finally, Fig. 14o provides an additional bench-
mark by comparing the recognition accuracy of FeFET-
based synaptic arrays with other synaptic device platforms, 
confirming their competitive advantage in both training 
convergence and generalization. In this tactile module, the 
synaptic array functions as a reconfigurable plastic substrate 
in which device-level domain polarization establishes stable, 
low-variance weights for precise mapping, and input rate-
dependent integration, together with threshold adaptation, 
tunes the temporal window, thereby aligning plasticity with 
the statistics of tactile stimuli (Fig. 15).
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7 � Conclusion and Outlook

This review systematically classifies and discusses artifi-
cial synaptic devices with a focus on the functional dif-
ferentiation of synaptic plasticity behaviors. By examin-
ing diverse synaptic behaviors such as high-resolution 
and multilevel LTP and LTD, STM and FM processes, 
excitatory and inhibitory synergy, wavelength selectivity, 
dynamic threshold modulation, and multimodal sensory 
adaptation, the review clarifies how each type of plastic-
ity enables key computational features in neuromorphic 
networks. This functional perspective highlights the 
essential connection between tailored synaptic behaviors 

and advanced neural system performance. Through com-
parative analysis and representative examples, it becomes 
clear that the deliberate modulation of plasticity behaviors, 
whether for analog weight stabilization, tunable memory 
retention, or cross-modal fusion, forms the basis for con-
structing efficient, flexible, and adaptive brain-inspired 
computing systems. However, current modulation meth-
ods still exhibit limitations regarding flexibility, diversity, 
and overall adaptability, and much of the related research 
remains exploratory. Therefore, based on this systematic 
analysis, the following three aspects are identified as criti-
cal future development directions in synaptic plasticity 
modulation techniques.

Fig. 14   Heterogeneous integration arrays for neuromorphic sensing, computation, and action. a  Optical image of 4 × 4 ferroelectric multistage 
cell (MSC) array and weight matrix. b  Wafer-scale fabrication schematic for 2D MoS2-HfOx ferroelectric field-effect transistors (FeFETs). c 
Optical images and circuit diagrams of FeFET-based Boolean logic and Schmitt trigger (ST) arrays. d  Output signals of FeFET logic gates and 
STs. e  Waveform transformation by Schmitt trigger: analog to digital logic. f  Digital computation with ferroelectric XNOR, convolution, and 
ST arrays for real-time object detection. g  Analog CNN computation in MSC arrays for multilayer feature extraction and prediction. h  Power 
consumption comparison: ferroelectric hybrid system versus conventional CPUs/GPUs. i  Confusion matrix showing 99.8% dynamic object 
tracking (DOT) recognition accuracy. a-i Reproduced with permission [48].  Copyright 2024, The American Association for the Advancement 
of Science. j  Schematic of tactile neuromorphic system integrating triboelectric sensor, microcontroller, and FeFET array. k  Tactile Morse code 
recognition: signal generation, image encoding, and neural network classification. l  Real-time voltage output for Morse code “A”, “B”, “C” and 
visual patterns. m  Training/test dataset generation by randomization. n  single-layer perceptron (SLP) recognition accuracy on Morse code ver-
sus epoch. o MLP recognition accuracy on MNIST versus epochs. j-o Reproduced with permission [49]. Copyright 2023, American Chemical 
Society
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7.1 � Exploration of Novel Synaptic Plasticity 
Mechanisms

The exceptional intelligence of biological organisms primar-
ily arises from the diverse and sophisticated plasticity mech-
anisms that operate within their nervous systems [61]. Com-
pared with natural neural structures, artificial neuromorphic 
devices currently possess relatively simplistic and limited 
modulation mechanisms [2]. Specifically, existing synap-
tic plasticity research largely centers on basic transitions 
between STM and LTM states, modulation between excita-
tory and inhibitory synaptic activities, and optimization of 
linearity and symmetry in synaptic weight updating [15]. 
These relatively narrow modulation pathways significantly 
restrict the full potential and functionality of neuromorphic 

systems [197]. The limited scope of plasticity modulation 
is mainly attributed to the current absence of sufficiently 
rich and diverse physical mechanisms at the device level. 
Thus, future research should prioritize exploring and dis-
covering new functional mechanisms, such as multithresh-
old dynamics, activity-dependent metaplasticity, selective 
plasticity gating, and biologically inspired heterosynaptic 
mechanisms, to expand the modulation versatility [198, 
199]. Enriching the pool of available plasticity behaviors can 
effectively enhance the operational speed, power efficiency, 
computational flexibility, and adaptive learning capability 
of neuromorphic chips.

Fig. 15   Outlook for future directions in synaptic plasticity engineering, covering functional mechanisms, multimodal fusion, and array modula-
tion. Reproduced with permission [43]. Copyright 2025, The American Association for the Advancement of Science. Reproduced with permis-
sion [44]. Copyright 2024, The American Association for the Advancement of Science. Reproduced with permission [48]. Copyright 2024, The 
American Association for the Advancement of Science. Reproduced with permission [105]. Copyright 2024, American Chemical Society. Mul-
timodal Fusion. Reproduced with permission [126]. Copyright 2024, American Chemical Society. Reproduced with permission [164]. Copyright 
2025, Wiley–VCH GmbH Copyright 2025, Wiley– VCH GmbH



Nano-Micro Lett.          (2026) 18:196 	 Page 35 of 43    196 

7.2 � Multimodal Collaborative Plasticity Modulation 
Techniques

Future advancements in neuromorphic hardware require 
substantial progress in multimodal collaborative plasticity 
modulation, shifting away from single-sensory, isolated pro-
cessing paradigms toward the seamless integration of diverse 
physical signals and functionalities. Inspired by the multi-
sensory fusion and parallel processing capabilities of bio-
logical neural systems, novel device designs must effectively 
merge multiple sensory inputs, adaptive memory states, and 
computational functions at a device and module level [142]. 
Achieving this vision involves exploring advanced hetero-
structures, integrating sensing, logic, and memory into uni-
fied physical nodes, and developing reconfigurable modular 
units that dynamically emulate closed-loop biological per-
ception–action pathways [152]. Such multimodal integra-
tion techniques will significantly enhance the adaptability, 
robustness, and resource efficiency of neuromorphic sys-
tems, laying critical groundwork for intelligent sensing 
and decision-making in real-world, resource-constrained 
environments.

7.3 � Enhanced Plasticity Modulation Techniques 
for Large‑Scale Neuromorphic Arrays

The practical deployment of neuromorphic computing relies 
critically on synaptic plasticity modulation methods tailored 
explicitly for scalable neural arrays. Although significant 
advancements in individual synaptic devices have been 
achieved, large-scale integration demands higher stand-
ards for uniformity, reproducibility, and stability of plastic-
ity behaviors. To meet these requirements, future research 
should prioritize the development of advanced fabrication 
technologies and array-level modulation techniques that 
can reliably and uniformly regulate synaptic plasticity 
across extensive device arrays [200]. Furthermore, explor-
ing gate-tunable and dynamically reconfigurable plasticity 
mechanisms, exemplified by multifunctional organic hetero-
structure arrays, will allow adaptive synaptic modulation 
essential for flexible, real-time neural computations [201]. 
Achieving these goals will significantly enhance the robust-
ness, efficiency, and adaptability of large-scale neuromor-
phic systems, laying the groundwork for their broader appli-
cation in intelligent edge computing.

Despite notable progress, current modulation strategies 
remain constrained in flexibility, diversity, and large-scale 
coordination. In particularly, application-facing advances 
should explicitly link device-level plasticity to task require-
ments-stable analog weights for high-accuracy learning, 
tunable short-term dynamics for temporal processing, and 
hardware attention for noise-resilient perception. Future 
research should focus on enriching the behavioral repertoire 
of plasticity, especially those supporting temporal learning, 
adaptive attention, and metaplastic threshold tuning, advanc-
ing cross-modal convergence and device-algorithm co-
design to bridge device behaviors with network objectives, 
and improving array-level uniformity and variation-aware 
calibration for scalable integration and reliable operation 
in edge and resource-constrained environments. In parallel, 
standardized, task-linked benchmarks and device-to-network 
mapping protocols (linearity, symmetry, drift/temperature 
stability, STM windows, STDP, and threshold adaptabil-
ity) are needed to ensure fair comparison and reproducible 
system-level gains. Together, these directions will pave 
the way toward deployable, high-efficiency neuromorphic 
intelligence. Priority application sandboxes—wearable 
health monitoring, low-light/night-vision perception, and 
extreme-environment sensing—can serve as near-term prov-
ing grounds for translating synaptic strategies into deploy-
able systems.
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